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Abstract. The paper presents a couch based active motion compensation strategy evaluated in 

simulation and validated experimentally using both a research and a clinical Elekta Precise 

Table
TM

. The control strategy combines a Kalman filter to predict the surrogate motion used as a 

reference by a linear model predictive controller with the control action calculation based on 

estimated position and velocity feedback provided by an observer as well as predicted couch 

position and velocity using a linearized state space model. An inversion technique is used to 

compensate for the dead zone nonlinearity. New generic couch models are presented and applied 

to model the Elekta Precise Table
TM

 dynamics and nonlinearities including dead zone. Couch 

deflection was measured for different manufacturer and found to be up to 25mm. A feed-forward 

approach is proposed to compensate for such couch deflection. Simultaneous motion 

compensation for longitudinal, lateral and vertical motion was evaluated using arbitrary 

trajectories generated from sensors or loaded from files. Tracking errors were between 0.5 and 2 

mm RMS. A dosimetric evaluation of the motion compensation was done using a sinusoidal 

waveform. No noticeable differences were observed between films obtained for a fixed or motion 

compensated target. Further dosimetric improvement could be made by combining gating, based 

on tracking error together with beam on/off time, and PSS compensation. 

 

(Some figures in this article are in colour only in the electronic version) 

1. Introduction 

Radiotherapy is currently moving from a feed-forward knowledge based approach to an image guided 

adaptive technique exploiting the feedback from real time imaging and position sensing devices 

(Verellen et al 2008, Krauss et al 2011, Murphy et al 2008). Treatment can now be individualised in the 

planning as well as delivery stage by taking into account patient’s expected response to treatment and 

by implementing motion management strategies (Kakar 2010). There is currently a move to reduce the 

need for restrictive and uncomfortable patient immobilisation methods such as those described in Han 

et al (2011). Robust planning strategies, adopted upstream of treatment delivery, can optimize the 

treatment based on planning target volume (PTV) taking into account inter and intra fraction patient 

motion based on the assumption that these are statistically representative (Rijkhorst et al 2009). Active 

breathing requires the patient to follow audio visual instructions (Wong et al 1999). Gating waits for the 

PTV to be in the correct location to irradiate it. It relies on frequent beam starts and stops and can lead to 

increased session time when the patient cannot maintain regular breathing and the treatment has to be 
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interrupted (Jiang 2006). Multileaf collimators (MLC) track, along two dimensions, either PTV 

baseline drift (Trofimov et al 2008) or shape together with quickly varying motion seen from the 

beam’s source (Keall et al 2006). Three dimensional tracking can be achieved by rotating the gantry 

whilst the MLC is moving, e.g. Elekta Volumetric modulated Arc Therapy (VMAT) (Sun et al 2010) 

and VARIAN RapidArc (Yang et al 2011). An alternative is to use, alone or in combination with the 

MLC, the patient support systems (PSS). Whereas MLC tracks the PTV motion, PSS is moved in the 

opposite direction to the PTV motion and so immobilise the PTV with respect to the beam. There are 

three approaches to PSS compensation: i) traditional PSS not specifically designed for motion 

management (Woo and Kim 2002, D'Souza et al 2005, D'Souza and McAvoy 2006, 'Qiu et al 2007, 

D'Souza et al 2009, Haas et al 2005, Skworcow et al 2007, Putra et al 2007, Haas et al 2011); ii) 

specifically designed six degrees of freedom robotic table top mounted onto standard PSS, such as the 

HexaPOD (Wilbert et al 2008, Herrmann et al 2011) or iii) specifically designed robotic system, such 

as RoboCouch® which combined with the CyberKnife from Accuray Inc. is still the most accomplished 

clinical system for motion management (Hoogeman et al 2009). Alternatives to traditional gantry 

designs include ring based machines such as TomoTherapy® (Crijns et al 2011, Loo et al 2011), VERO 

(Kamino et al 2006) and the Elekta prototype system combining an MRI with a 6MV linac (Crijns et al 

2011). Each type of equipment and approach has relative advantages and drawbacks identified in the 

aforementioned citations. A common issue to active motion management is the need to take into 

account the latency caused by the imaging devices and the communication delays between the various 

systems that are required to be integrated as well as the seldom mentioned system dynamics that 

influences the speed of response. The systems latencies are 0.05 s for the VERO (Depuydt et al 2011), 

0.193 s for the CyberKnife (Hoogeman et al 2009) and between 0.160 s (Keall et al 2006, Roland et al 

2010) and 0.4 s (Tacke et al 2010) for MLC. The ability of the systems to respond quickly also depends 

on the maximum available velocity which for PSS compensation has to be limited with the patient’s 

comfort. The maximum achievable velocity are 8mm/s for the HexaPOD (Herrmann et al 2011), 30 

mm/s for MLC leaves (Popple and Brezovich 2011), 40 mm/s for PSS such as the Elekta Precise 

Table
TM

 and 60 mm/s for the VERO (Depuydt et al 2011). To accommodate the discrepancy between 

speed of the target and the equipment velocity it is possible to adjust the dose rate (Popple and 

Brezovich 2011) for MLC and PSS. Similarly dose rate can be adjusted to improve the dose distribution 

for PSS compensation at a cost of a longer treatment time. This paper considers the need to take into 

account the time required for the beam to stabilize in order to deliver an accurate number of monitor 

unit. The proposed method takes into account the current on/off time as well as predicted tracking error 

and combines it with the current tracking error to decide whether to keep the beam on/off or to switch it 

off/on. The paper extends the work presented in Haas et al (2011) on the use of the Elekta Precise 

Table
TM

 to compensate for measurable target motion. Experimental results are presented for 

longitudinal, vertical and when applicable lateral axes. Previously unpublished experimental data on the 

deflection of Siemens, Varian and Elekta PSS are described and a method to compensate for such 

deflection is given. The work differs from Buzurovic et al (2011b) and Buzurovic et al (2011a) in the 

use of model predictive control (MPC) as opposed to a feed-forward adaptive control or Proportional + 

Integral + Derivative (PID) control. In Herrmann et al (2011) use is also made of MPC where the 

supervisory controller provides signals to another controller that calculates the acceleration and speed 

profile to follow. In this work, MPC is able to directly compute the required acceleration and velocity 

taking into account user selectable limits in terms of both acceleration and velocity. The remainder of 

the paper is as follows: Section 2 describes the Material and Methods. Section 3 presents the PSS 

deflection measurements, models, control strategy for motion compensation and the simulated 

combination of gating and couch based motion compensation. Experimental measurements were 

carried out on a test system at Elekta, Crawley, UK and a clinical system at the University Hospital 

Coventry and Warwickshire (UHCW) NHS Trust, Coventry, UK. Section 4 discusses the results and 

presents the conclusions to the work. 

