

Coventry
University

Coventry University Repository for the Virtual Environment
(CURVE)

Author names: Cooke, R. and Anane, R.
Title: A service-oriented architecture for robust e-voting.
Article & version: Post-print version
Original citation & hyperlink:
Cooke, R. and Anane, R. (2012) A service-oriented architecture for robust e-voting.
Service Oriented Computing and Applications, volume 6 (3): 249-266.
http://dx.doi.org/10.1007/s11761-012-0108-0

Publisher statement:
The final publication is available at www.springerlink.com.

Copyright © and Moral Rights are retained by the author(s) and/ or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This item cannot be
reproduced or quoted extensively from without first obtaining permission in
writing from the copyright holder(s). The content must not be changed in any way
or sold commercially in any format or medium without the formal permission of
the copyright holders.

This document is the author’s final manuscript version of the journal article,
incorporating any revisions agreed during the peer-review process. Some
differences between the published version and this version may remain and you
are advised to consult the published version if you wish to cite from it.

Available in the CURVE Research Collection: September 2012

http://curve.coventry.ac.uk/open

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CURVE/open

https://core.ac.uk/display/228140918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s11761-012-0108-0
http://curve.coventry.ac.uk/open

A Service-Oriented Architecture for Robust e-Voting
Richard Cooke1 and Rachid Anane2
1School of Computer Science, University of Birmingham
r.cooke@cs.bham.ac.uk
2Faculty of Engineering and Computing, Coventry University
r.anane@coventry.ac.uk

ABSTRACT

Of all the requirements for e-voting systems robustness
is the one that has received the least attention. This
paper is concerned with addressing this issue. It is
argued that a two-level consideration of robustness can
facilitate the design of e-voting systems and enhance
their resilience. An approach is proposed which
requires, as a first step, an explicit awareness of
robustness at protocol level and robustness at system
level. The second step involves the identification of
appropriate technologies and their integration into an
architecture where the two forms of robustness are
addressed. The approach is illustrated by the design and
implementation of a service-oriented architecture for
robust e-voting (SOREV), based on the FOO92
protocol. The service-oriented architecture has provided
the framework for the integration of selected
technologies such as blind signatures, encryption and
onion routing. In addition to the Just-in-time (JIT)
composition of the e-voting system, it supports the
distribution of tasks and state. The system conforms to
most e-voting requirements.

 Keywords: Robustness, Web services composition,
JIT approach, blind signatures, FOO92 protocol, onion
routing.

1 Introduction
The viability of e-voting systems is often assessed by
their conformance to agreed and stated requirements.
This fundamental constraint is driving the investigation
into requirements and verification [1]. The present
consensus on the identification of desirable e-voting
properties has settled on four main criteria: integrity,
privacy, verifiability and robustness.

In the fulfilment of these requirements two distinct
levels of concern are identified, a protocol level and a
system level. The protocol level is concerned with the
deployment and the behaviour of the protocol as an
application for conducting elections; the system level
relates to the underlying network, the implementation of
the servers and their interaction. This dichotomy is a
reminder that remote voting systems are essentially
applications supported by distributed systems.

Integrity and verifiability are issues that relate primarily
to the protocol level. Privacy, on the other hand, is
meaningful at protocol level but its full satisfaction,
especially anonymity, may require an awareness of the
characteristics of the underlying distributed system.

Although secrecy can be achieved by cryptographic and
therefore mathematical methods only, anonymity
requires the marshalling of distributed technologies
such as mix nets [2, 3], onion routing [4] or Web
servers [5]. Anonymity is an issue that straddles
different levels, a characteristic that it shares with the
management of denial of service (DOS).

An e-voting system is expected to conform, at protocol
level to at least the integrity and the privacy
requirements. It also assumes at distributed system level
resilience when subjected to malicious attacks or when
faults occur. It is evident that the soundness of the
underlying distributed system determines the utility of
an e-voting system. This therefore qualifies robustness
as a property that spans both levels of concerns.
Robustness may be defined generically as the ability of
a system to deal effectively with unexpected input or
behaviour, large volumes of data and to continue
providing a service in conformance with stated
requirements. In published research on e-voting
systems, robustness is often confined to the protocol
level, whilst issues that pertain to distributed system
level are seldom explored.

This paper is concerned with the presentation of an
approach that promotes a more focused view of
robustness in e-voting systems, and a selective
application of distributed systems technologies in the
development of robust systems. It is argued that this
two-pronged strategy can successfully address
robustness issues at protocol level and at system level.

The contribution of this paper lies in the explicit
differentiation between two forms of robustness and the
integration of various technologies into an appropriate
architecture to address this issue. The approach is
illustrated by the design and implementation of a
service-oriented architecture for robust e-voting
(SOREV), based on the FOO92 protocol [6]. It is
supported by the dynamic composition of Web services,
the distribution of state and tasks, and by onion routing.

The remainder of the paper is organised as follows.
Section 2 identifies the main requirements of e-voting
systems. Section 3 presents a particular perspective on
robustness in e-voting systems. Section 4 gives an
outline of the behaviour of the proposed system and
Section 5 details the implementation of the
corresponding service-oriented architecture. Section 6
offers an evaluation of the approach and of the system,
in context with other e-voting systems. Section 7 puts

forward some pointers for further work, and Section 8
concludes the paper.

2 e-Voting
With the increasing interest in the deployment of e-
voting systems and the potentially significant impact
they can have on the political, economic and social
domains, conformance to specific requirements has
become a critical test. At the core of voting systems lies
the need for compliance with the democratic process by
ensuring its viability through four stages performed by
specific election authorities:

• The registration of eligible voters (Administrator).

• The validation of potential voters (Validator).

• The collection of the votes (Collector).

• The tallying or counting of the votes (Counter).

The voting process is conducted within specific
constraints. A secure electronic voting scheme must
meet the following theoretical requirements [7]:
• Only eligible voters are able to vote.
• No voter is permitted to vote more than once.
• No one should be able to determine the value of

anyone else’s vote.
• No one can duplicate a vote.
• No one can alter another person’s vote without

being detected.
• Voters can verify that their votes have been

counted.

2.1 Advantages of e-voting

The exponents of e-voting often put forward a number
of reasons for promoting its wider deployment. They
contend that it has a number of benefits:

Participation: electronic voting has the potential of
appealing to a wider section of the population. An
Internet-based system will enhance convenience and
flexibility. Voters will be able to cast their vote anytime
and anywhere.

Efficiency and accuracy: e-voting promises to improve
the accuracy of the voting process at various stages.
Computerisation and network technology, it is argued,
will improve efficiency in processing votes and will
lead to quicker results.

Transparency: an e-voting system will lead to greater
openness to public scrutiny and greater accountability.
The scrutiny should apply to the source code by experts
as well as verifiability of votes by voters. This demand
for openness should not be achieved at the expense of
security.

2.2 e-Voting properties

The formulation of e-voting requirements has led to a
refinement of criteria and has become an important
research area in its own right [8, 9]. The most important
e-voting properties can be grouped as follows:

• Integrity: this is concerned with the property that
the different agencies that process votes do not
alter them or corrupt them, and intruders do not
interfere with the voting process. It also refers to
the ability of eligible voters to vote and to vote
only once. More specifically, integrity implies that
a vote is cast as intended, recorded as cast and
counted as recorded. Integrity entails honest
behaviour and collusion resistance.

• Privacy: this criterion is aimed at ensuring that
votes are cast anonymously, namely that it is not
possible to associate a vote with the corresponding
voter (untraceability), and that the vote is secret.
Another aspect of privacy concerns the inability of
voters to demonstrate that they have voted in a
particular way, and their ability to withstand
coercive measures (coercion resistance).

