
Water leakage forecasting: The 
application of a modified fuzzy 
evolving algorithm 
Birek, L. , Petrović, D. and Boylan, J. 
 
Author post-print (accepted) deposited in CURVE March 2014 
 
Original citation & hyperlink:  
Birek, L. , Petrović, D. and Boylan, J. (2014) Water leakage forecasting: The application of a 
modified fuzzy evolving algorithm. Applied Soft Computing Journal, volume 14 (PART B): 
305-315. 
http://dx.doi.org/10.1016/j.asoc.2013.05.021 
 
 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
 
This document is the author’s post-print version of the journal article, incorporating any 
revisions agreed during the peer-review process. Some differences between the published 
version and this version may remain and you are advised to consult the published version 
if you wish to cite from it.  
 
 
 
 
 
 

CURVE is the Institutional Repository for Coventry University 
http://curve.coventry.ac.uk/open  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228141271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.asoc.2013.05.021
http://curve.coventry.ac.uk/open


Water leakage forecasting: the application of a modified
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Abstract

This paper investigates the use of evolving fuzzy algorithms in forecasting.
An Evolving Takagi-Sugeno algorithm (eTS), which is based on a recursive
version of the Subtractive algorithm is considered. It groups data into sev-
eral clusters based on Euclidean distance between the relevant independent
variables. The Mod eTS algorithm, which incorporates a modified dynamic
update of cluster radii while accommodating new available data is proposed.
The created clusters serve as a base for fuzzy If-Then rules with Gaussian
membership functions which are defined using the cluster centres and have
linear functions in the consequent i.e., Then parts of rules. The parameters
of the linear functions are calculated using a weighted version of the Recur-
sive Least Squares algorithm. The proposed algorithm is applied to a leakage
forecasting problem faced by one of the leading UK water supplying com-
panies. Using the real world data provided by the company the forecasting
results obtained from the proposed modified eTS algorithm, Mod eTS, are
compared to the standard eTS algorithm, exTS, eTS+ and fuzzy C-means
clustering algorithm and some standard statistical forecasting methods. Dif-
ferent measures of forecasting accuracy are used. The results show higher
accuracy achieved by applying the algorithm proposed compared to other
fuzzy clustering algorithms and statistical methods. Similar results are ob-
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tained when comparing with other fuzzy evolving algorithms with dynamic
cluster radii. Furthermore the algorithm generates typically a smaller num-
ber of clusters than standard fuzzy forecasting methods which leads to more
transparent forecasting models.

Keywords: fuzzy If-Then rules, evolving fuzzy system, forecasting,
evolving clustering, leakage

1. Introduction

Development and application of forecasting models to be used in real-world
scenarios are often difficult tasks because of non-linear relationships between
dependent and independent variables, measurement errors and incomplete
datasets. In the last few decades, fuzzy logic has been successfully used to
model complex, dynamic problems such as forecasting that would otherwise
be difficult to accomplish using conventional mathematical approaches. The
advantage of using fuzzy logic lays in its ability to express non-linear relations
among variables, typically by combining several linear sub-models, expressed
in the form of fuzzy If-Then rules. The rules are often generated based on
experts knowledge. This, however, requires the presence of an experienced
specialist, and it is usually time consuming and not feasible for large scale
applications. One of the ways to overcome this problem is to use data cluster-
ing. The data points which share similar properties are grouped into clusters
which in turn are a base for the fuzzy If-Then rules. The recent advances in
the field of fuzzy clustering [1, 2] have allowed for real-time generation and
update of fuzzy If-Then rules. This is particularly helpful in situations where
it is important to adapt the rule structure to changing conditions as well as
being able to control the way the clusters are generated in the real time.

In this paper, evolving fuzzy systems are applied to the forecasting of wa-
ter leakage for one of the leading water supply companies in the UK. This
approach is particularly useful for this application as it is often difficult to
determine the relationship between the dependent and independent variables
and it is important to adapt the forecasting model to changing conditions.
Having a number of regions of operation, it is also inconvenient to generate
different forecasting models for each one of these regions. This paper is novel
in three ways: i) a fuzzy (Takagi-Sugeno) evolving algorithm is adapted in
order to be suitable for a forecasting application, ii) the generation of the
cluster radii is conducted in a different manner as compared to other existing
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methods, and iii) fuzzy and statistical forecasting methods are evaluated and
compared in the context of water leakage for the first time.

The paper is organized as follows. Section 2 provides a literature review
on fuzzy logic based forecasting methods. Section 3 presents the evolving
Takagi-Sugeno (eTS) algorithm, introduces the modifications of the stan-
dard eTS algorithm and explains how the algorithm is used in forecasting.
In Section 4 the case study is presented which introduces the leakage forecast-
ing problem and points out some of the factors influencing the leakage. The
application of the algorithm proposed, the results obtained and comparison
with some other fuzzy forecasting methods, as well as some standard statisti-
cal methods such as Naive, Holt-Winters and linear regression are presented
in Section 5. The paper closes with some concluding remarks and indications
of future work.

2. Literature review

The application of fuzzy sets theory to forecasting has been of interest to
many researchers around the world. One of the first applications of fuzzy
sets was in forecasting tax revenue using the language patterns extracted
from the available data [3]. Further work has been done in using language
values in forecasting. In [4] Song and Chissom proposed the fuzzy time
series approach; the method involved defining and partitioning the available
data space into a universe of discourse which was fuzzified and used in the
forecasting process. The method was applied and investigated in [5, 6] and
further modifications were introduced in [7, 8].