2. Material and Methods 

There were multiple components to the overall motion compensation system. The video tracking 

system detects (using a surrogate marker) the target motion. The overall control scheme calculates the 

reference required to counteract the target motion. The motion predictor predicts the evolution of the 

reference. The controller calculates the actions to be done by the PSS to follow the predicted reference 



resulting in the PSS following the reference and moving in opposite direction to the target at the 

appropriate time if the lag equates the prediction horizon. The experimental work was carried out in 

stages to characterise the Elekta Precise Table
TM

, evaluate the models and assess the compensation 

strategy. Finally a method exploiting current and predicted compensation errors was used to alter the 

dose rate, when the errors were above a user defined threshold, to improve the overall dose distribution. 

2.1. Video Tracking 

A labVIEW video tracking program was developed to detect the motion of two surrogate markers using 

an IEEE 1394 Foculus digital video camera capable of 30 frames per second with a resolution of 480 by 

640. Two algorithms were implemented to track surrogates markers (white disk on a black background) 

using first pattern matching and then mathematical morphology. The mathematical morphology method 

involved the following steps: i) detect the markers using thresholding, ii) remove small particles using 

erosion, iii) identify circular regions of interest with Heywood circularity index, iv) calculate the area of 

the particles and their centroids, v) reject the small or large objects and check distance between current 

and previous centroid, vi) convert the pixel positions to the room coordinate system against which the 

camera was calibrated, vii) record the initial distances between the two markers along the horizontal and 

vertical directions and use it as reference positions against which subsequent motion are minimized; 

viii) send the horizontal and vertical distance between the two markers to the motion predictors.  

2.2. Experimental set up for the Elekta patient support system 

The Elekta Precise Table
TM

 is a 4 degrees of freedom (DOF) manipulator to position patients under the 

radiation beam. The DOFs are: longitudinal, lateral and vertical and one rotational (around the vertical 

axis). This work considered the translational DOF. The PSS is equipped with three sets of 

potentiometers to measure its position along the three translational axes. Each axis comprises one 

‘coarse’ potentiometer to provide a unique position indication for the whole range of motion and two 

‘fine’ potentiometers to provide position information over a significantly smaller range of motion. The 

‘fine’ potentiometers are assembled so as to minimise the effect of the potentiometers’ nonlinearity and 

dead zone. The coarse potentiometers were used to provide position feedback for large position 

changes. Their resolutions were 104.9, 130.8 and 95.4 mm/V for the longitudinal, the vertical and the 

lateral axes respectively. One of the ’fine’ potentiometer per axis of motion was used to provide 

position feedback for motion compensation. The reason for using fine potentiometers was the increased 

resolution and reduced amount of noise compared to the coarse potentiometer. The fine potentiometers 

resolutions were 7.55, 12.45 and 9.54 mm/V for the longitudinal, the vertical and the lateral axes 

respectively. To reduce sensors noise both hardware and software low pass filters were implemented. 

These filters did however add additional lags. The lag increase required an equivalent increase of the 

prediction horizon to cancel out the overall system lag. Unfortunately increasing the prediction horizon 

decreases the accuracy of the prediction. A balance had therefore to be found empirically between the 

amount of filtering, the smoothness of the resulting control signal and the additional system lag. To 

minimize the amount of modifications to the clinical system and thus possible disruptions in the clinic, 

a supervisory controller, implemented on a PC based dSPACE 1104 rapid prototyping card (dSPACE ), 

was designed to provide three references directly to the motor drive controllers. Such an approach 

shortened the development time by letting the manufacturer’s software deal with safety issues. Two 

PSS interfaces were designed. The first interface bypassed the joystick on the PSS and measured the 

currents directly from the PSS sensors. Similarly to manual control the ‘dead man’ had to be pressed to 

enable the PSS to move (Haas 2010a). This ensures that if any issues were encountered the PSS could 

be stopped immediately. The second method was developed with the support of Elekta and involved 

direct connection of the PC real time interface with the linac control cabinet. The latter provided a 

number of benefits linked with the reduced amount of processing done to the signal sent to the PSS 

drive system and stopped the intervention of the clutch and brakes when the velocity requests were very 

small. The latter enabled a more reactive controller. It did not, however, reduce the observed system 

nonlinearities and resulted in an increased dead zone. The initial work on characterisation of the effect 

of motion prediction on tracking performance was carried out with the first interface and the final 

demonstration of motion compensation presented in this paper was obtained using the second interface. 

In both cases good performances were obtained, demonstrating that the algorithms developed could 

cope with different means of interacting with the Elekta Precise Table
TM

.  



2.3. PSS modeling 

Model based controllers require a model to calculate the control action. Such a model should be fast to 

compute and present an acceptable approximation of the actual system. To evaluate the ability of the 

controller without using the actual PSS, simulation models as accurate as practically possible were 

developed.  

2.3.1. Multi-body mechanical model. A SimMechanics
TM

 model was developed based on the physical 

characteristics of each DOF of the PSS (Haas et al 2005). The mechanical components were represented 

as rigid bodies. The shape, mass, centres of gravity and inertia tensors of these rigid bodies were defined 

using information from the manufacturer. The rigid bodies were then linked together using welds, joints 

and gears. Electromechanical components
 
such as sensors or actuators were interfaced with Simulink

TM 

blocks that modelled the electrical components of the PSS. The actuator inputs represented the drive 

signals for the motors, which were equivalent to the input voltage that was applied to the PSS. The 

output signals represented the displacements of the actual axes. The model included some nonlinearities 

such as friction consisting of static and Coulomb friction, backlash, measurement quantisation and 

noise, as well as saturation in the voltage input and in the motor torque. The model did not take into 

account the dead-zone from the electronic interface. Such model was able to replicate the actual system 

accurately; however they were computationally intensive and required a large amount of information 

from the manufacturer. Four simplified data based models were subsequently developed. 