• Verifiability: this refers to the openness of the
system to formal and practical scrutiny and is
related to integrity. It should be possible for voters
to check that their votes were correctly recorded
(individual verifiability) and that all the votes were
processed and counted correctly (universal
verifiability). It is believed that with enhanced
verifiability voters will have more confidence in
the conduct of remote elections and in their results.

• Robustness: this is defined as the resilience of the
system when cheating behaviour is detected, partial
component or system malfunction occurs or when
it is subjected to external malicious attacks. The
system should operate as expected in abnormal
conditions or in a hostile environment.

In e-voting research the focus has been mostly on the
conformance to integrity, privacy and verifiability.
Despite its crucial importance robustness is seldom
addressed explicitly. Either it is implicit or it refers to
issues that pertain to undifferentiated levels of concern.
Since most e-voting systems are deployed as distributed
systems, robustness is bound to involve many facets
across different levels.

In the Prêt à voter system, for example, robustness is
concerned ‘with the resilience in the face of random
faults, as well as deliberate attempts to disrupt the
election, such as denial of service’ [10]. It is seen as an
indication of the ability of the implementation of the
protocol to deal with unexpected input, faults or
cheating by an election authority.

This perspective on robustness is quite broad and lacks
focus. It covers issues that pertain specifically to the e-
voting application, such as cheating, and those that may
occur in the underlying distributed system such as faults
and denial of service. It is evident that there is a
semantic difference in behaviour between an election
authority that attempts to cheat and the faulty server
that implements it.

2.3 e-voting protocols

In most e-voting systems the design of protocols is
driven by two major concerns, which identify two main
virtual spaces:

1. Ensuring that if the voter is known the vote is not
known

2. Ensuring that if the vote is known the voter is not
known.

It is this complete dissociation between a vote and the
voter who cast it, namely anonymity or untraceability,
which lends credibility to an e-voting system. E-voting
systems can be classified according to the way they
implement it. Three main schemes were devised to
support it:

• Schemes based on homomorphic encryption reduce
a ballot to a number and ensure that all the voter
choices are kept secret [11]. This has the
advantage that the vote can be performed without
decrypting any of the ballots. It is however
computationally expensive.

• Schemes that generate mixes (mix nets) permute
different entities to hide the correspondence
between input and output items, and ensure that an
item is only processed once [2]. The connection
between voters and ballots is difficult to establish.

• Schemes based on blind signatures [6, 12] allow an
agency to sign a message without knowing its
contents. Schemes based on blind signatures
present a number of advantages. They are more
flexible and can accommodate various ballot
formats. Moreover, their relatively small
communication and computational complexity
makes them suitable for large-scale elections.

3 Robustness
A distinction between an application and the system
that serves it is useful for a clear identification of the
issues related to robustness. This consideration suggests
an appreciation of robustness at two different levels. It
promotes an awareness of issues at protocol level such
as integrity and privacy and those that pertain to the
distributed system, such as resilience and scalability. It
is also helpful in identifying more refined requirements
and promoting appropriate configurations. The generic
definition of robustness can be refined to capture the
distinctive features of robustness at the two levels:

Robustness at protocol level is defined as the
capability of the application to ensure that the privacy,
integrity and verifiability of the e-voting process are
preserved, when faced with incorrect procedures or
malicious behaviour and attacks. Robustness at this
level is seen as an overarching concept that helps
evaluate the ability of a system to conform to e-voting
requirements. All agencies contribute to the voting
process to satisfy stated requirements; measures are in
place to discourage and hinder cheating behaviour and

no agency or group of agencies can attempt to thwart
the democratic process without being detected.

An additional component of robustness at protocol level
is recoverability. It is defined as the capability of the e-
voting application to recover from malfunctions by
restoring the state of the voting process, and by
resuming successfully its operations [13].

Robustness at system level is defined as the capability
of the distributed system to support the functions of the
e-voting application when faced with component failure
or abnormal behaviour. The system should deal
effectively with unexpected input or volume of data,
and detect and recover from malicious attacks. It should
continue to provide a service in conformance with
stated requirements. Robustness at this level is a
prerequisite for robustness at protocol level. For
example, insecure servers or channels cannot ensure the
privacy of the voter or the secrecy of the vote.
Although robustness of e-voting systems at system level
can be expressed in terms of many properties [14],
resilience, scalability, flexibility and cost were deemed
particularly relevant:
Resilience: the capability of a system to mitigate the
impact of abnormal conditions and failures on its
behaviour.
Scalability: the capability of a system to accommodate
growth and to deal effectively and adaptively with
fluctuations in load.
Flexibility: capability of a system to operate in different
platforms and environments and to support
interoperability and various configurations.
Cost: an evaluation of the resources used in the
system, the mode of interaction of the components and
the implied processing involved in its operation.
Implementing a robust system may be expensive
because of the replication of resources and heavy
communications required.

 3.1 Robustness in e-voting systems

The range of robustness issues that arise in e-voting can
be partially uncovered by reviewing the properties of
some e-voting systems. Sensus [5] presents the issue of
robustness under the ‘democracy’ criterion, but
provides limited support for it. In Sensus it is assumed
that communication occurs over anonymous channels.
The issue of robustness is not considered explicitly, and
robustness at system level is not addressed. SEAS [15]
is presented as an improvement to Sensus in preventing
the Validator from voting on behalf of eligible voters
who abstain. It implicitly enhances the robustness of the
e-voting system at protocol level.

REVS was designed with robustness as a key property
of the system, and considers robustness at two levels
[16]. REVS deals with robustness at system level by
replicating servers, maintaining state information and
ensuring ‘resumability’ in case of interruption. At
protocol level, the system is evaluated against the

integrity criterion. The provision of many servers which
contribute to a quorum policy is considered an
impediment to collusion. REVS makes use of redundant
information and servers to improve robustness.

In Prêt à voter, robustness is considered implicitly as
the ability of the system to cope with, for example, the
cheating behaviour of the mix servers. This is achieved
by the removal of a cheating mix server and its
simulation by a quorum Q of other mix servers [10].
Other aspects of robustness are considered as part of the
practical implementation at system level. There is
however no explicit distinction between the different
levels of robustness.

The design of Civitas [17] is motivated by the need to
achieve full conformance to e-voting requirements,
especially coercion resistance. Robustness is addressed
explicitly and is expressed in terms of trust, namely the
ability of a legitimate voter to cast a vote without
coercion and to have the vote cast as intended, recorded
as cast and counted as cast. The focus is on robustness
at protocol level; issues that relate to the underlying
distributed system are identified as limitations for
further work. Helios [18] does not address robustness
explicitly at any level, and relies on extensive auditing
and verification to detect malicious behaviour and
ensure conformance to integrity. Implicitly the focus is
at the protocol level.

This brief review reveals that most of these systems
address robustness mainly at protocol level, either
implicitly or explicitly as in Civitas. REVS appears as
one of the exceptions where robustness is considered at
two levels without an explicit differentiation. It can be
argued however that the design of some of these
systems may be motivated by transparency
considerations.