Another area of fuzzy logic which found its application in forecasting has
been fuzzy clustering, where historical data is grouped into clusters based on
a distance measure. The clusters are then used to generate fuzzy If-then rules
which are applied in a forecasting process. Considerable research has been
done in the application of the well-known fuzzy C-means algorithm. In [9],
the fuzzy C-means algorithm is used to generate different lengths of intervals
to be used in conjunction with the fuzzy time series approach described
above. In [10], the extended fuzzy C-means algorithm was applied and used
to help forecast newspaper demand in order to reduce newspaper losses.
Use of fuzzy C-means algorithm to automatically build a fuzzy If-then rule
structure from the clusters was researched in [11]. Fuzzy If-then rules were
used to obtain forecasts based on calculated weights of the activated rules.
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The method was applied to temperature forecasting based on the previously
recorded temperature and cloud density, as well as to the forecast of the
Taiwan stock market index. The drawback of using fuzzy C-means, however,
was that the method required setting the number of clusters in advance.
This led to time consuming process of finding the number of clusters which
would produce the best results. One of the solutions presented in [12] is to
use the fuzzy possibilistic approach. Another solution, proposed by Yager
and Filev [13], called the Mountain method, helped in estimating the initial
coordinates of the cluster centres to be used in other clustering algorithms,
such as C-means. Other clustering algorithms emerged directly from the
method proposed, such as the Subtractive clustering algorithm [14], used for
identification of the Takagi-Sugeno fuzzy models from the available data.

The extension of the Subtractive clustering algorithm called eTS, presented
in [15], allowed for the dynamic update of the cluster structure by using a
notion of the potential of each data sample. The resulting fuzzy If-then rules,
as well as the consequent parameters of the resulting Linear Equations, were
also updated in a recursive way. Different versions and modifications of the
algorithm and various applications have been researched since then. In [16],
a simplified version of the eTS algorithm was introduced, which utilized scat-
ter instead of the potential and included ageing of the rules. In [17], exTS
algorithm was presented, which involved the recursive update of the cluster
radii according to a data distribution. eTS+ algorithm, presented in [2],
further enhanced the eTS method with the on-line monitoring of the quality
of generated clusters, on-line structure simplification and on-line input se-
lection. More methods have been developed presenting different approaches,
such as neural fuzzy systems (SaFIN [18] and DENFIS [19]), modification to
standard algorithms, like C-means [20], Gustafson-Kessel [21] and Gath-Geva
[22] clustering, and new ones, such as FLEXFIS algorithm [23]. Complexity
reduction was addressed in [24], by analysing the approach of removing local
redundancies during the training period. Evolving fuzzy systems were also
applied and evaluated on classification problems [25]. The on-line evolving
fuzzy classifiers presented there could be used with different model architec-
tures. Some practical applications are described in [26, 27, 28]. A review of
different fuzzy evolving approaches which emerged over the past decade is
presented in [1].

One of the areas which did not receive enough attention is the application
of evolving fuzzy algorithms to forecasting problems. In [27], the eTS al-
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gorithm was applied to a time series data set from a Neural Network (NN)
competition. The method was successfully applied, but the accuracy of the
proposed approach was not compared with any other method. In [29], the
evolving fuzzy approach was also applied to a NN competition, with a focus
on proposing different top-down approaches to improve the accuracy of a
detailed forecast by aggregating daily reading into a weekly time-series. The
results for the petrol volume sales estimation using the recursive Gustafson-
Kessel clustering were presented in [30]. Those studies show that the evolving
fuzzy methods can be used in forecasting applications. However, the obtained
results are not compared with any of the widely accepted statistical methods
in terms of the forecasting accuracy. Another issue is that the fuzzy evolving
algorithms are very often applied to data generated by mathematical models.
The lack of comparison and the use of the generated data makes it difficult
to assess the usability of the fuzzy forecasting methods in the practical fore-
casting application.

This study aims at addressing those issues by focusing on the application of
a Mod eTS algorithm to a real life problem of one year ahead multivariate
water leakage forecasting. The data used consists of multiple independent
and dependent variables, with visible seasonal events. The evolving fuzzy
algorithm which has been used is based on the eTS with dynamic update of
cluster radii. Although the dynamic radii update has already been explored
in the previous extensions to eTS, the update process has been changed to
accommodate to the features of this application in particular to take into
account the importance of the high leakage during certain seasonal periods,
which has the highest influence on the average yearly leakage values. The
performance of the proposed approach and other fuzzy forecasting and sta-
tistical methods are investigated and the results are compared.
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3. Mod eTS algorithm

Notation:

k time instance
i cluster index
xk =

[

xk1 xk2 . . . xkh
]

data point (vector)
ci =

[

ci1 ci2 . . . cih
]

cluster centre
P (xk) potential of data point xk
Pk (xk) potential of data point xk at time instance k
α parameter used in Subtractive clustering potential

calculation
β parameter used in Subtractive clustering potential

update
γ parameter used in the update of radii in

Mod eTS
r radius of a cluster
rk,ij radius of cluster i, variable j at time instance k
Q high number used to initialise the covariance

matrix
σ2 variance of the Gaussian function
ε threshold for accepting a data point as a cluster

centre
µi activation degree of rule i
λi firing degree of rule i
ψ regressor vector of the data matrix Ψ
θ parameter vector of the parameter matrix Θ
Covk covariance matrix at time instance k

3.1. Fuzzy rules generation with Subtractive clustering

Before introducing the modified evolving Takagi-Sugeno algorithm for fore-
casting, we will first focus on the standard, offline Subtractive clustering algo-
rithm. The Subtractive clustering algorithm [14] is a fuzzy model-based iden-
tification method which uses a modification of Mountain clustering method
proposed by Yager and Filev [13]. Mountain clustering was initially used to
help in estimation of the number of cluster centres for the fuzzy C-means
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algorithm. In the fuzzy C-means, coordinates of the cluster centres are ob-
tained as a result of minimizing the cost function which takes into account
the distance between cluster centres and data samples and the correspond-
ing membership degrees. This however, requires the number of clusters to
be specified in advance.