2.3.2 Linear model. A simplified linear state space model (Linear) was developed to approximate the 

SimMechanics
TM

 model and be used within the control algorithm to predict the PSS motion. Such 

model is only valid for a small range of PSS motion. To accommodate for variability in the system it is 

possible to estimate the model parameters on line and update the model. Such strategy was implemented 

in simulation; however the experimental results were all obtained using a fixed parameter model. To 

speed up the simulation studies, simplified data base models were then derived using input-output 

measurements. The challenge was to estimate the parameters for a representative nonlinear model to 

relate a velocity request to a resulting position change and be able to replicate the PSS behaviour for 

typical range of motion as well as velocity and acceleration.  

2.3.3 Asymmetric dead-zone. The dead-zone is mainly caused by the electronic interface and to some 

extent to the effect of stiction. It is asymmetric resulting in a constant positive drift. The state space 

model was combined with the asymmetric dead-zone (Linear+DZ) to improve the model fit. To account 

for the larger effort required to start the PSS motion than to stop it, a switch friction model (Friction) 

combining static and coulomb friction was realised.  

2.3.4 Nonlinear gain. To model the nonlinear relationship between the velocity request in volt and the 

actual PSS velocity in mm/s a nonlinear gain (Nonlinear), implemented as a look up table was 

combined in series with a type 1 second order continuous time transfer function and an asymmetric 

dead-zone. An alternative discrete time bilinear model (Bilinear) in series with an integrator was 

implemented to reduce the number of free parameters. Bilinear models are the simplest class of 

nonlinear systems where the nonlinearity is expressed as a product between the input and output. 

Bilinear systems are useful to model systems with set point dependent gains such as the PSS where the 

actual velocity in mm/s does not change linearly with the velocity request in Volt. The difference 

equation representing the system is: 
                                                     

                              (1)  

where k is the time in sample,       and     are parameters to be estimated with the variable 

                                             used to account for the need to add a 

pure integrator in the model to relate velocity request to position. The operator z-i
 represents the 

backward shift operator defined by z-i y(k)   y(k-i) with z-1
 being the unit time delay operator. 

2.3.5 Input and output saturation. These nonlinearities are applicable to all models. Input saturations 

model the PSS velocity limits for each axis. Output saturations model the possible range of motion for 

each axis. 

2.3.6. PSS modelling methodology for data based models. The noise was found to be significant, which 

explains the presence of a dead zone to prevent the PSS from reacting to noise. The first stage of the 

modelling process was to remove the noise off line using a median filter to remove the large peaks and 

then a non causal Chebyshev low pass filter. A noise free signal was then used to model the PSS. The 



noise was then modelled as a statistical distribution and implemented in an embedded Matlab® function 

in Simulink
TM

. The second stage estimated the dead zone which prevents the PSS from moving if the 

drive signal is below a certain voltage threshold. Positive and negative ramp signals were sent to each 

axis of the PSS. The voltage thresholds marking the motion start/stop were recorded. The tests were 

repeated for different PSS velocities (slope of ramp signal), and different load conditions from 0 kg to 

70 kg in steps of 13 kg. The next stage was to identify the dynamic response of each axis of the PSS. In 

addition to the dead zone the friction and stiction influenced the starting and stopping of the PSS axes. It 

was also found that the gain changed between the velocity request and the measured velocity. Three 

types of test signals were created and sent to the PSS as velocity requests in open loop. This means that 

no feedback was used to make sure that the velocity and resulting position changes were following the 

reference. Step signals for a range of possible velocity requests were used to identify the nonlinear 

relationship between velocity request in Volt and the PSS velocity in mm/s. These measurements were 

used to model the nonlinear response as a look up table in the ‘Nonlinear’ model. Positive and negative 

ramp signals were sent to evaluate the response of the PSS to constant acceleration. Pseudo random 

binary sequences were employed to evaluate the response of the PSS to high frequency low amplitude 

signals. The latter, whilst not representative of patient motion, were used to identify the effect of stiction 

and friction. To evaluate the ability of the PSS to replicate arbitrary waveforms with varying amplitude 

and frequency, position signals were differentiated to obtain a velocity request which was then send to 

the PSS. Assuming that the PSS could behave as a perfect integrator, the resulting measured position 

should replicate the patient motion signal that was used to deduce the velocity reference. To gauge the 

likely performances under different load conditions and assess the influence of PSS velocity, 

acceleration and deflection, the PSS was loaded with a range of masses (40, 68 and 78 kg).  

The model parameters for each axis were estimated from measurements using a combination of 

Nelder-Mead Simplex method implemented within the ‘fminsearch’ Matlab® routine together with 

least squares and the genetic algorithms originally used in Haas et al (1998). 

2.4. PSS deflection. During the MAESTRO project, table top deflections of Siemens (Oncor and 

Primus), Varian (Clinac 21EX, Clinac 600 C/P) and Elekta (Precise, Synergy) were measured using a 

Polaris system as an independent measurement device. A LabVIEW interface was designed to perform 

a coordinate transformation between the Polaris frame of reference and IEC61217. A set of six weight 

of 13 kg each were successively added, starting from the end of the table top, along the table top centre 

line along the longitudinal direction of motion. The maximum load was 78 kg. The table top was then 

moved from/to its resting position to/from a fully extended position, whilst the Polaris
TM

 recorded the 

spatial position of a standard tool. The deflections observed, at specific longitudinal positions, during 

the forward and reverse motion were then averaged and stored in a look up table. The look up table was 

then used by the control system during the initial positioning phases to automatically increase the 

vertical position based on the longitudinal position of the table top and the load, thereby compensating 

for the sag of the table top. Two methods were used to evaluate the effect of deflections in terms of 

angular change along the longitudinal direction. The first method involved comparing the Polaris tool 

orientation with and without load. The second method uses trigonometry to deduce the angle of the 

table top based on the deflection and assuming a field size of 200 mm by 200 mm such that: 

Deflection=tan
-1

((D900-D700)/(900-700) where D900 and D700 indicate the deflection measured at 

longitudinal position 900 mm and 700 mm respectively. To assess the hysteresis, the data 

corresponding to the forward and reverse motion were fitted with polynomials to provide smoothed 

approximation of the trajectories. The distances between the two trajectories were then calculated using 

the smoothed trajectory every 0.1 mm increment from 0 to 900 mm for the Siemens PSS, from 0 to 1000 

mm for Elekta PSS and from 0 to 1200 mm for Varian PSS. 