3.2 Robustness in distributed systems

The rationale for considering robustness at two levels
stems from the realisation that the ability of an e-voting
application to deal with unexpected situations depends
on the flexibility of the underlining distributed system
and on the choice of technology. The selection of a
client-server or P2P architecture, the inclusion of
stateful or stateless servers, the reliance on Web
services or distributed object middleware are all
implementation decisions that affect the robustness of
the distributed systems, and by implication that of the
application itself. Client-server architectures may be
easy to implement but the server may be a single point
of failure; P2P systems offer more flexibility and
resilience but critical interactions require a trustworthy
environment; Web services may be simpler and easier
to integrate but require verbose and inefficient
encoding; stateful servers offer more convenience but
require the active maintenance of a consistent state.
Most significantly, however, networks and servers can
be subjected to denial of service (DOS) attacks [19].
Typically, these attacks involve either swamping the
network with garbage messages or overloading a server

with computationally intensive and useless requests. In
both cases the aim is to prevent the system from
performing its role effectively.

Various methods were proposed for enhancing the
robustness of a distributed system: distribution of tasks
and state, replication of resources and servers, provision
of flexible routes and inclusion of stateless protocols
and servers.

4 An e-Voting system
The proposed approach is illustrated by the design and
implementation of an electronic voting system. It will
be used as a vehicle for exploring the issue of
robustness and in particular the impact of selected
technologies and architecture on robustness at the two
levels. The proposed approach is based on two
premises: 1) a sound implementation of an e-voting
application requires the sound implementation of the
underlying distributed system and 2) a holistic design
and implementation approach that addresses both levels
simultaneously offers more resilience and lead to better
integration.

The scope of the investigation of robustness will be
confined to specific issues. At system level, the main
concern will be denial of service and faulty servers. At
protocol level, the focus will be on integrity issues such
as cheating and collusion, and privacy issues such as
anonymity and secrecy. In the design of the e-voting
system it is assumed that the registration of voters is
done before the election, and that voters obtain their
codes and aliases through out-of-band authentication. It
is also assumed that the voter’s machine is reliable and
trustworthy and that votes are cast as intended. In line
with the rationale that underpins the design of the
Helios system, coercion resistance is not considered a
critical issue because of the context and the limited
scope of the deployment of the system.

 4.1 FOO92 Protocol

An implementation of the FOO92 protocol is used as a
basis for a case study of the impact of engineering
solutions on the robustness of an e-voting system.
Thanks to its flexibility, its efficiency and its
conformance to most e-voting criteria, the FOO92
protocol has formed the basis for many voting protocols
and has been the subject of various enhancements. It
has also a high degree of compatibility with manual
systems [20]. The FOO92 protocol has the advantage of
simplicity, offers a clear separation between concerns
and can accommodate flexible implementations at
distributed system level. The protocol is based on blind
signatures [12] and models the voting process as
follows:

1.Voter retrieves ballot from Administrator
2.Voter completes the ballot and blinds it.
3.Voter constructs a message containing the ballot and
his identity and encrypts it with the Validator’s public
key.
4.Voter sends the message to Validator.

5.Validator decrypts the message, validates Voter and
signs the ballot.
6.Validator returns the blinded ballot to Voter.
7.Voter unblinds the ballot and encrypts it with
Counter’s public key.
8.Voter forwards the ballot to Counter over an
anonymous channel, through Collector.
9.Counter checks for Validator’s signature on the
ballot, decrypts it and increments the corresponding
count.
The development of the system involves essentially
mapping the election authorities to specific servers,
providing support for validation and authentication
through access to the electoral roll, setting up
anonymous channels and recording votes. The design of
the system should also cater for the requirements of
robustness at two levels.

4.2 The voting process

The system architecture that supports the voting process
is shown in Fig. 1. It incorporates all the servers and
their modes of interaction.

The processing of the vote information identifies three
distinct virtual spaces in the diagram: validation where
the voter is known but the vote is not known;
transmission of the vote where the voter is not known
and the vote is not known, and recording of the vote
where the voter is not known and the vote is known.

Validation: the voter is known and the vote is not
known. This phase is concerned with authentication of
the voter by the Administrator and the retrieval of
election details and identification information (Step 1,
2). A vote with a personal random number (RN) and
election details is blinded and sent to the Validator
(Step 3). With blind signatures the Validator signs the
message sent by the Voter without being able to read its
content [17]. The validation of the voter through its
alias VT1 involves checking its credentials against the
electoral roll (e-roll nodes) (Steps 4, 5) and determining
whether they have already been validated (Steps 6, 7).
If the voter is eligible the blinded vote is signed and
returned to the voter by the Validator (Step 8). The
Validator requires an acknowledgment from the Voter
in order to prevent multiple requests for validation from
the same voter.

Transmission: the voter is not known and the vote is
not known. On successful validation, the voter
unblinds the message signed by the Validator and
encrypts it with the public key of the Counter (V=

{{choice, electionId, RN}val-priv}count-pub). It then transmits
the message to the Counter via a chain of routing nodes
(Steps 9, 10, 11, 12) and the Collector (V, {{col}N3-pub,

N3}N2-pub, N2}N1-pub). The chain acts as an anonymous
channel. On receipt of the message, the Collector
extracts the packaged ballot, checks its validity and
forwards it to the Counter (Step 13).

Recording: the voter is not known and the vote is
known. The Counter checks the ballot for validation by
the Validator, extracts the vote and adds it to the

appropriate tally. The vote is also recorded in the
database against the personal random number of the
Voter.

4.3 Secure and anonymous processing

The notation used in Fig. 1 includes the application of
asymmetric encryption to the messages. In the exchange
of these messages, secure and anonymous transmission
is achieved by:

- The generation of a random number by the voter as a
unique identification token, RN. This number facilitates
individual verifiability and prevents multiple votes by
one voter.

 - The anonymity and secrecy of the vote is achieved in
two ways, by blinding signatures and by asymmetric
encryption. The is illustrated by the message sent to the
Validator by the Voter ({{choice, electionId, RN}blinded,

VT1, electionId, voter-pub}val-pub).

 - The asymmetric encryption where messages are
encrypted for secrecy using the public key of a server
(Counter), or signed by a server (Validator) with its
private key ({{{choice, electionId, RN}blinded}val-priv}voter-

pub).

 - The onion-routing itinerary is generated randomly
and transmitted to the voter with the election details. It
is designed to support anonymous communication. In
the proposed system a Tor-like circuit [21, 22] is built
by the Administrator randomly from a set of available
nodes ({{{col}N3-pub, N3}N2-pub, N2}N1-pub) and passed to the
Voter. Ni contains the address of node Ni and its public
key, Ni-pub. Although three nodes are used in this
example the length of the circuit is variable. The
innermost node of the circuit is the Collector (Col) and it
is encrypted with the public key of N3, the node that
precedes it ({col}N3-pub). At the next layer the encrypted
innermost nodes are encrypted with the public key of
N2, which precedes N3 ({{col}N3-pub, N3}N2-pub). The first
node on the path, N1, corresponds to the outer layer; all
the inner nodes, which are its successors are encrypted
with its public key ({{{col}N3-pub, N3}N2-pub, N2}N1-pub).
During transmission only the successor node is known
to its predecessor. Hence, only routing node N1 on the
outer layer is known to the Voter. The Voter constructs
a message which includes the vote and the path, and
encrypts it with the public key of N1, ({V, {{{col}N3-pub,

N3}N2-pub, N2}N1-pub }N1-pub). When N1 receives the
message it decrypts it, firstly to access the vote V, and
secondly to retrieve the encrypted route to determine
the next node in the network ({{{col}N3-pub, N3}N2-pub},

N2). N1 then constructs a message with the vote V and
the rest of the route, and encrypts it with the public of
its successor, N2 ({V,{{col}N3-pub, N3}N2-pub}N2-pub). The
procedure of encryption and decryption is repeated at
each node until the message reaches the Collector (col).