In the Subtractive clustering algorithm, the cluster centres are automatically
generated from the collected training data through calculation of the poten-
tial of data samples. Potential defines the influence of the data point on the
surrounding data space, i.e., gives an indication on the number of other data
points which are in its close proximity. It depends on the cluster spread, i.e.
its radius. The obtained cluster structure can then be used to build a fuzzy
model based on Takagi-Sugeno inference and a fuzzy weighted Least Squares
(LS) estimation of the parameters of the consequent i.e., Then part of rules.
The potential P of the training data point xk is calculated as follows:

P (xk) =
∑n

l=1
e−α‖xk−xl‖2 (1)

α =
4

r2
(2)

where n is a number of data points and r is a cluster radius chosen empir-
ically, which defines the influence of the data samples on the potential and
k = 1, . . . , n. A high value of the potential of the data sample xk indicates
that there are other data samples being in close proximity to xk (shorter
distances ‖xk − xl‖ between data vectors, calculated as the Euclidean norm
in h dimensional space). The data sample xk with the highest potential
Pref = max (P (xk)) is always chosen to be the first cluster centre c1 = xk.
After every step, the potential of the remaining data samples is updated to
account for the new cluster centre as follows:

P (xl) = P (xl)− P (ci) e
−β‖xl−ci‖2 (3)

β =
4

r2b
(4)

for l = 1, . . . , n, where rb is a positive constant set to be greater than r (a
good choice is rb = 1.5r [14]) and P (ci) is the potential of the newly ob-
tained cluster centre ci. The clustering is considered to be finished when the
ratio between the highest potential Pref and the potential P (xk) of currently

considered data sample xk is lower than certain threshold ε, i.e., ε > P (xk)
Pref

.
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The value of ε affects the results considerably, as choosing it to be too small
results in generating too many clusters, whereas if it is too large, not enough
data samples will become cluster centres and consequently not enough fuzzy
If-Then rules will be created [14].

When the clustering process is finished, the resulting structure can be used to
generate fuzzy If-Then rules. Each cluster corresponds to one fuzzy rule with
the cluster centre coordinates being the focal points of Gaussian membership
functions of the antecedent, i.e. If part of the fuzzy rule. The consequent,
i.e., Then part is in the form of a linear function and Takagi-Sugeno inference
is applied. Rule i has the following form:

IF x1 is Ai1 AND x2 is Ai2 AND . . . AND xh is Aih (5)

THEN yi = ai1x1 + ai2x2 + . . . + aihxh + aih+1

where x =
[

x1 x2 . . . xh
]

is a data sample, j = 1, . . . , h is a number of
input values and Aij represents the Gaussian membership function:

f(xj, cij , σ
2
ij) = e

−(xj − cij)
2

2σ2
ij (6)

with cij being the centre and σ2
ij a variance of the Gaussian membership

function.

The parameters of all linear functions of the consequent parts of fuzzy rules
are estimated using the LS algorithm. The activation degree µi of each rule
is obtained as the membership degree of inputs of the considered data point
xk belonging to the corresponding Gaussian membership functions:

µi = e−α‖xk−ci‖2 (7)

where α = 1/2σ2. The firing degree of each rule is then obtained as follows:

λi =
µi

∑R

l=1 µl

(8)

where R is the total number of fuzzy rules (clusters). The firing degrees
are combined with input values to create the data matrix Ψ used in the LS
algorithm.

Ψ =







λ1x
e
1 λ2x

e
1 · · · λRx

e
1

...
...

...
...

λ1x
e
n λ2x

e
n · · · λRx

e
n






(9)
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where xek is an extended data vector with h input values:

xek =
[

xk1 xk2 · · · xkh 1
]

(10)

The Θ =
[

θT1 θT2 · · · θTc
]

consists of vectors of estimated parameters of
the consequent part of each rule where θ1 =

[

a11 a12 · · · a1h a1h+1

]

,
θ2 =

[

a21 a22 · · · a2h a2h+1

]

, . . .,θR =
[

aR1 aR2 · · · aRh aRh+1

]

. The
parameters are chosen so that the sum of squared errors between real output
values and the outputs estimated by using fuzzy rules is the lowest:

J =
(

Y −ΨTΘ
)−1 (

Y −ΨTΘ
)

(11)

The parameters can be estimated by pseudo inverse:

Θ =
(

ΨTΨ
)−1

ΨTY (12)

Knowing the values of the dependent variables (inputs) xe, the generated
model can be used to predict the output based on the assessment of the
firing degrees λi using the estimated parameters Θ. The output is estimated
as:

y =
∑R

i=1
λiθix

e (13)

The flow-chart of the Subtractive algorithm is given in Fig. 1. The method
can be applied to multivariate forecasting problems, such as the one of leakage
forecasting which will be described later in the paper.

In case of forecasting for several periods ahead, it may be useful to update
the model dynamically as new data becomes available. This gives the advan-
tage of gradually evolving the model as opposed to rebuilding it each time,
which may consume much more time. The modified evolving version of the
Subtractive clustering algorithm is described in the next section.