2.5. Motion prediction 

A constant velocity Kalman filter developed by Putra et al (2008) and adapted for real time 

implementation was used as a compromise solution in terms of accuracy of surrogate motion prediction 

and computational complexity. To avoid prediction errors from one axis to impact on prediction error 

on other axis of motion and enable slightly different tuning of the predictor for the different axes, three 

constant velocity KF predictors were implemented, one per axis of motion. Predictors used in the 

literature, see for example (Ernst et al 2011, Murphy and Pokhrel 2009) and references therein, 



calculate only a single prediction that is then used by a traditional controller. The adoption of model 

predictive control provides the mean for the controller to consider a range of predicted positions to 

calculate the most appropriate control action. The constant velocity KF is used to predict positions from 

the current time or from time HL to time HL + Hu where HL is the system latency and Hu the control 

horizon. The prediction horizon HL + Hu to overcome the latency was determined from experiments and 

depended on the set up. The prediction horizon HL + Hu used were in the range [17, 24] samples or 

[0.34, 0.44] s in the case where the reference to be followed was provided by a file or a motion sensor 

and [0.56, 0.70] s where the reference was provided by video tracking. In the case of the dosimetric 

evaluation of 2D motion compensation, see Sections 2.7 and 3.3, HL + Hu = 18 + 10 = 28 samples or 

0.36 + 0.2 = 0.56s.  

2.6. Control system development 

The control system development was implemented in stages. Initially a PID was used as a benchmark. 

PID can react to current error using the proportional action, correct for ongoing errors using the integral 

action and correct for short term predicted errors using the derivative action. The PID controller was 

combined with a feedforward prediction using either the Kalman Filter or a PD controller using the 

derivative control action to compensate the system latency. A Smith predictor combined with a PID was 

also investigated to accommodate for system lag due to dynamics as well as output delays. The 

proposed constrained model predictive controller was implemented to exploit the systems dynamic 

response prediction as well as the predicted target motion to calculate the current control action u(k). 

Constraints were imposed on the maximum PSS velocity and torque to ensure that the motion requested 

by the controller was comfortable and within the operating limits. The velocity constraints were:  

               

where      and      correspond to the minimum and maximum drive voltage magnitudes that 

should not be exceeded by the control action u(k), with k is the time in sample, to make the PSS move in 

one direction or its opposite. Using the first set up Vmin = 3 V and Vmax = 7 V with 5 V representing the 

output voltage sent if the velocity request was null. In the second set up Vmin =-2 V and Vmax = 2 V. The 

motor torque constraints Tmax were expressed as follows: 

                              

where       denotes PSS velocity, and   ,       are constants of the motor-gearbox mechanism. At 

each sample step k the Kalman filter predictor calculates the motion from k+1 to k+HL+Hp but only 

sends to the MPC controller the predictions HL to HL + Hp in a vector of predicted target positions, 

denoted    = [  (k + HL ∣ k),..,   (k + HL + i∣ k),..,   (k+HL + Hp ∣ k)]. The notation   (k + HL ∣ k) refers to 

the estimated prediction made at time k for the time k+HL in the future. The MPC control action is 

calculated by minimising, using quadratic programming, the weighted sum J(k) between the predicted 

tracking error and the future control actions: 

                                          
                       

   
    

where    and    are predicted output and input, respectively,        , Q(i)    and R(i) >0 are 

controller weight, Hp is the prediction horizon Hu   Hp. MPC uses the vector of prediction    as a 

reference trajectory to calculate, using its internal model, what would happen if the sequence of control 

action [  (k+HL ∣ k), ..,    k+HL + i∣ k),..,   (k+HL + Hu ∣ k)] were to be applied to track the reference. A 

receding horizon strategy was adopted to calculate the one step ahead prediction of the PSS output 

  (k+HL+1∣k) where only the first input   (k+HL ∣ k) from the optimal input sequence is used to calculate 

the incremental control action    (k+HL ∣ k+HL) to add to the current control u(k-1+HL). The ratio 

Q(i)/R(i) weights the relative importance of accurate motion tracking or compensation and smooth 

control action for a comfortable ride. In Skworcow et al (2007) it was shown, using simulation studies, 

that adjusting the Q(i)/R(i) ration as a function of the expected prediction error was beneficial. During 

the real time experiments, to reduce the overall system complexity, Q(i)= Q and R(i)= R were set as 

constants scalars selected empirically to achieve an acceptable trade off between accurate compensation 

that could lead to very active controller resulting in ‘shaky’ motion and a smoother ‘ride’ for the patient 

at the cost of a decreased compensation accuracy. Note that the PSS acts as a low pass filter which had 

the positive effect of filtering out some of the high frequency changes in the control action making them 

invisible to the PSS position sensors. Readers interested in a more detailed formulation of the MPC 

controller should refer to Skworcow (2008) and Maciejowski (2002).  



To cope with the nonlinearities, the real time hardware implementation required the use of a 

compensator which was selected as the inverse model of the nonlinearities. Such compensator aimed to 

cancel out, from the controller’s perspective, the effect of the asymmetrical dead zone and part of the 

nonlinear system gain enabling a linear controller to control a nonlinear system by making the 

combination of compensator together with the nonlinear plant appear linear. The compensated control 

action uc was calculated as follows: 

if u(k)   + uSmallOffset, uc(k) = fpos(u(k))* u(k) + uPosOffset 

if u(k)    uSmallOffset,  uc(k) = fneg(u(k))* u(k) – uNegOffset 

else       uc(k) = 0 

where uPosOffset and uNegOffset are deduced from measurement and subsequently tuned by the system 

identification software developed to cancel the drift observed during the open loop tests. uSmallOffset is a 

small positive number, an order of magnitude smaller than the existing dead zone, aimed to create a 

small symmetrical dead zone which function is to prevent the control action from changing based on 

very small tracking errors. In most of the experimental work fpos(u(k)) and fneg(u(k)) were selected to be 

one or two constant gains. Note that small model matching improvements can be obtained by varying 

these aforementioned functions as functions of the PSS velocity. 