 - Each server contributes to the monitoring of the
voting process by logging and signing explicitly its
transactions and authenticating messages where

appropriate. Unauthenticated messages are discarded in
order to minimise the overload on the network and on
the Counter.

 5 A service-oriented architecture
The selection of a service-oriented architecture was a
key decision in the fulfilment of the e-voting

Fig. 1 e-Voting process and architecture

requirements. One attractive feature of this application
is the ability to create aggregate services through
dynamic composition.

5.1 Web services

As ‘self-contained and self-describing applications’
Web services offer a number of advantages. Their
adherence to well-established standards for Web service
description (WSDL), serialisation of messages (SOAP)
and Web service indexation (UDDI) underpin their
ubiquity and their interoperability. They enable
heterogeneous applications to communicate and to be
integrated through composition into modular Web
services. In addition, they can be deployed over
standard Internet technologies and take advantage of the
Web infrastructure and protocols [23].

Although the partial statelessness of SOAP/HTTP, as
the underlying protocol, is often seen as a drawback in
many applications, the intermittent connections of Web
services and the regular flushing of state that they
initiate make them very suitable for an e-voting
application. The absence of state makes them more
resilient to failure.

5.2 Architecture

The service-oriented architecture which implements the
FOO92 protocol identifies the different stages of the
voting process and specifies the roles of the agencies
and the entities in the e-voting system. It also represents
an instance of the composition of the system from key
services. These include:

• Administrator Service: provides a user interface for
specifying the election; coordinates the agencies
used in an election; serves the Voter Client to the
voter and publishes the results when an election
ends.

• Electoral roll nodes: they hold voter information.
The alias of each voter is mapped to one of the
three nodes by a hash function.

• Validator Service: receives the blinded ballot from
the Voter Client, using the alias provided by the
voter; checks whether the voter exists and whether
he or she has not been validated.

• Collector Service: receives the validated ballot
from the Voter Client; signs and forwards the ballot
to the Counter.

• Counter Service: receives the ballot from the
Collector; checks the collector signature; extracts
and records the personal random number (RN) and
the vote; adds the vote to the tally.

• Routing Node: receives a ballot either directly from
a Voter Client or via a routing node; decrypts the
routing path and determines the following node in
the path.

• Voter Client: an applet used for casting a vote.

The Administrator service

The Administrator is the most important service in the
system. It is the trusted election authority that initiates
and coordinates elections. Conceptually it includes
seven key components (Fig. 2):

• Administrator User Interface: the administrator
provides a web-based User Interface (UI) for the
Election Official to view the status of agencies,
specify elections, view the agencies in use by an
election, monitor the election and view the results.

• Voter Client Access Service: this component
provides an interface for the voter client to interact
with the Administrator service and obtain the list of
the candidates and of the agencies for validating
and submitting the completed ballot.

• Public User Interface: the voter UI provides a
simple Web application to access all the public
functions of the system. This includes access to the
voter client applet, checking if their vote has been
recorded and how it was recorded, and viewing the
results of an election.

• Check voter status service: this provides an
interface for the Validator service to check if a
voter exists, if the voter has voted or to mark the
voter as voted if applicable.

• Agency Monitoring: this monitors the status of the
agencies in the system. If an agency is in use for an
election and becomes unavailable this component
selects another suitable one and allocates it to the
election (Fig. 3).

• Election coordination: this monitors the list of
elections in the system and starts and ends them as
appropriate.

• Persistence Layer: the persistence layer contains a
set of entities which represent the database model.
Details of elections, election results, electoral rolls,
log messages and agencies used are stored in the
database.

5.3 Web Service generation and composition

Web services are implemented within the JAX-WS
framework which generates a Web service stub for a
service and publishes its WSDL file. This WSDL file is
used by applications that consume the Web service to
create clients. WSDL files are created for all the
services and for different tasks.

The composition process is controlled by the
Administrator. At the start of the election the
Administrator selects a Validator, a Collector and a
Counter at random from the agencies that are online and
are not used by another election. Once selected, these
agencies are notified and given the election id and the
details of the relevant nodes in the system. For example,
once the Administrator has built the network of e-roll
nodes, it will inform the Validator of the location of the
electoral roll nodes and their public keys:

<dhtUpdate>

 <agency id="0" pubKey="1ed$f43fv3s">

 http://eroll5.vote.council.gov.uk</agency>

 <agency id="1" pubKey="3d34v3shbdf">

http://eroll8.vote.council.gov.uk</agency>

 <agency id="2" pubKey="03DX3tfxzy6">

 http://eroll4.vote.council.gov.uk</agency>

 <agency id="3" pubKey="f36hbtgb88r">

 http://eroll0.vote.council.gov.uk</agency>

</dhtUpdate>

Fig. 4 presents an outline of the methods that contribute
to the composition process. The Collector and the
Counter are given the details of the public key of the
Validator so they can check that the ballot validation
signature is correct. The process for composing the
electoral roll agencies is similar, except that the
administrator will attempt to compose the electoral roll
agencies as requested by the election official.
A key feature of the system is its Just-in-time (JIT)
configurability. The JIT strategy is implemented by the
dynamic composition of the servers and by the dynamic
provision of routing paths.

5.4 Cryptography

The Secure Socket Layer (SSL) was deemed unsuitable
for securing communication as it only provides point to
point security. Specific cryptography functions had to
be implemented. These include methods for key
generation, key storage, encrypting XML elements,
decrypting XML elements, signing XML elements and
verifying the signatures added to XML elements.

A hybrid cryptosystem was used for sending efficiently
and securely messages between the agencies. Each
message is encrypted using a freshly generated
symmetric AES-128 key, which is used to encrypt the
message content. This plain key is then encrypted using
the RSA-2048 public key of the recipient and forwarded
along with the message. When it receives the message
the recipient decrypts the encrypted symmetric key with
its private key so that it can decrypt and access the
content of the message. Public keys are distributed to
agencies when they are setup as X.509 certificates
stored in the key store. A version of an encrypted XML
message is shown below:

<encrypted-message>

 <sym-key>

 esf234tr4g4t23fgg5y6

 </sym-key>

 <encrypted-content>

 f4wrt3rt5egbdbdfbvt5Y2r3vevsf435gd

 </encrypted-content>

 </encrypted-message>

5.5 Implementation issues

Java was chosen as the programming language for the
implementation of the system because of its suitability
for Web development and the availability of libraries
for Web services and cryptography. All the application
logic was written in EJBs with Glass Fish 3.0 as the
application container. EJBs provide many transparent
services such as transactions, security, and pooling and
thread safety.

Data management was supported by the design and
implementation of a MySQL relational database. The
Java Persistence API was used to implement Object
Relation mapping between Java objects and the
relational database tables.

6 Evaluation
The evaluation is concerned with the conformance of
SOREV to e-voting requirements, and with the level of
robustness it provides at protocol level and at system
level. The role of some architectural elements in
enhancing robustness is also considered.

6.1 Robustness at protocol level

This form of robustness is assessed in terms of integrity,
privacy, verifiability and recoverability.