3.2. Modified Evolving Takagi-Sugeno (Mod eTS) algorithm

The Evolving Takagi-Sugeno (eTS) algorithm [15] is based on the Subtrac-
tive algorithm with modifications which allow the gradual update of the
antecedent part of the fuzzy If-Then rules, as well as the consequent param-
eters through a global learning via weighted Recursive Least Squares (RLS)
algorithm. The local learning, described in more details in [2] can also be
used, which proves to have more locally interpretable rules and sometimes
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Choose

as reference potential

Collect training data 

and organize into data 
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Yes

No

Stop clustering
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Choose new
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IF 

k
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( )

l
P x

ref
P

k
x

Fig. 1. The flow-chart of the Subtractive clustering algorithm.

may produce better results. In this description however, for the sake of sim-
plicity, the global learning is demonstrated. Both global and local learning
versions of the algorithm are later compared in terms of forecasting accuracy.
In the classic eTS each cluster has one predefined radius. In this paper, the
eTS incorporates the dynamic radius adjustment of each input variable of
each cluster. Introducing a radius for each cluster dimension which is dy-
namically changing allows for a better coverage of the data by clusters, as
radii may differ in different dimensions. It also limits the number of clusters
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(and consecutively rules) as it is not necessary to create more clusters when
data is already well covered by the existing ones. It is worth noting, that the
idea of dynamic radii is not new, as it has been included in the extensions
of the classic eTS approach in the form of exTS in [17] and eTS+ in [2].
The comparison of the radii updates in different fuzzy evolving algorithms,
including Mod eTS is given in Table 1.

Table 1

Comparison of the different radii updates in different fuzzy evolving algo-
rithms.

Method Characteristic Equation

exTS

rk,ij = αr(k−1),ij + (1− α) sk,lj,

use of the l - closest cluster index, α - parameter, sk,lj - scatter:

scatter sk,ij =
√

1
Nk,i

∑Nk,i

l=1 (cij − xlj)
2,

Nk,i - support of the i
th cluster

eTS+

rk,ij = αr(k−1),ij + (1− α) sk,ij,

use of the α - parameter, sk,ij - scatter:

scatter sk,ij =
√

1
Nk,i−1

∑Nk,i−1
l=1 (cij − xlj)

2,

Nk,i - support of the i
th cluster

Mod eTS
use of the rk,ij = γr(k−1),ij + (1− γ) cij ,

cluster centre γ - parameter

Data points which are outside of the radii have little or no influence on the
potential of this cluster [14]. As the cluster structure is evolving all the time,
a different way of calculating the potential of the data samples needs to be
introduced. The potential is calculated based on the Cauchy function (the
approximation of Gaussian function)[31]. This particular type of function is
used as it is inversely proportional to the distance and allows for recursive
calculation [32]:

Pk (xk) =
1

1 + 1
k−1

∑k−1
l=1

∑h+1
j=1 (xlj − xkj)

2
(14)

This function is inversely proportional to the squared distances between the
current data point and the previously collected data. The potential increases
with the number of the previous data points being in the proximity of the
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current data point. The potential is also influenced by the number of cur-
rently available points; the more the points the smaller the term 1/ (k − 1)
is, which leads to an overall increase in the potential. This feature allows
data points which describe the region of data better than some of the already
created clusters to become new clusters for that region.

The algorithm can be initiated with a previously generated cluster structure
or it can start from the first obtained data point. The data points should be
organized in row vectors with inputs followed by resulting output:

xk =
[

xk1 xk2 · · · xkj · · · xkh yk
]

(15)

where k is the data point index, j = 1, . . . , h is the input index and y is
a resulting output. In addition to this, the initial values of the spread or
cluster radius r1,1j for each input and output needs to be set up in advance.
The radii will be updated dynamically as new clusters are added to a cluster
structure. The radii are updated using the parameter γ which is set in
advance empirically.

The proposed algorithm contains the following steps.

1. Normalise the incoming data point xk so that the range of all the data
points, xkj ∈ [0, 1]:

xkj =
xkj −min (x j)

max (x j)−min (x j)
(16)

The min (x j) and max (x j) denote the minimum and the maximum of
all previously obtained points of jth variable (component of data point
xk). As the variables differ in their maximum and minimum values, it is
recommended that they are normalized [30]. Although the information
of the maximum and minimum values of data may not be available for
the user in real life, it is often possible to estimate the maximum and
minimum values from some subset (training set) of available data or those
values can be chosen empirically based on the expertise. Another approach
to that problem has been described in [30] where the normalization was
done through normalization constants for each variable, and in [2], where
standardization was done based on the recursive calculation of mean and
standard deviation.

2. If the algorithm starts from an empty rule base and the first data point
x1 is considered, then:
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a) Initialize the cluster structure c1 with the first data point x1 : c1 = x1
b) Set the potential P1 (c1) of the first cluster to 1: P1 (c1) = 1.

The formula for the potential Pk (xk) is given by:

Pk (xk) =
k − 1

(k − 1) (ϑk + 1) + σk − 2νk
(17)

where:

σk =
∑k−1

l=1

∑h+1

j=1
(xlj)

2 = σk−1 + ϑk−1

ϑk =
∑h+1

j=1
(xkj)

2 (18)

βkj =
∑k−1

l=1
xlj = βk−1j + xk−1j

νk =
∑h+1

j=1
xkjβkj

Initialize the values used to calculate the potential (Eq. (17)) of the
data point in the next steps: ϑk = 0, σk = 0, νk = 0, βk =

[

0 0 · · · 0
]

,
where size of the βk vector is the same as the size of xk

c) Create the first rule based on the cluster centre c1:

IF x11 is A11 AND x12 is A12 AND . . . AND x1h is A1h (19)

THEN y1 = a11x11 + a12x12 + . . .+ a1hx1h + a1h+1

withA1j being a Gaussian membership function calculated using Eq. (6).
d) Set the number of rules R to 1: R = 1
e) Calculate the variance σ2 (σ measures the width of the Gaussian func-

tion) of the Gaussian membership functions (Eq. (6)) of each fuzzy set
in the first cluster based on the starting cluster radius r1,1j :

σ2
1j =

r1,1j (max(x j)−min(x j))√
8

.

f) Set the parameter vector θ1 of the consequent linear equation of the

first rule to 1: θ1 =
[

1 1 · · · 1
]h+1

, where h+1 indicates the number
of columns in the vector (h being a number of inputs)

g) Set the global parameter matrix Θ of the consequent linear equations
to θ1, Θ = θ1

h) Set the fuzzy weight λ1 to 1
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i) Initialize covariance matrix Cov1 with a high number Q multiplied by
the (h+ 1)× (h+ 1) identity matrix:

Cov1 =











Q 0 · · · 0
0 Q · · · 0
...