 

2.7. Overall system implementation 

The overall system comprises a constrained MPC (Skworcow 2008), a constant velocity Kalman filter 

prediction algorithm (Putra et al 2008), a PSS nonlinearities compensator and an observer to provide 

estimates of the PSS position and velocity based solely on position measurements. Matlab® and 

Simulink® (MathWorks 2011) were used to implement the control algorithms, with the real time 

workshop toolbox employed to convert the Simulink®, Matlab® and C code to a real time C code that 

was executed on the dSPACE real time hardware. The constrained MPC and Kalman predictor were 

implemented in C to enable the user to interact with their tuning parameters online through the dSPACE 

ControlDesk user interface. To reduce interactions between the controllers it was decided to implement 

three independent predictor + observer + controllers + compensator, i.e. one per axis. A look up table 

was used to compensate for the PSS table top vertical deflection by automatically increasing the vertical 

position based on the position of the table top in the longitudinal direction. Note that the deflection 

compensation was switched off during the tracking and compensation as the differences in table top 

deflection were negligible over displacements in the range of 0.1 m about a given location. The 

simulations used either the SimMechanics model or the continuous time type 1 second order system 

with dead zone and saturation. Controller tuning was performed off line based on simulation models of 

the PSS and using Nelder-Mead Simplex Method implemented within the Matlab® fminsearch routine.  

2.8. Experimental validation of PSS positioning, tracking and compensation 

The initial work involved the validation of the PSS model used as a basis for the controllers’ 

development. The second stage of the work evaluated the ability of the PSS to move to and from a 

number of set positions. The third stage focused on the tracking ability of the new control scheme. 

Position requests were sent to the supervisory controller which calculated the required trajectory. The 

controller was demonstrated on the clinical system at UHCW as well as on a test system at Elekta 

Crawley, UK highlighting that it could be adapted to different hardware set up. The experiments carried 

out at Elekta, UK involved generating a square wave with the range of period (2 to 7 s) and amplitude (6 

to 18 mm) observed in George et al (2005) and then using it as an input to drive a bilinear model to 

generate a test sequence representative of external motion (Sahih 2010). Having demonstrated that the 

controller was able to follow one-dimensional (1D) irregular motion trajectories for different PSS 

configurations, the next stage was to evaluate the 1D and then three-dimensional (3D) response of the 

system to position requests sent by a position sensor. This stage was introduced to evaluate the control 

system response under the most favourable circumstances where the sensor noise was negligible and the 

lag between the position measurement and the PSS reaction minimal. The sensor was initially moved by 

hand over a range of 50mm combining slow as well as fast variations. Initially a single axis was 

controlled see (Haas 2010a). Subsequently, the same signal was sent to all three axes, see Section 3.3.1. 

Having demonstrated that the PSS was able to respond to position requests sent from a position sensor 

actuated manually, the next stage was to introduce video feedback. The latter introduced a new lag due 

to different sampling times between the controller and the video tracking system and increased the 



complexity associated with tuning the Kalman filter motion predictor as well as the MPC controller. 

Finally a dosimetric evaluation of 2D motion compensation using the MAESTRO phantom (Haas et al 

2011) was performed to validate the overall approach (Haas 2010b). 

 

2.9 Gating combined with PSS compensation. Two methods were investigated to decide the switching 

of the beam on and off depending on the tracking/compensation error. First only the current tracking 

error was used. If both longitudinal and lateral errors were above/below a user selectable threshold the 

beam was assumed to be off/on. The second method was refined by taking into account a predicted error 

calculated by fitting a second order polynomial or order n[1, 3] to the last nPast[10, 40] samples to 

predict the next nFuture[10, 20] samples with a sampling time of Ts= 0.05 s. The predictions were used 

to keep the beam on/off in cases where they were above/below the threshold and the beam had 

previously been on/off respectively for a user selectable period of time. The PSS velocity was 

monitored to identify a link between tracking error and target velocity. The simulated irradiation 

method developed in Haas et al (2011) was used to evaluate the effect on the resulting dose distribution 

of applying gating based on the tracking error. Thresholds between 0.5 and 2.5 mm were investigated. 

A small threshold would lead to frequent dose rate changes which would negatively impact on the 

components lifetime. In the trajectory used for the 2D motion compensation of the MAESTRO 

phantom motion a threshold of 1 mm was found to be suitable. 

 

2.10. Performance indicators 

To evaluate the feasibility of motion compensation using a standard Elekta PSS, criteria based on the 

positioning accuracy as well as on simulated and actual radiation delivered were adopted. To evaluate 

the tracking accuracy in mm, the root mean square error (RMSE) between the reference and the actual 

PSS position recorded both by the PSS sensor and by an independent measurement device (namely a 

camera) was calculated. The performance of the control system should be evaluated not only in terms of 

the resulting tracking error and amount of energy used to reach the desired trajectory but also in the 

manner with which such performance is achieved. Therefore the criteria adopted emphasise the 

importance of limiting the change in control action between two successive samples such that 

Cctrl=               
      where n is the number of samples. The final experiment performed 

for the MAESTRO project involved the irradiation of three films. The first was irradiated with a fixed 

target and constituted the gold standard. The second was irradiated with the target moved according to a 

sinusoidal waveform during the irradiation. The third was irradiated with a moving target whose motion 

was compensated by the PSS to attempt to immobilise it with respect to the beam.  

3. Results 

3.1. PSS modelling 

The PSS models presented in Section 2.3 were implemented in Simulink, see figures 1 to 3. The blocks 

highlighted represent the nonlinearities modelled in each system. The saturation and dead zone are 

common. The input saturation block limits the maximum voltage used to move the PSS. The output 

saturation limits the possible displacement of the PSS along each axis of motion. Other blocks presents 

in figures 1 and 3 include triangular blocks which are gains. Square blocks with a ‘0’ are constants 

representing initial conditions, square blocks with ‘1/s’ represent integrators in the continuous time 

domain, square blocks with 1/z represent unit delays used to implement the backward shift k-1 and k-2 

in (1), Section 2.3. The signal used as an input in figure 4 was obtained from an external motion 

trajectory as follows: the derivative of the signal, denoted ‘ideal’, was calculated and a dead zone 

compensation of the order of +/-1.6V was applied to artificially increase the drive voltage above to 

enable the PSS to move. Due to all of the PSS nonlinearities not being accounted for and the system not 

being controlled, the resulting trajectories were, as expected, not identical to the trajectory denoted 