Integrity

The Administrator is performing a number of critical
functions under the fundamental assumption that it is
trusted. Other agencies however need to be monitored
and their behaviour constrained. Some potential cases
of misbehaviour are considered below.

startElection(election) {

 allocateElectoralRollAgencies(election);

 populateElectoralRollAgencies(election);

 allocateAgency("validator", election);

 allocateAgency("counter", election);

 allocateAgency("collector", election);

}

//Allocate an agency to an election e.g. validator, collector, counter.

allocateAgency(agencyType, election, electoralRollNodeId = 0) {

 //Randomly select one of the available agencies.

 agencyToAllocate = getRandomAgencyOfType(agencyType);

 //Inform agency it has been selected, distribute addresses and keys to agencies

 initialiseAgency(agencyToAllocate, election, electoralRollNodeId);

 recordAllocation(agency, election);

}

allocateElectoralRollAgencies(election) {

 numElectoralRollAgenciesRequired = election.getPrefferedNumberOfElectoralAgencies();

 while (numElectoralRollAgenciesRequired > 0) {

 //select and initialise the node

 allocateNode("eroll", election, electoralRollNodeId);

 numErollAgenciesRequired--;

 electoralRollNodeId++; }

}

populateElectoralRollNodes(election) {

 for (all voters of election) {

 //Determine the electoral roll agency to add the voter to.

 electoralRollAgency = calculateErollAgencyToUse(voter.voterToken1);

 //Add the voter to that agency.

 ElectoralServiceStub.addVoter(electoralRollAgency, voter.voterToken1); }

}

monitorAgencies() {

 for (all agencies) {

 If (checkAgencyAlive && !agencySetToAlive) { agency.setAlive(true);}

 else if (checkAgencyAlive && agencySetToAlive) { //do nothing }

 else if (!checkAgencyAlive && agencySetToAlive) {

 //this agency has gone down, check if in use.

 agency.setAlive(false);

 handleAgencyNotAvailable(agency) }

 else if (!checkAgencyAlive && !agencySetToAlive) { //do nothing } }

}

void endElection(Election election) {

 notifyNodesThatElectionHasEnded(election);

 //counter will no longer ballots and returns the results of the election.
}

Fig. 4 Composition methods

It would be difficult for a Validator to vote on behalf of
a voter who abstained. The use of aliases [24] and the
distribution of the electoral roll across many nodes are
designed to prevent the Validator from identifying the
voters who abstain. Although it can always create a new
identifier, the alias will not be cleared by the
Administrator and will therefore lead to discrepancies
in the tally of the votes. The provision of multiple
Validators would reinforce this security constraint. As
for the Collector, without collusion, it cannot forge or
modify votes since they must be signed by the
Validator. It can however drop votes but this can be
detected through verifiability and tallying. A Counter
may be able to add spurious votes but this can also be
detected since the Administrator is keeping track of the
total number of validated voters, which should be
greater than or equal to the tally of the votes produced
by the Counter. Modification of votes by the Counter is
hindered by verification by voters. The recording of the
random number (RN) in the Counter allows for votes to
be computed accurately and to prevent multiple votes
by voters. With the storage of the personal random
number with its corresponding vote the replaying of
messages is made idempotent and voters are not able to
cast two votes.

Besides potential individual misbehaviour, collusion
between agencies is another cause for concern. The
transient configurations that the JIT approach generates
can be an obstacle to the collusion between servers. The
use of onion routing ensures that votes arrive to the
Collector from different routes. Although it is possible
for a routing node to replace a vote by another one, this
can only be done with the collusion of the Validator.
This will eventually be detected by voters. Votes are
only accepted by the Counter if they are sent and signed

by the Collector. The injection of spurious votes by
entities outside the e-voting system is made difficult by
the dynamic generation of the network and therefore its
lack of predictability. Whilst existing measures can
deter illegal practices, they are ineffective against
wholesale collusion between the election authorities.

The integrity of the system is also enhanced by the logs
of server transactions and the monitoring of server
activity by the Administrator and the Voter (Fig. 5).
The combination of server monitoring and voter
verification can help detect malicious behaviour by
servers and voters. It is difficult for a server to drop,
add or modify votes without being detected. Thanks to
the Web Services framework it is possible to replace a
server if it is faulty or is dishonest. All these design
features contribute to robustness.

Privacy

The system provides support for the anonymity of the
voters and the secrecy of the vote through a
combination of asymmetric encryption and blinding
schemes. Privacy requirements and anonymity in
particular, are also supported by architectural features
such as onion routing and dynamic routing allocation.
The onion routing approach was considered more
suitable than mix nets [3] thanks to its impact at the two
levels. Mix nets are concerned mainly with
untraceability and operate at protocol level.

An additional feature of this implementation of onion
routing is that the public keys of the routing nodes do
not have to be published, since the chain is created by
the Administrator. A node knows only the address and
the public key of its successor. Privacy is also ensured
by enforcing one-way communications, especially in
the last two virtual spaces of the voting process. Privacy

Fig. 5 Server logs

is further supported by the generation of a random
number by the voter and its inclusion with the ballot
rather than the reliance on the transmission of a receipt
by the Counter.

Coercion resistance

There is a potential conflict between coercion-resistance
and individual verifiability in e-voting schemes. The
ability of voters to check that their vote was recorded
accurately may make them vulnerable to coercion. It
has been argued that in some voting contexts coercion
resistance may not be a fundamental requirement [18].
This is relevant to student elections and online specialist
communities such as ACM and IEEE. Helios is a
system where the viability of a system does not depend
on coercion resistance; the focus is instead on
verifiability. This characteristic is common to many
implementations of the FOO92 protocol such as Sensus
[5], SEAS [15] and REVS [16].

The focus of the proposed system was deliberately on
the processing of votes and their recording in a robust
manner. It is therefore assumed that the vote is cast as
intended without support for coercion resistance. It is
worth mentioning however that in some situations
coercion-resistance may be an important aspect of
robustness at protocol level. Civitas implements
coercion resistance with the use of fake credentials [17].
Recent elections have confirmed the critical importance
of interfacing, one aspect of e-voting to which some
researchers had already drawn attention [25].

Verifiability

Individual verifiability and universal verifiability are
supported by the accurate recording of the votes and
their subsequent publishing without compromising
privacy. While individual verifiability can be performed
immediately after a vote is cast, for the sake of fairness

universal verifiability is only possible after the end of
the election. Verifiability can be conducted by the
stakeholders in general and the voter in particular by
using their personal random number (Fig. 6).

Through verifiability and auditing voters can contribute
significantly to the robustness of the system at protocol
level. This approach is strongly advocated in Helios.
Should voters challenge the accuracy of their recorded
vote they would have to produce the ballot and the
random number signed by the Validator.

Recoverability

The provision for recoverability and its implementation
may require the maintenance of state in different servers
and at different stages of the voting process. This
requirement may not conform to the proposed approach,
which is characterised by minimal statefulness in order
to safeguard privacy.

In SOREV recoverability is not supported explicitly.
Instead a pre-emptive approach was adopted which
preserves the integrity and the privacy of the system.
Regular and reliable backup is performed on servers
that record votes. The state that DHT-based servers
hold can be reconstructed without loss of information
since it is read-only. Recoverability is facilitated by the
dynamic allocation of servers if failures occur.

Recoverability is made possible by the facility that
voters have, through verifiability, to check the status of
their votes. They can resend their ballot if it has not
been recorded.

6.2 Robustness at system level

Robustness at system level will be considered in terms
of resilience, scalability, flexibility and cost. More
emphasis will be put on resilience as it is the most
critical component of robustness.

Resilience

Voter intervention in an e-voting system may be a
source of insecurity. Voters are not trusted because of
their autonomy and the arbitrary and unsupervised
nature of their intervention. The impact of malicious
attacks is mitigated by the dynamic generation of the
routing path, the absence of obvious patterns in the
composition of the system and the verification process,
as well as the use aliases. Furthermore, only legitimate
voters are given a path to the servers and each voter is
given access to the first routing node only.