...
. . .

...
0 0 · · · Q











h+1×h+1

(20)

j) Initialize a regressor vector ψ1 which will store weighted input values

for the parameter estimation purpose ψ1 =
[

0 0 · · · 0
]h+1

, Ψ1 = ψ1

3. If the cluster and rule structure is already initiated or k > 1:

a) Calculate the value of the potential Pk (xk) of the data point xk using
the recursive version of the Cauchy type function (Eq. (14))

b) Update the radii of all created clusters:

rk,ij = γr(k−1),ij + (1− γ) cij (21)

The update of the clusters is conducted in every step for all clusters.
Each dimension (input variable) of the cluster is updated separately.
Similar approach was implemented in [17] and [2], where radius was
calculated using the local scatter over the input data which resembles
the variance. In this case we do not calculate the scatter, but instead
use the value of the centre in the considered dimension. This approach
has been dictated by the importance of high values of inputs and is
problem specific. The higher the cluster centre value is, the bigger the
radius and the higher the resulting potential will be. This will promote
the clusters created in the regions with high values which is crucial for
leakage application as high values of leakage contribute significantly to
the average leakage over the year. It is worth noting, that it is also
important to choose appropriate smoothing parameter γ and initial
value of the radius.

c) Update the potential of all already established clusters. The potentials
of already created centres depend on the distances to all data points,
therefore, it is necessary to update them.

Pk (ci) =
(k − 1)Pk−1 (ci)

k − 2 + Pk−1 (ci) + Pk−1 (ci)
∑h+1

j=1

(

cij−xkj

rk,ij

) (22)
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d) The following steps carry on the process of deciding when to add a new
cluster, change the already existing one or when to leave the cluster
structure unchanged:

1: Compare the potential of the candidate cluster Pk (xk) with the
updated potentials of all previously selected clusters

2: if Pk (xk) > max (Pk (ci)) or Pk (xk) < min (Pk (ci)) then

3: dmin = min
i

(disti), where disti =
∥

∥

∥

ci−xk

ri

∥

∥

∥

2

, dmin is the minimum

distance disti between the data point xk and the cluster with
the centre ci, ri is the radii of the ith cluster;

4: if dmin < 0.5 then {change the already existing cluster}
5: The closest cluster centre ci is replaced by the current data

point xk (the corresponding rule is also changed);
6: The potential of the changed cluster is replaced by the po-

tential Pk (xk) of the data point xk;
7: The linear parameters of the consequent part of the rule

which was created from the replaced cluster remain the
same, as well as the covariance matrix Covk;

8: else {add new cluster}
9: New cluster is added with the coordinates of data point xk

and the potential Pk (xk);

10: R = R + 1;
11: The initial vector of linear parameters θR is obtained based

on the weighted average of all vectors from remaining fuzzy
rules;

θR =
∑R−1

i=1
λiθi (23)

12: The global covariance matrix Covk needs to be extended
and reset (see Eq. (24) with ρ = (R2 + 1) / (R2) being a
resetting factor based on the current number of rules R and
cov representing the elements of the covariance matrix at
step k − 1;

13: end if

14: else

15: Ignore the data point xk and proceed further;
16: end if
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Covk =

















ρcov11 · · · ρcov1R(n+1) 0 · · · 0
· · · · · · · · · · · · · · · · · ·

ρcovR(n+1)1 · · · ρcovR(n+1)R(n+1) · · · · · · · · ·
0 0 0 Q · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · Q

















(24)

4. Update the parameters of the consequent part using the global RLS algo-
rithm.

a) Update the data matrix Ψk using the firing degrees λ1, λ2, . . . , λR calcu-
lated using Eq. (7-8) and the extended input data vector xek (Eq. (10)),
τi =

[

λixk1 λixk2 · · ·λixkh λi
]

, i = 1, . . . , R:

Ψk =
[

τT1 τT2 . . . τTR
]T

(25)

b) Apply the RLS algorithm to estimate the parameters of the linear
consequent part of the fuzzy If-Then rules:

L =
CovkΨk

1 + ΨT
kCovkΘk−1

(26)

ε̂ = yk −ΨT
kΘk−1 (27)

Θk = Θk−1 + Lε̂ (28)

Covk+1 = Covk − LΨT
kCovk (29)

5. Estimate the output for the next period based on the input values and
obtained parameter estimates given in Eq. (13) or in the vector form:

ŷk+1 = ΨT
k+1Θk (30)

6. Collect next data vector and go to step 3.

Fig. 2 illustrates the flow-chart of the Mod eTS. The algorithm can be
tailored to be used in the forecasting application which is discussed in the
next section.
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Fig. 2. The flow-chart of the Mod eTS algorithm.

3.3. Mod eTS algorithm in forecasting

The algorithm described in Section 3.2 can be adapted and used in multi-
variate forecasting for n-periods ahead. First, the available historical data
should be arranged into data points forming data vectors. The algorithm
can start from the first data point and the cluster formed by the first data
point, and afterwards, the rule structure is gradually generated through an
evolving process until all k data points are assessed. Assuming that the input
values x(k+1)1, x(k+1)2, . . . , x(k+1)h are given, the forecast for the next period
ŷk+1 can be calculated using the generated fuzzy If-Then rules and the esti-
mated parameters through Takagi-Sugeno inference (Eq. (30)). In the next
step the vector of data is created using the obtained forecast ŷk+1 in place of
the output, i.e.:

xk+1 =
[

x(k+1)1 x(k+1)2 · · · x(k+1)h ŷk+1

]

(31)
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The new data point xk+1 is then used to update the rule structure through
the modified eTS as described in Section 3.2. The approach is similar to the
rolling forecast method where generated forecasts for period k are used to
obtain a forecast for the next period k + 1. The process continues until all
desired forecasts ŷk+1, . . . , ŷk+n are obtained. The flow-chart of the Mod eTS
algorithm for forecasting is given in Fig. 3.