‘ideal’. The observed upwards drift was due to stiction, friction and the electronic interface resulting in 

an asymmetric dead zone with different lower and upper limits. These limits vary slightly to account for 

the effect of friction directly or indirectly within the models. Identifying the model parameters leads to 

very similar performances for all the models, the most important factor being the dead zone, see figure 

4. The linear state space model, denoted ‘Linear’, without dead zone is, as expected, only able to fit part 

of the system. The best model fit with the measured PSS position, denoted ‘Sensor’, was obtained using 



the bilinear model (figure 3), denoted ‘Bilinear’ in figure 4, RMSE= 0.98 mm, followed by the model 

with a look up table to model the nonlinear gain (figure 1), denoted ‘Nonlinear’ in figure 4, RMSE=1.21 

mm and the ‘Friction’ model (figure 2) RMSE = 1.43 mm. Such accuracy is believed to be sufficient 

from a simulation perspective. 

 

 

Figure 1. Continuous time (s notation) model combining in series a type one system composed of a 

linear transfer function with a gain equal to 0.9377 and a time constant T= 0.1108s with a pure 

integrator. The nonlinear elements include an input saturation, a dead zone between -1.4114 V and 

1.3767 V, a look up table representing the nonlinear response of the table to the drive signals and an 

output saturation to represent the limits of the range of motion. The constant gains are used to improve 

the model fit or perform the conversion from volt and to mm. Constants, set to 0 in this example, are 

used to initialise the model for a particular set of initial conditions.  

 

Figure 2. Continuous time (s notation) model combining a linear second order system implemented 

using two pure integrators (1/s) and with the gains a1, a2 which combined with the nonlinear switched 

friction model relate to the dynamic response of the system. The implementation of the second order 

transfer function as two integrators is used to enable to input the modelled velocity as well as the input 

force into the switched friction model.  

 

Figure 3. Discrete time (z notation) bilinear model of the PSS replacing the look up table in figure 1 by 

the product (represented by the square block with x) between the PSS output position estimated through 

an observer (Obs) and the input creating an input dependent gain. The 1/z blocks represent unit delays 

employed to implement the time shift in the difference equation (1), Section 2.3. 



 

Figure 4. (Bottom) Comparison between the different model responses denoted ‘Linear’, ‘Linear+DZ’, 

‘Friction’, ‘Nonlinear’ and ‘Bilinear’ see Section 2.3 to a statistically representative marker trajectory, 

denoted ‘Ideal’ (bottom). This ‘Ideal’ signal was differentiated and an approximate dead zone 

compensation applied to create the Input velocity signal (top) applied to the models developed in 

Section 2.3. The most significant factor is the dead zone modelling followed by the nonlinear 

relationship between the motor drive input voltage and the PSS velocity. The linear state space model is 

therefore sufficient for using within the MPC as long as the dead zone is accommodated for using the 

implemented inversion technique. 

3.2. Deflection compensation 

The evaluation of table top deflection at four UK sites highlighted that it should be accommodated by 

the control system during the initial positioning stage; however it is not considered to be significant 

when using a PSS for motion compensation. The maximum PSS deflection was 10, 25, 13 and 14 mm 

for Siemens Primus, Siemens Oncor (figure 5), Elekta and Varian table tops respectively. The Siemens 

Oncor had the longest unsupported table top which, despite its carbon fibre built, caused the largest sag. 

Hysteresis was present, with the maximum discrepancy between the forward and backward motion 

being less than 0.2, 0.4, 0.3, 0.1 mm for Siemens Primus, Siemens Oncor, Elekta Precise and Varian 

table top respectively. The hysteresis increased only marginally with load: less than 0.1 mm for Varian 

and Siemens Primus, and about 0.1 mm for the Siemens Oncor and Elekta. The Elekta table top used in 

this work was found to deflect by a maximum of 12.82 mm for a load of 78 kg. These measurements 

were then implemented in a look up table such that when the PSS table top moved along the 

longitudinal direction and extended forward, the vertical position of the PSS was automatically 

increased. Note that such an approach does not account for the bending of the table top which results in 

a small change of angle of the table top as well as a change in vertical position. The angle of the table 

top was estimated at 0.3 degree assuming a 14 mm deflection and 0.9 degree for a 25 mm deflection. 

Figure 6 illustrates the programmed vertical increase by 7 mm of the reference position as a function of 

the longitudinal position. The control action makes the PSS move as fast as possible (+2 V) in the 

longitudinal direction and concurrently performs small adjustments (+0.5V) to the PSS vertical position 

to compensate for the expected sag for a mass of 39kg.  

 



a)  b)  

Figure 5. Siemens Oncor Table top deflection: a) set up showing tool tracked by Polaris
TM

 positioned 

next to three weights, representing a total mass of 39 kg. b) Trajectories followed by the tool tracked by 

the Polaris
TM

 for 0 kg (top trajectory), 13 kg, 26 kg, 39 kg (4
th
 trajectory from the top), 52 kg, 65 kg and 

78 kg (bottom trajectory) highlighting significant deflection, some hysteresis and table top oscillation 

when reaching the end position.  

 

 

Figure 6. Illustrating the deflection compensation based on measured deflection for different PSS 

positions along the longitudinal axis. (Top) represents the successive step changes requested ‘Xref’ and 

the measured longitudinal PSS position ‘X’. The control request ‘Ux’ makes the PSS move at constant 

velocity (X increases in a straight line before reaching the reference position) before stopping when the 

‘Xref’ is reached. (Bottom) represents the vertical reference ‘Yref’ calculated to compensate for the 

PSS deflection by lifting the table top. It results in a steady increase of the vertical position ‘Y’ caused 

by the control action ‘Uy’ calculated to make ‘Y’ follow ‘Yref’. The vertical PSS position for a load of 

0kg is represented by ‘Z0’. It shows the PSS deflection for a load of 39kg increasing from 9 mm to 16 

mm, see figure 5. 

3.3. Position tracking 

Haas (2010a) shows the progression of the experimental work from controlling a single axis at a time to 

controlling each translational axis independently based on a reference provided by a position sensor to 

simultaneously controlling the longitudinal and lateral axes from signals read from files.  