Fig. 6 Individual verifiability

Denial-of-service attacks can take different forms and
many countermeasures were proposed to deal with
these attacks at different levels. In some systems filters
on the network are used for detecting and blocking
DOS attacks [26]. At operating system (OS) level
protocols can be configured to deter DOS attacks. DOS
attacks rely on the knowledge of the architecture of the
networks and of the servers. The resilience of the
proposed system is underpinned by this assumption. For
its defence against DOS attacks the proposed system
relies primarily on the just-in-time (JIT) composition,
its flexible configuration with onion routing, as well as
the limited knowledge of the network structure and of
the servers by the different election authorities and by
the Voter. This can be an impediment to mapping out
the network structure and mounting concerted DOS
attacks. This task is supported by the active monitoring
of the servers. The ability to replace defective or rogues
servers by new ones can also limit the impact of the
DOS attacks (Fig. 7).

The dynamic composition of the servers and the
provision of dynamic routes can be considered as
‘temporal distribution’ when opposed to the ‘spatial
distribution’ promoted by REVS and Prêt à voter.
Different routes can be active at the same time. The JIT
approach enhances reliability as only working and
available servers are selected; in addition, the
monitoring process helps with the detection of faulty
servers and their replacement if required. Furthermore,
at a lower level, the chain of routing nodes can be
constructed adaptively in such a way as to minimise
network congestion and to overcome network
partitions.

In the proposed system, no state is maintained on the
intermediate servers, such as the Validator, routing
nodes and the Collector. The distributed electoral rolls
(e-rolls) hold the list of aliases of voters, which is read-
only and can be restored without loss of information.
The Administrator and the Counter maintain however
the state that underpins the functionality and the
viability of the system. Strong back-up is required in the
case of these stateful servers.

Scalability and flexibility

Scalability is primarily catered for by the dynamic
configuration of the system. Large volumes of traffic
can be managed by redirecting messages adaptively
through appropriate paths to servers in order to
distribute load, avoid congestion and increase
throughput. This function is more effective when
combined with server monitoring.

Enhancement to the distributed system can be achieved
by the dynamic inclusion of new servers. For example a
number of validators, collectors and counters can be
integrated dynamically to improve processing or to
replace defective servers. Scalability is also implicit in
the distribution of state across a set of peers.

Flexibility is manifest at different stages of the lifetime
of the system. At initiation, the dynamic composition of
the system allows for various configurations to be
deployed. In the processing of the votes, the ability to
dynamically generate the routing path and the selection
of servers to suit environmental conditions is another
facet of the flexibility of the system. This also extends
to recovery from failure.

The architectural and technological features that sustain
the resilience of the system are also key factors in the
support for scalability and flexibility. This follows from
the adoption of Web services as a versatile technology.
With their affinity for interoperability they combine
seamlessly client-server and P2P models, and guide the
configuration of the loosely-coupled system.

Cost

The expectation of an acceptable level of resilience and
the provision for scalability and flexibility in e-voting
systems depend on the resources invested in the system
and on their cost. The performance of the system can be
affected, for example, by the large number of servers
that must be maintained and by the creation and
distribution of public keys. Some systems opt for a
minimal set of servers [15], while others attempt to

Fig. 7 Server availability

satisfy e-voting requirements through multiple and
redundant servers [16, 10]. In some cases the robustness
of a system depends on the replication of mix nets and
on the use of a quorum policy [27], which incurs yet
higher performance costs.

In SOREV the overheads are mainly associated with the
availability of multiple servers and the processing of the
routing path. The ‘validation virtual space’ is the
context of intensive two-way inter-server
communications, while the ‘transmission space’ is
marked by heavy encryption and decryption.

6.3 Architectural impact

This section offers a brief assessment of the impact of
some architectural features on robustness at protocol
level and at system level.

Virtual spaces

Although most e-voting systems operate implicitly
within two virtual spaces only, three distinct phases are
identified in this system: validation, transmission and
recording. While transmission and recording are
relatively secure, validation involves many servers and
two-way communications. The level of activity and the
patterns of behaviour it supports may expose the servers
to malicious attacks. The distribution of state and tasks
and the random selection of the servers form a
significant part of the measures against potential
attacks.

Clear identification of roles of the servers and active
monitoring of server behaviour are features that help
pre-empt single points of failure and deter collusion.
The use of aliases and the dynamic generation of the
routing path contribute to voter privacy and the security
of the distributed system.

A service-oriented architecture

The adoption of Web services allows for a considerable
overlap between resilience, scalability and flexibility.
This is also enhanced by the stateless nature of the
combination of the HTTP and SOAP protocols and their
support for ephemeral state information. One significant
feature against denial of service attacks is the limited
awareness that the servers have of each other.
Additionally, one-way messages can hinder the
identification of the source of a message through traffic
analysis.

As composition is initiated by the Administrator and
involves a number of trusted Web services that possess
security capabilities and are subject to security
constraints, it can be stated that the composition process
is inherently security conscious [28]. Moreover, the
resilience of the system is enhanced by the loosely-
coupled configuration of Web services.

Architectural components
The merits of the architectural and technological
features of the system have been outlined in the

previous sections. A more focused assessment of their
impact on robustness at the levels is given in Fig. 8.
The elements of interest include the service-oriented
architecture, JIT composition, e-roll nodes, onion
routing and one-way communication. The table
identifies the core components of robustness that were
affected. At protocol level it is the integrity and privacy,
whereas at system level it is mainly resilience and
scalability and flexibility. Integrity and privacy are both
supported by strong encryption.

6.4 Comparative evaluation

A comparative evaluation with other, albeit older,
implementations of the FOO92 protocol will shed some
light on the different forms of robustness and its
distinctive features. Unlike more recent
implementations of e-voting schemes which are mainly
concerned with protocol level, systems such as Sensus
and REVS have the merit of presenting concrete
implementations that implicitly or explicitly address
robustness at system level as well.

At protocol level the comparative evaluation (Fig. 9)
indicates that no system satisfies fully the criterion of
recoverability. In many respects Sensus is weaker than
REVS and SOREV. In addition to the lack of universal
verifiability its support for integrity is restricted and
anonymity is not guaranteed. REVS and SOREV
present similar capabilities but differ in the way they
implement integrity. REVS relies mainly on an explicit
quorum policy while SOREV combine aliases,
distributed state, intermediate servers and dynamic
routing to achieve integrity.

At system level (Fig.10) both REVS and SOREV have
benefited from the experience of Sensus and satisfy
most of the e-voting requirements; they display a
number of advanced features. Sensus was however
designed with minimal resources and with multi-
function servers; as a result its overheads are lower.

Although REVS and SOREV are close in many ways,
the fundamental difference between them lies in the
way they deal with resilience. REVS opts for the
redundant replication of servers with alternative routing
to support a quorum policy. Moreover the need to
facilitate ‘resumability’ requires the maintenance of
state across the whole system. SOREV, on the other
hand, favours the dynamic allocation and configuration
of servers and the dynamic route generation. To some
extent the ‘spatial distribution’ of resources in REVS is
equivalent to their ‘temporal distribution’ in SOREV.
This difference has implications for scalability,
flexibility and cost. Although both provide equivalent
support for scalability SOREV offers more flexibility at
system level than REVS and makes full use of its
resources, a feature that helps minimise cost.

In REVS the cost is mainly due to the overheads of the
quorum policy; in SOREV it is the route generation that

requires heavy processing. It can be concluded from the
two tables that REVS performs better at protocol level,
whereas SOREV satisfies better the system level
criteria.