Generate in-sample model from 

training data

Generate the forecast for the 

next period

Update the forecasting model 

using the forecast as where:

1 ( 1)1 ( 1)2 ( 1) 1
ˆ

k k k k h kx x x x y+ + + + +
 = �

1
ˆ
ky +

1
ˆ
ky +

1k k= +

Fig. 3. The flow-chart of the Mod eTS algorithm for forecasting.

4. Case study

4.1. Setting the scene

One of the main concerns of water companies nowadays is maintaining re-
quired leakage levels. This is an issue especially visible in countries with an
old water network, such as the UK. A considerable part of the UKs water
supply networks date back to the beginning of the 20th century and experi-
ence frequent interruption in services due to structural failures [33]. As all
of the water service companies in the UK have been privatized, the Office
of Water Services (OFWAT) has been established to make sure that these
companies provide a certain level of service. Water companies are required
to present regular leakage forecasts and plan the resource effort in order to
decrease it to an acceptable level.
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Leakage may be divided into two groups. Background leakage (apparent
losses) accounts for utility operation (company own water usage), meter in-
accuracies and data errors; these losses cannot be measured with the current
technology. Real losses, on the other hand, are connected with physical losses
of water from the distribution network through leakage, but also through stor-
age overflows or unaccounted use of water and can be controlled by frequent
checks and proper maintenance.
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Night flow
measurement

Night flow
measurement

Fig. 4. Leakage distribution throughout the day.

The level of leakage is usually estimated through night flow measurements
(Fig. 4), where flow rates during the night, when the water demand is usu-
ally at its lowest level, are compared on a day by day basis. Any difference
in the night flows may be considered as a leakage and is investigated. Al-
though considerable investments have been made, lack of metered households
is a major factor of errors in the leakage estimation as it is very difficult to
distinguish between sudden increase in demand (for example, during a hot
summer period) and the actual leakage.
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Fig. 5. Typical leakage distribution throughout the year.

Another factor which makes leakage detection and estimation difficult is that
it does not remain constant throughout the year and is prone to seasonal
factors such as temperature and rainfall. Typically, two peaks may be dis-
tinguished during the year (Fig. 5). The smaller peak occurs around the
summer period and may be explained by an increase in demand due to un-
accounted night use and an increase in temperature which causes pipes to
expand and results in displacements, leading to pipe bursts. The much more
significant peak is usually observed in the winter, when sudden decreases in
temperature over few days cause extensive pipe bursts.

4.2. Forecasting the leakage

Leakage forecasts are produced one year ahead, from April until March, as
this is a requirement set by OFWAT. Together with the expected leakage, the
company presents the resource effort expressed in the form of Equivalent Ser-
vice Pipe Bursts (ESPBs). ESPB relates to the number of leaks found by en-
gineering teams (ESPB detected) or reported by customers (ESPB reported).
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Different types of pipes have different flow rates and therefore the leakage
from these pipes cannot be compared in a straightforward manner. Therefore,
ESPBs represent monthly repair figures recalculated to account for different
flow rates.

ESPBtype = leakstype ×
flowRatetype
flowRateCSP

(32)

where type is a type of a pipe (Mains, Communication, etc.), leaks is the
number of leaks, flowRate (in m3

hr
) is a flow rate and flowRateCSP is a flow

rate of Communication Service Pipe which is used as a reference value for
recalculation.
In addition to ESPB numbers, the Natural Rate of Rise (NRR) is used to
indicate seasonality in the leakage. NRR relates to the underlying rate at
which leakage increases within a network in the absence of any leak repairs.
It is calculated based on each years expected starting leakage, NRR Profile,
which accounts for seasonal factors (peaks in summer and winter periods) and
annual NRR (an overall increase in leakage throughout the year). Similar to
ESPBs, it is also created for detected and reported leakages and the sum of
both represents total NRR or NRRt.

4.3. Issues with producing forecasts

In general, producing forecasts for a long period ahead, such as 12 months
is a difficult task, especially when one of the crucial factors is weather. One
of the ways to overcome this problem is to rely on historical data and the
assumption that leakage can be influenced by the number of leaks found and
fixed through detection and customer feedback (ESPB numbers). Relying
on the weather forecasts is not feasible, as 12 month ahead weather forecasts
are not sufficiently accurate. Instead, the seasonal factors, such as general
decrease of temperature during the winter, or less rain during the summer,
are included in the NRR figures which increase throughout the year with
a high peak in a winter season. Another issue is the general influence of
ESPB numbers (both detected and reported) and the relationship between
them. It is difficult to establish if investment made in detecting leaks and,
therefore, increasing ESPB detected numbers has a great influence on leakage
values or if it is due to other factors including ESPB reported numbers.
The approach to that problem taken in this paper is to gradually group the
data vectors containing all relevant input variables into clusters which share
similar properties in order to compensate for these uncertain relationships
between them.
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5. Results and discussion

The Mod eTS algorithm is applied to the leakage forecasting problem. The
historical data consists of 9 real-world datasets and was kindly provided by
Severn Trent Water, one of the leading water supplying companies in the UK.
It includes 60 monthly readings of leakage, ESPB detected, ESPB reported
and NRR values collected over 5 years (2006 − 2011). The leakage values
were collected from District Metered Areas (DMAs) on a weekly basis and
were averaged for each month of the year. The ESPB values were summed
each month and split between detected and reported cases. NRR values were
provided by the company on a monthly basis. Eight regional and one overall
company dataset were used to test the forecasting algorithm proposed.