 

3.3.1 Simultaneous tracking (3D) of position reference from sensor (clinical PSS). Figure 7 illustrates 

the concurrent control of three axes from a reference obtained from a motion sensor. It demonstrates 

that similar performance can be achieved for all three axes when tracking arbitrary trajectories. RMSE 

of the order of 0.4 and 1.5 mm were observed depending on the trajectories. The most significant factors 

were the identification of the prediction horizon and the Q/R ration. Note that the inversion method to 

cancel the dead-zone can lead, as expected, to unwanted rapid changes in control action at low velocity.  



 
Figure 7. The controller moves simultaneously the three translational axes to follow an identical 

trajectory provided by a position sensor (Haas 2010a); RMSE [mm]: 0.72, 0.44, 1.04 and CCtrl = 0.034, 

0.043, 0.046 for the lateral, longitudinal, and vertical portion of the Lateral, longitudinal and vertical 

axes. PSS maximum |velocity| = 16 mm/s, mean |velocity| = 4 mm/s. 

 

3.3.2 Tracking (longitudinal) of motion trajectory generated by a bilinear filter (research PSS). The 

predictor leads to RMSE of 1 to 2 mm for a prediction horizon of 0.3s required to compensate the 

system lag, see figure 8. The maximum velocity of the PSS (40 mm/s) during this test was significantly 

higher than figure 7 resulting in higher control efforts. The constant velocity KF was found to 

overshoots when the motion changes direction. This behaviour was exploited by adopting a Q/R ratio 

that focused on producing a smooth action by contrast to fast and accurate tracking. Adopting a joint 

predictor-controller tuning approach leads to good tracking performance (RMSE < 0.5 mm) and a 

smoother control action compared to that in Figure 7.  

 

  
a) Trajectory with varying amplitude and period    b) Tracking over a period of 2.5s  

 

Figure 8. Illustrates the ability of the control system to make the PSS follow an arbitrary trajectory sent 

to the control system directly from a file; a) illustrates the controller response (bottom) to the changes in 

period and amplitude of the trajectory(top); b) subset of a) to visualise the 0.3s ahead prediction able to 

compensate all systems lags resulting in very accurate tracking with RMSE [mm] a) 0.5, b) 0.53 with 

CCtrl a) 0.27, b) 0.35 and PSS maximum |velocity| =40mm/s, mean |velocity| =8 mm/s. 

 

3.3.3 Dosimetric evaluation (2D), sinusoidal waveform: 12 mm peak to peak amplitude, period 6.2 s. 

Experimental set up and resulting dose distributions captured by three films and surrogate marker 



motion trajectories for the vertical and longitudinal axes of motion are illustrated in figure 9 and 

described in details in Haas (2010b). The dosimetric comparison indicates that uncompensated motion 

of a circular target leads to under dosing of the target along the direction of motion (diagonal) but also 

perpendicular to it. RMSE, see Table 1, of the order of 1 mm are observed in the best case (Zones 1, 3 

and 5) and up to 2 mm when loss of markers occurs (Zone 2). The tracking performance of the PC based 

LabVIEW tracking system was one of the bottlenecks of the work. The pattern matching was slightly 

more robust but resulted in smaller number of measurements per second. The loss of targets by the 

video tracking system was due to different lighting conditions between the research lab and the linac 

bunker as well as on the motion of human observers around the room. In case of loss of tracking it was 

decided to use the last known good position given that the motion predictor implemented within the 

control system could overcome some of this loss of tracking for short time duration. The observed 

tracking errors were not significant from a dosimetric perspective with the static and motion 

compensated films being almost identical with the exception of a slight blurring of the edge of the 

motion compensated film, see figure 9.  

 

             
a) Film irradiation set up      b) Overall PSS compensation set up 

           

c) Dose profiles perpendicular to motion direction    d) Dose profiles along direction of motion             

Figure 9. a)* and b) film holder (top) located at the end of a flexible robotic arm part of the MAESTRO 

phantom (Haas, 2010a, 2010b). The ‘Target’ and ‘PSS’ markers are mechanically linked to the film 

holder and the PSS table top respectively. The white circles have a diameter of 2.5 mm. The three films 

correspond to non compensated 2-dimensional motion (left) PSS compensated motion (middle) and 

static field with a static target (right). Dose profiles perpendicular (c) and along (d) direction of motion. 

*Reprinted from Proc. 18th IFAC World Congress Milan, Italy 2011. 

 

Figure 10 shows the idealised ‘Phantom’ trajectory that should be compensated by the PSS to keep the 

‘Target’ immobile with respect to the treatment beam. This should be realised by imparting to the ‘PSS’ 

a motion in opposite direction to that of the ‘Phantom’, thereby ‘compensating the phantom motion. In 

practice, compensation errors result in a residual target motion ‘Target’ measured using the surrogate 

marker physically connected to the film holder representing the target to be irradiated (figure 9b). The 

residual target motion is identical to the ‘Phantom’ trajectory when the compensation stops (zone 4, 

Table 1 and between 104 and 130 s in figure 10). In other zones the errors oscillate between +/- 2 mm 

and +/- 5 mm, see MAX error in Table 1. The large errors occurred in general at high velocities, when 

the PSS trajectory crosses zero. This indicated that the prediction horizon of the order of 0.56s did not 

compensate for the whole system lag and latency. Subsequent analysis of the results, see figure 11, 



indicated that in addition to the modelled system latency HL = 0.36s (lag between the dotted line 

‘Prediction’ and the dashed line ‘Position’), an additional latency of 0.08s was present between the 

‘Reference’ (plain black line) and the PSS output (‘Position’ or ‘Sensor reading’). The control horizon 

of 0.2 s (Section 2.5) aimed to anticipate the dynamic response of the PSS and did not compensate for 

the mismatch between the system and the modelled latency. Note that to facilitate the qualitative 

evaluation of the performance of the control scheme and identify the aforementioned un-modelled lag, 

the reference, the prediction and the PSS trajectories in figure 10 were negated to form the trajectories 

displayed in figure 11. Using such a transformation, the ideal compensation should result in 

superimposed trajectory as opposed to symmetrical trajectories. In practice, the position given by the 

camera is negated to provide a reference that would result in PSS motion being exactly opposite to that 

of the target in order to keep the target still with respect to the treatment beam. Simply following this 

‘Reference’ would lead to the PSS trajectory consistently lagging HL samples behind the ‘Reference’. 