This comparison may present Sensus in a relatively
poor light. The system has the merit of being one the
first realistic implementations of the FOO92 protocol. It
served as a model for many e-voting schemes. Some of
its limitations are mainly due to the restricted number of
servers. In contrast to previous systems, some recent e-
voting systems such as Civitas, Prêt à voter and Helios
appear to be more concerned with the protocol level and
with a stronger form of verification. Despite their
concern with integrity and privacy, with the exception
of Civitas, coercion resistance is still not supported in
many e-voting systems.

6.5 Contribution

The review of e-voting systems has highlighted an
overwhelming concern with protocol design and
conformance to e-voting requirements. In most of these
systems robustness at system level is not dealt with
explicitly. It is often assumed that techniques for
addressing robustness can be subsequently grafted onto
the system.

The main contribution of this work lies in the explicit
approach to robustness in e-voting systems. This
involved firstly, a distinction between two types of
robustness and secondly, the design of a service-
oriented architecture which integrates appropriate
technologies in order to address the two forms of
robustness simultaneously.

The design of the underlying distributed system was
guided by a number of concepts [8]:

• distributed trust concepts, separation of concerns
and processing to prevent collusion.

• restriction of access to state information to deter
cheating.

• distribution of e-roll state, use of aliases and unique
identifiers to enhance the privacy of voters.

• establishment of stateless servers to enhance
reliability and recovery.

• dynamic assignment of routes and servers to
counter malicious behaviour and facilitate efficient
system behaviour.

Although the focus of the work is on robustness the
proposed architecture provides full support for the e-
voting process and satisfies all the e-voting
requirements with the exception of coercion resistance.
The identification of three virtual spaces played a
significant part in achieving this conformance.

7 Further work

The approach to the development of e-voting systems
offers scope for improvement and extension. Areas for
further are sketched below.

7.1 Enhancement with BPEL

The Web Services composition process is ad hoc. A
more disciplined approach can be supported by
enabling WS-BPEL to preside over the management of
Web services. WS-BPEL offers better transaction
handling and can be used to orchestrate a set of web
services to perform a specific task.

WS-BPEL could be used to formalise the description of
the interactions between the different Web services in
the system. In addition to starting and ending an
election, this would facilitate the process of monitoring
the behaviour of agencies in the system. If a change of
status was found the exception handlers would be called
accordingly.

7.2 Server replication

The Administrator performs many functions and holds
information critical to the whole process. This
centralisation can be detrimental to the integrity of the
system. A more robust and secure approach would
involve the generation of the codes and aliases by a
separate election authority followed by their distribution
to different servers. This would prevent the
Administrator from, for example, fabricating false
identities and voting on their behalf or colluding with
other agencies.

Similarly, a single Counter is vulnerable to attacks and
may be a single point of failure. It is possible to
improve the resilience of the system by specifying
different Counters through the Collector or a set of
Collectors. The final tally will be gathered from all the
Counters. Alternatively two counters can be provided
that receive similar messages from the Collector. This
scheme ensures resilience, verification and accuracy
through mirroring. This will however incur some
performance overheads.

7.3 Onion routing

Onion routing has the advantage of promoting
decentralisation and distribution. This method of
communication could be generalised to the exchange of
messages between servers. It can present a more
effective defence against denial of service attacks and
collusion, since the routing nodes are arbitrary selected.
Servers need not be aware of the source of a message as
long as the signature is valid. The introduction of
further redundancy into the system may be costly and
may affect adversely its reliability.

7.4 Mobility

Many are advocating the use of mobile devices in e-
voting systems [29]. It is argued that the ability of
voters to vote from their mobile devices would lead to
greater flexibility and would encourage greater

participation in elections. Although this enhancement
would meet the mobility requirement, the introduction
of mobile devices raises a number of issues. Mobile
networks are notoriously difficult to manage; the ad hoc
and intermittent interventions of mobile devices pose
serious issues of authentication and security. It is
however the current limitations of these devices that
could be the main obstacle to their integration into e-
voting systems [30]. In addition to computational and
memory constraints battery restrictions can lead to
discontinuity in processing and loss of votes.

8 Conclusion
In this paper the implementation of the FOO92 protocol
was used as a vehicle for presenting a perspective on
robustness in e-voting systems. It is characterised by a
distinction between robustness at protocol level and
robustness at system level, and the identification of
technologies and their integration into a service-
oriented architecture in order to address the two forms
of robustness simultaneously. With its emphasis on the
distribution of state, the decentralisation of tasks, the
JIT routing configuration, the use of aliases and the
active monitoring of server activity, the proposed
approach aims at promoting the design of robust e-
voting systems. This is supported by the
implementation of the servers as Web Services and their
dynamic composition. This perspective on robustness
offers scope for wider decentralisation, scalability and
flexibility, and invites a more integrated and holistic
approach to the development of e-voting systems. It
contributes ultimately to the satisfaction of most e-
voting requirements.

9 References
1. Kremer S., Ryan M. D. and Smyth B. Election verifiability
in electronic voting protocols. In Proceedings of the fifteenth
European Symposium on Research in Computer Security
(ESORICS'10). LNCS, Springer, volume 6345, pp389-404,
2010.

2. Chaum D., Untraceable electronic mail, return addresses,
and digital pseudonyms, Communications of the ACM 24
(1981) (2), pp84–88.

3. Sampigethaya K. and Poovendran, R. A Survey on Mix
Networks and Their Secure Applications, Proceedings of the
IEEE, Volume: 94, Issue 12, December 2006, pp2142–2181.

4. Syverson P.F., Goldschlag D.M. and Reed M.G.
Anonymous connections and onion routing, IEEE symposium
on security and privacy, IEEE (1997), pp44–54.

5. Cranor L. and Cytron R.K. Sensus: a security-conscious
electronic polling system for the internet, Proceedings of
HICSS'97, IEEE (1997), pp561–570.

6. Fujioko A., Okamoto T. and Ohta T. A practical Secret
Voting Scheme for Large-Scale Elections, Advances in
Cryptology, AUSCRYPT'92, Springer-Verlag, 1992, pp244-
260.

7. Volkamer, M. and Grimm, R. Determine the Resilience of
Evaluated Internet Voting Systems. First International

Workshop on Requirements Engineering for e-Voting Systems
(RE-VOTE), Atlanta, USA, August 2010, pp47-54.

8. Weldemariam K., Volkamer M. And Villafiorita A. ”e-
voting: What we Learned, Where We are Going To".
Proceedings of the Sixth International Workshop on Frontiers
in Availability, Reliability and Security, (FARES 2011),
Vienna, Austria, August 2011.

9. Schneier B., Applied Cryptography, John Wiley, 1996.

10. Ryan P.Y.A., Bismark D., Heather, J. Schneider S. and
Zhe X. The Prêt à voter Verifiable Election System, IEEE
Transactions on Information Forensics and Security - Special
issue on electronic voting, Volume 4, Issue 4, December 2009,
pp662-673.

11. Benaloh J. and Fischer M., A robust and Reliable
Cryptographically Secure Election Scheme, Proceedings of
the 16th IEEE Symposium on the Foundations of Computer
Science, Los Angeles, USA, 1985, pp372-382.

12. Chaum D. “Blind Signatures”, Crypto 82, 1983.

13. Ansari N., Sakarindr P., Haghani E., Zhang C., Jain A.K.,
and Shi Y.Q., Evaluating Electronic Voting Systems
Equipped with Voter-Verified Paper Records, IEEE Security
& Privacy, May/June 2008, pp30-39.