The datasets are divided into two parts: 4 years (48 months) of data is used
for a training period and 1 year (12 months) for out of sample testing. Data
vectors xk : k = 1, . . . , 48, are created from each dataset and consist of
four input values: yk−1 - previously obtained leakage, u1k - ESPB detected
numbers, u2k - ESPB reported numbers and u3k - NRR values. The output
value yk is observed leakage.

xk =
[

yk−1 u1k u2k u3k yk
]

(33)

The choice of the parameters to include as inputs was dictated by the avail-
ability of the data and the discussion we had with the company experts. The
cluster structure is built using training data of 48 months separately for each
of 9 datasets, using the algorithm described in Section 3.2. The forecasting
process is carried out as described in Section 3.3, using the last 12 months of
data for a 12 month ahead period on a monthly basis. We use three typical
measures of error.

R2 is called the coefficient of determination and represents how well the
estimated forecast value fits the actual value of leakage. The higher the
value of R2, the greater the similarity to the historical observations:

R2 = 100

(

1−
‖y − ŷ‖2

‖y − ȳ‖2

)

(34)

where ŷ is obtained forecast vector and ȳ is the mean of all historical values
of leakage. When the value of R2 is below zero it means that the fit is worse
than the simple mean of the historical values.
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We also calculate the Mean Absolute Percentage Error (MAPE ) and Root
Mean Squared Error (RMSE ), which are amongst the most used error mea-
sures. In this case, the lower the values of the MAPE and RMSE (the lower
the forecasting error) the better:

MAPE =
100%

n

n
∑

t=1

∣

∣

∣

∣

yt − ŷt
yt

∣

∣

∣

∣

(35)

RMSE =

√

√

√

√

1

n

n
∑

t=1

(yt − ŷt)
2 (36)

MAPE error measure is used due to its ability to express the result regardless
of the scale at which the measure is computed as the result is presented in
percentage. Also, the considered time-series have no zero values, which makes
the use of MAPE possible. RMSE is used as the error is expressed in the
same scale as the data.

5.1. Comparison with classical fuzzy and some statistical forecasting methods.

To assess the accuracy of the Mod eTS algorithm we compare it with some
other fuzzy forecasting methods: standard eTS, which does not involve clus-
ter radius update, Subtractive clustering algorithm (Subclust) and C-means
fuzzy forecasting algorithm described in [11]. We also use some standard
statistical methods: Multiple linear regression (MLR), Seasonal Naive (S-
Naive) method, which takes into account the last 12 month values of leakage
and simply applies it as a forecast for the next period, Autoregressive model
of order 1 AR(1), as well as Holt-Winters method (HWM) which is one of
the most popular and successfully applied exponential smoothing methods
which can address both trend and seasonality. The memory requirements
and computational speed are not included as performance indicators in this
study, but the algorithms in general do not put high stress on the PC and
memory shortages were not an issue. The parameters of the algorithms are
optimized based on the MAPE error computed over both training and testing
data.

Fig. 6 shows a plot of the real leakage and the input variables together with
the forecast obtained using the Mod eTS, eTS and C-means methods for one
of the regions of company operation. Table 2 shows the accuracy results using
different forecasting methods and 3 different error measures for training and
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Fig. 6. Leakage, forecast, ESPB and NRR plot of 5 years of data for one of
the regions of operation.

testing periods. It can be seen that Mod eTS has the highest accuracy out of
all tested methods in out-of-sample period considering all 3 error measures
with lowest number of clusters out of all fuzzy forecasting methods.

To assess the accuracy of the method over a bigger number of datasets we
calculate the accuracy of the forecast for all 9 datasets and then take the
average of the results obtained. These are presented in Table 3. The results
show that the proposed method produces forecasts with higher R2 values
and lower MAPE, in terms of testing (out-of-sample data) than other fuzzy
forecasting methods and most statistical methods. It is worth noting that
the values of leakage over the last 12 months of the training period are very
similar to the leakage of the testing period. This results in HWM having the
highest accuracy in the testing periods considering all 3 accuracy measures
due to 12 month seasonality value considered in HWM. This may not always
be the case, as depending on weather and the control policy, the leakage may
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Table 2

Accuracy results of different fuzzy and statistical forecasting methods for a
dataset from one of the regions.

Method
R2 R2 MAPE MAPE RMSE RMSE

clusters
train test train test train test

Mod eTS 26.53 62.32 4.48 3.83 2.46 2.58 2

eTS 20.00 37.79 4.43 5.72 2.57 3.32 3
Subclust 100.00 -436.08 0.00 15.11 0.00 9.74 35
C-means 7.20 0.73 5.32 9.70 2.78 4.19 7
MLR 22.40 35.45 4.41 6.88 2.53 3.38
S-Naive -97.46 42.29 5.51 5.92 2.90 3.20
AR(1) 11.91 0.83 4.74 9.04 2.69 4.19
HWM 51.52 43.41 3.33 4.82 1.67 3.16

Table 3

Accuracy results of different fuzzy and statistical forecasting methods aver-
aged over 9 datasets.