The reference is therefore used by the predictor to generate the trajectory ‘Prediction’ leading by HL 

samples the trajectory that should be followed by the PSS (‘Position’ or ‘Sensor reading’).  

 

 
Figure 10. Longitudinal and vertical ‘PSS’ position and ‘Target’ position (residual error) seen by the 

camera combined with the reconstructed ‘Phantom’ trajectory to visualise the PSS motion which should 

be opposite to the phantom motion. Errors and Control cost are in Table 1. 

 

     
a)      b) 

Figure 11. Represents a small time interval from figure 10 seen by the control system; a) represents the 

desired trajectory ‘Reference’ to be followed by the PSS which position is measured by a potentiometer 

‘Sensor reading’ and filtered to give the ‘Position’ signal used by the controller to calculate its next 

control action b). The presence of lag means that to follow the ‘Reference’ it is necessary to anticipate it 

such that the ‘Prediction’ becomes the desired trajectory, 0.4s ahead of the ‘Reference’. The controller 

will aim to follow the ‘Prediction’ in order to make the PSS actually follow the ‘Reference’ (CCtrl = 0.3). 

The errors between the reference and the PSS position (RMSE of 1.47 and 1.23 mm for the longitudinal 

and vertical directions) give rise to the residual target motion observed in Figure 10. It is due to a small 

un-modelled lag of 0.08s which can be observed between the ‘Reference’ and PSS ‘Position’. 



Table 1. Residual target motion (Error) and control effort CCtrl for the longitudinal (Long) and Vertical 

(Vert) directions, over 5 zones (corresponding to the time intervals T in Figure 10) exhibiting Normal 

performances, performance affected by video tracking issues (Marker loss) and a zone when the 

compensation was not active (Off).   

Zones 1: Normal 2: Marker loss 3: Normal 4: Off 5 Normal 

T [s] 0 - 45 45 - 73 73 - 104 104 - 130 130 - 174 

Error Long Vert Long Vert Long Vert Long Vert Long Vert 

Mean 0.15 -0.31 -0.17 -0.02 0.00 0.00 1.93 -1.40 -0.02 0.09 

RMSE 0.96 0.88 1.74 1.77 0.94 0.81 5.21 4.46 1.03 0.93 

CI 95 2.01 1.93 3.56 3.48 1.85 1.59 11.42 9.71 2.03 1.91 

MAX 2.12 2.07 5.58 4.93 2.07 2.07 8.91 7.46 3.89 2.87 

CCtrl 0.26 0.37 0.36 0.56 0.27 0.42 0.00 0.00 0.33 0.34 

 

3.4 PSS compensation combined with dose rate variation or gating 

The simulated dose rate variation was found to be able to reduce the dosimetric error due to 

compensating errors above a user defined threshold but at the cost of a longer irradiation time and 

increase treatment complexity and associated risks with changing the dose rate repetitively. Figure 12 

compares two gating techniques combined with PSS compensation. The first assumes that as soon as 

both position errors are below 1 mm the beam can be on. The second strategy attempts to minimise 

switching the beam on/off and off/on for short durations by exploiting the predicted error and the 

current beam on or beam off time. Such approach keeps the beam off even if the error is within limit for 

short period of time e.g. at times between 110 s and 140 s in figure 11a and at time 55 s in figure 12b-d. 

A drawback is that it delays the switching on of the beam between 40 and 45 s in figure 12b-d following 

a period where the beam was off. Figures 12 e-g show that both strategies are similar from a simulated 

dosimetric view point with the advantage that, in most cases, the proposed strategy ‘Beam On 1’ can 

reduce the occurrence of short beam on/off time. The non uniformity in 12e is due to the 

uncompensated target motion between time 108 and 133s in zone 4 (see figures 10 and 12a). The 

challenge is similar to that of motion prediction in that such scheme relies on an accurate ability to 

predict the evolution of the error. It is often the case that large compensation errors correspond to large 

PSS velocity. The use of velocity to predict switching of beam is however difficult due to noise. An 

alternative could be to use the predicted target or PSS position. 

 
Figure 12. a) Illustrates the PSS trajectory along the longitudinal direction. A zoomed version of a) is 

presented in b) with the corresponding tracking error for both longitudinal and vertical axes in c) and the 

PSS velocity which is correlated to the target velocity in d). The dots in c) and d) indicate the beam on 

time according to the method proposed in Section 2.8. The resulting simulated irradiation are in e) to g). 



4. Conclusions 

This paper has shown that widely available patient support systems can still be used as a method for 

translational motion management. All the PSS evaluated in this study used a cantilever design and as a 

consequence suffered from significant deflection depending on the mass located onto it. Such deflection 

was found to be of importance for the initial positioning phase but was not critical for motion 

compensation where the range of motion is likely to be less than 100mm. Whilst PSS such as the one 

within the Elekta Synergy treatment suite were not designed for motion compensation, they can prove a 

cost effective alternative to highly accurate but slower table top such as the HexaPOD or highly 

accurate, fast, but expensive robotic couches. PSS compensation was evaluated for 1D, 2D and 3D 

motion compensation. 2D dosimetric evaluation confirmed that RMS compensation errors of the order 

of 1 to 2 mm are not significant and lead to slight smoothing of the dose in the main direction of motion 

as well as its perpendicular direction. MPC relies on an accurate model of the system; however a linear 

approximation of the nonlinear PSS can be used within the control algorithm as long as an inversion 

strategy is adopted to limit the effect of nonlinearities and in particular the dead zone. Issues associated 

with the inversion technique to cancel out the dead zone should however be considered for commercial 

implementations. Currently most robotic systems used in medical devices use standard controllers, such 

as PID, that have been shown to work well in a predictable manner. The use of MPC is believed to be 

the logical progression for systems which require finding a trade off between achieving both accurate 

and smooth motion to reduce equipment wear and take into account patient’s comfort. MPC offers 

improved performances for a wider range of operating conditions but at the cost of higher complexity. 

The later is becoming manageable with current increases in computational power. This has made MPC 

the ‘new PID’ in many industries. This paper focused on patient support system; however designing a 

control system for motion tracking and compensation is equally applicable to MLC or gantry control. 

The combination of dose rate variation and PSS compensation is promising however further work is 

required to identify both effective and efficient beam switching strategies. 
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