14. Scott Jackson, A Multidisciplinary Framework For
Resilience To Disasters And Disruptions. Journal of
Integrated Design & Process Science, Volume 11 Issue 2,
April 2007.

15. Baiardi F., Falleni A., Granchi R., Martinelli F., Petrocchi
M. and Vaccarelli A. SEAS, a secure e-voting protocol:
Design and implementation. Computers & Security, 2005,
pp642-652.

16. Joaquim R., Z´uquete A., and Ferreira P. REVS – A
Robust Electronic Voting System. IADIS International
Journal of WWW/Internet, 1(2), December 2003.

17. Clarkson M. R., Chong S., and Myers A. C. Civitas:
Toward a secure voting system. IEEE Symposium on Security
and Privacy, Oakland, USA, 2008, pp54–368.

18. Adida B., Helios: Web-based open-audit voting.
Proceedings of the 17th USENIX Security Symposium
(Security ’08), San Jose, USA, July-August 2008.

19. Carl G., Kesidis G., Brooks R.R. and Rai S. Denial-of-
Service Attack-Detection Techniques, IEEE Internet
Computing, Volume 10, Issue 1, 2006, pp82-89.

20. Tsekmezoglou E. and Illiadis J., A critical View of Voting
Technology, The Electronic Journal for E-Commerce Tools &
Applications, Volume 1, Issue 4, December 2005.

21. Dingledine R., Mathewson N. and Syverson P., Tor: The
Second-Generation Onion Router, Proceedings of the 13th
USENIX Security Symposium, August 2004.

22. Camenisch, J. and Lysyanskaya, A. A Formal Treatment
of Onion Routing. Proceedings of CRYPTO'2005, Lecture
Notes in Computer Science, Vol. 3621, November 2005,
pp169-187.

23. Curbera F., Duftler M., Khalaf R., Nagy W., Mukhi N.,
Weerawarana S., Unravelling the Web Services Web - An
Introduction to SOAP, WSDL, and UDDI, IEEE Internet
Computing, 3 (4), 2002.

 24. Langer L., Schmidt A., Buchmann J. and Volkamer M. A.
Taxonomy Refining the Security for Electronic Voting:
Analysing Helios as a proof of Concept. 2010 International
Conference on Availability, Reliability and Security, Krakow,
Poland, February, 2010.

25. Rivest R., Electronic Voting,
ttp://theory.lcs.mit.edu/~rivest/Rivest-ElectronicVoting.pdf

26. .Abdelsayed, S., Glimsholt, D., Leckie, C., Ryan S. and
Shami S. An efficient filter for denial-of-service bandwidth
attacks, IEEE Global Telecommunications Conference,
(GLOBECOM '03), Volume: 3, 2003, pp353-1357.

27. Jakobsson M., Juels A. and Rivest R.L. Making Mix Nets
Robust for Electronic Voting by Randomized Partial
Checking. USENIX Security Symposium, 2002, pp339-353.

28. Carminati B., Ferrari E and Hung P.C.K, Security
Conscious Web Service Composition., 2006 IEEE
International Conference on Web Services (ICWS 2006),
September 2006, Chicago, USA, pp489- 496.

29. Campanelli, S., Falleni, A., Martinelli, F., Petrocchi, M.,
Vaccarelli A. A Mobile Implementation and Formal
Verification of an e-Voting System. Internet and Web
Applications and Services, (ICIW '08), 2008, pp476-481.

30. Ashraf K., Anane R. and Bordbar B. File Management in
a Mobile DHT-based P2P Environment. The 26th IEEE
International Conference on Advanced Information
Networking and Applications (AINA-2012), Fukuoka, Japan,
March 2012.

Fig. 8 Architectural impact

Architectural
feature

Protocol level System level

Service-oriented
architecture and JIT
composition

Integrity Resilience

Scalability

Flexibility

e-roll node Integrity

Privacy

Resilience

Scalability

Onion routing Integrity

Privacy

Resilience

Scalability

Flexibility

One-way routing Privacy Resilience

Scalability

 Fig. 9 Protocol level comparison

Robustness at Protocol level

 Sensus REVS SOREV

integrity

Potential cheating by
Validator (resolved in
SEAS)

Potential collusion
between servers

Collusion resistance through
quorum policy

Votes cannot be forged
because of multiple signatures
and quorum policy

Can be sensitive to DOS
attacks because of
maintenance of state at
different stages

Collusion resistance through
distribution of tasks

Indirect access to e-roll data
with the use of aliases

Use of transaction logs

Most operations are idempotent

privacy

Strong encryption of ballot
(secret vote)

Two undifferentiated
virtual states

Anonymity not guaranteed
(assumed)

Receipt-based (two-way
communication)

Coercion resistance not
supported

Two virtual spaces

Communications signed and
encrypted

Receipt-free system

Unique identification of ballot

Coercion resistance not
supported

Strong encryption of ballot

Three virtual spaces

Signed transactions

Receipt-free system

Use of random UUID (RN) for
personal verification

Coercion resistance not
supported

verifiability

Individual verifiability
supported

Universal verifiability not
supported

Individual verifiability
supported

Universal verifiability
supported

Individual verifiability
supported

Universal verifiability supported

recoverability

Not addressed explicitly

Inaccurate votes can be
detected by voter; final
tally can be corrected at
the end of the election if
required

Not addressed explicitly

Pre-emptive approach to
cheating and failure through
replication of servers, quorum
policy and distribution of state

Not addressed explicitly

Can be achieved by a
combination of Voter and
Counter records and tallies; this
might compromise privacy

Pre-emptive approach to deter
and minimise effect of
malicious behaviour, through
distribution of state and tasks

Fig. 10 System level comparison

Robustness at System level

 Sensus REVS SOREV

resilience

Existence of anonymous
channel assumed but not
implemented

Server can act as single
point of failure

Achieved through distributed
loosely-coupled servers

Replication of servers to ensure
resilience to DOS attacks

Alternative servers/paths can be
used

Anonymous channel supported
through onion routing

Dynamic route generation

One-way communication in the
last two virtual spaces

System monitoring

The most vulnerable part is the
Validator; can be subject to DOS
attacks (known to voters)

Dynamic replacement of faulty
servers

scalability

Fixed set of servers

System can however be
augmented by additional
servers

Scope for expansion in the
replication of servers

Supported by parallel selection
and operation of servers

Many elections can be run at the
same time

Supported by JIT dynamic
configuration of servers and
routing path

Facilitated by Web Services

Distribution of state and tasks

Support for multiple simultaneous
elections

flexibility

Static configuration

Tightly coupled systems

Flexibility of ballot
format

Unix-based system

Static configuration involving a
number of servers

Flexible replication of servers

RMI over SSL communication
(need for Java Virtual Machine)

Dynamic Web Services
composition

Dynamic route generation

Flexible configuration

Loosely coupled systems

Dynamic reallocation of servers
after failure or cheating

SOAP-based communication

cost

Three types of servers

Stateful servers

Minimal number of
messages

Efficient use of resources
and processing

Five types of servers

Replication of servers

Quorum policy

Stateful client and servers
(resumability)

Heavy communication between
servers at all levels

Use of multiple servers
performing the same task, some
of which many may be idle

Heavy asymmetric encryption

Six types of servers

Dynamic allocation and
processing of routing path

Multiple e-roll servers

Two-way messages in the first
virtual space (validation)

One-way messages in the
transmission and recording virtual
spaces

Use of open source technology

Heavy asymmetric encryption

	anane1
	evote-anane-final (1)