Method
R2 R2 MAPE MAPE RMSE RMSE

clusters
train test train test train test

Mod eTS 57.78 21.81 3.57 7.47 3.89 11.88 3

eTS 52.54 -5.24 3.13 8.25 5.04 11.50 10.1
Subclust 97.55 -120.47 0.31 12.50 0.55 14.35 30.3
C-means -5.88 -8.25 5.99 10.12 6.55 12.67 7
MLR 54.03 -26.57 3.65 10.30 3.98 14.20
S-Naive -42.80 17.79 6.59 7.38 7.38 9.33
AR(1) 32.11 -35.53 4.13 10.97 5.22 13.34
HWM 10.27 39.11 5.60 5.78 6.52 8.98
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be considerably different from year to year. It is also important to mention,
that HWM uses only time-series data of leakage, without taking into account
other input variables, therefore is not really suitable for this application due
to the existing need of understanding the inherent relationships between the
considered inputs. The forecasting error of Mod eTS for the training period is
lower in comparison to the statistical methods, but MAPE is slightly higher
than that of the Subtractive clustering and eTS algorithm which achieves
lower RMSE errors and higher R2 values over the training period, due to
its off-line nature. This however comes at the cost of the higher number of
generated clusters for those types of methods and higher forecasting errors
for testing period, which is the most important measure in forecasting. The
Mod eTS generates the least clusters on average over 9 datasets than all other
considered fuzzy forecasting methods. Having less clusters and similar or
higher accuracy indicates that the proposed method may be a suitable choice
if a trade-off between the complexity and accuracy needs to be achieved. This
is particularly important in this application, when not only lower error values
are of paramount importance but also the simplicity of the forecasting model.
Reducing unnecessary complexity contributes to better understanding of the
relationship between the dependent and independent variables as it can be
assumed that lower number of rules improves the overall interpretability of
the forecasting model [1].

5.2. Comparison with other fuzzy evolving algorithms.

Table 4

Accuracy results of considered fuzzy evolving algorithms averaged over 9
datasets.

Method
RMSE RMSE RMSE RMSE RMSE clusters clusters
train test test min test max test var train test

Mod eTS G 4.54 14.88 2.61 66.27 384.01 4.11 0.44
Mod eTS L 4.10 14.86 5.11 68.33 405.44 5.11 0.11
eTS 6.63 15.51 4.38 57.10 274.35 4.38 0.38
exTS 4.05 15.57 3.40 63.40 346.95 2.25 0.13
eTS+ 4.05 15.43 3.40 63.40 352.47 2.00 0.00

The same datasets are used to compare Mod eTS with both local and global
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learning and other evolving algorithms: eTS [15], exTS [17] and eTS+ [2].
In this case, the parameters of the algorithms are optimized with error cal-
culated over the training period. The computed RMSE for the forecasts,
together with min, max values and the variance are presented in Table 4.
The best results for testing period are achieved by the Mod eTS for both
global and local learning, followed by the eTS+. eTS+ however generated
the least number of rules on average due to more advanced method of keep-
ing control over the size of the rule base through the mechanism of disabling
some of the obsolete rules. The minimum, maximum values of errors are also
calculated for the test period, with Mod eTS in Global learning mode having
the smallest RMSE. It might be interesting to notice that the variance of the
errors shows that eTS has the smallest spread of errors out of all considered
methods, with Mod eTS, both global and local learning, having the highest.
A further study needs to be conducted over the bigger dataset to evaluate
the performance of the algorithm.

Fig. 7 presents the evolution of the rule base for one of the datasets. Mod
eTS in global and local mode will always have the same rule structure for a
training period, as the only difference between them is the way the param-
eters of the resulting linear equations are optimized, which should not have
influence on the cluster generation process. For testing, however, differences
may occur, as the forecasting process involves the use of generated forecasts
in the inputs, which may influence the way the clusters will be established. In
this particular case eTS and eTS+ generated the same numbers of rules; how-
ever, the steps to achieve that number were different. Less rules have been
obtained from Mod eTS and exTS, with both algorithms generally adding
the new rule at the same data point. It is worth noting that in this case no
clusters were generated during the testing period, which is not always the
case for all tested datasets.

It is worth noting, that due to the way the radii are updated in Mod eTS,
the obtained results may not be comparable for the problems with different
time-series characteristics, for example, with varying trend.

6. Conclusions

In this paper, an evolving fuzzy algorithm (Mod eTS) with a modified re-
cursive cluster radii update is proposed. A number of standard fuzzy and
evolving algorithms and some widely accepted statistical methods are com-
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Fig. 7. Rule evolution of Mod eTS, eTS, exTS and eTS+ for one of the
datasets.

pared and applied to a leakage forecasting problem for the first time. The
proposed modification utilizes cluster centres in radii update to take into ac-
count the influence of data points with higher values due to the importance
of the high leakage events. The recursive modification of cluster radii in each
dimension in the evolving process allows for more accurate data coverage.
Fuzzy If-Then rules are generated from clusters, which are used to obtain
leakage forecasts. The modification results in a smaller number of clusters
compared to standard fuzzy forecasting methods without the dynamic radii
update, which improves the interpretability of the fuzzy rule structure. The
algorithm can be used effectively in forecasting and performs well on the
tested datasets. Results obtained by applying the method to real-world leak-
age data indicate that the proposed method generally performs better than
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other methods for testing data. Compared with other standard fuzzy clus-
tering forecasting methods the Mod eTS generates less rules, which yielded
(in this case) better results for test data. The comparison with other fuzzy
evolving algorithms, which also utilize radii update, showed slightly lower
RMSE values for testing period but generated more rules. The benefits of
local learning over the global approach in terms of the forecasting accuracy
are shown. Good results achieved for the testing period using standard time-
series methods such as S-Naive and HWM can be explained by similar leakage
patterns in the testing period and the last season of training period, however,
this may not always be the case.

Further work needs to be conducted to understand the relation between
ESPB detected and leakage as it seems that it does not have a huge influence
on the leakage values. Work will also be done to improve rule management in
terms of removing obsolete and inactive rules, to further simplify the obtained
model. Maintaining leakage targets in the forecast is crucial for the company
and will be under consideration in the future. Finally, forecasting accuracy
achieved by applying Mod eTS will be verified on other datasets as well, to
assess a problem specific approach to rule update algorithm.
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