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ABSTRACT  

Of all the requirements for e-voting systems robustness 
is the one that has received the least attention. This 
paper is concerned with addressing this issue.  It is 
argued that a two-level consideration of robustness can 
facilitate the design of e-voting systems and enhance 
their resilience. An approach is proposed which 
requires, as a first step, an explicit awareness of 
robustness at protocol level and robustness at system 
level. The second step involves the identification of 
appropriate technologies and their integration into an 
architecture where the two forms of robustness are 
addressed. The approach is illustrated by the design and 
implementation of a service-oriented architecture for 
robust e-voting (SOREV), based on the FOO92 
protocol. The service-oriented architecture has provided 
the framework for the integration of selected 
technologies such as blind signatures, encryption and 
onion routing. In addition to the Just-in-time (JIT) 
composition of the e-voting system, it supports the 
distribution of tasks and state. The system conforms to 
most e-voting requirements. 

 Keywords: Robustness, Web services composition, 
JIT approach, blind signatures, FOO92 protocol, onion 
routing.  

1 Introduction  
The viability of e-voting systems is often assessed by 
their conformance to agreed and stated requirements. 
This fundamental constraint is driving the investigation 
into requirements and verification [1]. The present 
consensus on the identification of desirable e-voting 
properties has settled on four main criteria: integrity, 
privacy, verifiability and robustness.  

In the fulfilment of these requirements two distinct 
levels of concern are identified, a protocol level and a 
system level. The protocol level is concerned with the 
deployment and the behaviour of the protocol as an 
application for conducting elections; the system level 
relates to the underlying network, the implementation of 
the servers and their interaction. This dichotomy is a 
reminder that remote voting systems are essentially 
applications supported by distributed systems. 

Integrity and verifiability are issues that relate primarily 
to the protocol level. Privacy, on the other hand, is 
meaningful at protocol level but its full satisfaction, 
especially anonymity, may require an awareness of the 
characteristics of the underlying distributed system. 

Although secrecy can be achieved by cryptographic and 
therefore mathematical methods only, anonymity 
requires the marshalling of distributed technologies 
such as mix nets [2, 3], onion routing [4] or Web 
servers [5]. Anonymity is an issue that straddles 
different levels, a characteristic that it shares with the 
management of denial of service (DOS).  

An e-voting system is expected to conform, at protocol 
level to at least the integrity and the privacy 
requirements. It also assumes at distributed system level 
resilience when subjected to malicious attacks or when 
faults occur. It is evident that the soundness of the 
underlying distributed system determines the utility of 
an e-voting system. This therefore qualifies robustness 
as a property that spans both levels of concerns. 
Robustness may be defined generically as the ability of 
a system to deal effectively with unexpected input or 
behaviour, large volumes of data and to continue 
providing a service in conformance with stated 
requirements. In published research on e-voting 
systems, robustness is often confined to the protocol 
level, whilst issues that pertain to distributed system 
level are seldom explored.  

This paper is concerned with the presentation of an 
approach that promotes a more focused view of 
robustness in e-voting systems, and a selective 
application of distributed systems technologies in the 
development of robust systems. It is argued that this 
two-pronged strategy can successfully address 
robustness issues at protocol level and at system level. 

The contribution of this paper lies in the explicit 
differentiation between two forms of robustness and the 
integration of various technologies into an appropriate 
architecture to address this issue. The approach is 
illustrated by the design and implementation of a 
service-oriented architecture for robust e-voting 
(SOREV), based on the FOO92 protocol [6]. It is 
supported by the dynamic composition of Web services, 
the distribution of state and tasks, and by onion routing.  

The remainder of the paper is organised as follows. 
Section 2 identifies the main requirements of e-voting 
systems. Section 3 presents a particular perspective on 
robustness in e-voting systems. Section 4 gives an 
outline of the behaviour of the proposed system and 
Section 5 details the implementation of the 
corresponding service-oriented architecture. Section 6 
offers an evaluation of the approach and of the system, 
in context with other e-voting systems. Section 7 puts 



 

 

forward some pointers for further work, and Section 8 
concludes the paper.  

2 e-Voting  
With the increasing interest in the deployment of e-
voting systems and the potentially significant impact 
they can have on the political, economic and social 
domains, conformance to specific requirements has 
become a critical test. At the core of voting systems lies 
the need for compliance with the democratic process by 
ensuring its viability through four stages performed by 
specific election authorities: 

• The registration of eligible voters (Administrator).  

• The validation of potential voters (Validator).  

• The collection of the votes (Collector).  

• The tallying or counting of the votes (Counter).  

The voting process is conducted within specific 
constraints. A secure electronic voting scheme must 
meet the following theoretical requirements [7]: 
• Only eligible voters are able to vote. 
• No voter is permitted to vote more than once. 
• No one should be able to determine the value of 

anyone else’s vote. 
• No one can duplicate a vote. 
• No one can alter another person’s vote without 

being detected. 
• Voters can verify that their votes have been 

counted. 
 

2.1 Advantages of e-voting  

The exponents of e-voting often put forward a number 
of reasons for promoting its wider deployment. They 
contend that it has a number of benefits: 

Participation: electronic voting has the potential of 
appealing to a wider section of the population. An 
Internet-based system will enhance convenience and 
flexibility. Voters will be able to cast their vote anytime 
and anywhere.  

Efficiency and accuracy: e-voting promises to improve 
the accuracy of the voting process at various stages. 
Computerisation and network technology, it is argued, 
will improve efficiency in processing votes and will 
lead to quicker results. 

Transparency: an e-voting system will lead to greater 
openness to public scrutiny and greater accountability. 
The scrutiny should apply to the source code by experts 
as well as verifiability of votes by voters. This demand 
for openness should not be achieved at the expense of 
security. 

2.2 e-Voting properties 

The formulation of e-voting requirements has led to a 
refinement of criteria and has become an important 
research area in its own right [8, 9]. The most important 
e-voting properties can be grouped as follows:  

• Integrity: this is concerned with the property that 
the different agencies that process votes do not 
alter them or corrupt them, and intruders do not 
interfere with the voting process. It also refers to 
the ability of eligible voters to vote and to vote 
only once.  More specifically, integrity implies that 
a vote is cast as intended, recorded as cast and 
counted as recorded. Integrity entails honest 
behaviour and collusion resistance.  

• Privacy: this criterion is aimed at ensuring that 
votes are cast anonymously, namely that it is not 
possible to associate a vote with the corresponding 
voter (untraceability), and that the vote is secret. 
Another aspect of privacy concerns the inability of 
voters to demonstrate that they have voted in a 
particular way, and their ability to withstand 
coercive measures (coercion resistance).  

• Verifiability: this refers to the openness of the 
system to formal and practical scrutiny and is 
related to integrity. It should be possible for voters 
to check that their votes were correctly recorded 
(individual verifiability) and that all the votes were 
processed and counted correctly (universal 
verifiability). It is believed that with enhanced 
verifiability voters will have more confidence in 
the conduct of remote elections and in their results. 

• Robustness: this is defined as the resilience of the 
system when cheating behaviour is detected, partial 
component or system malfunction occurs or when 
it is subjected to external malicious attacks. The 
system should operate as expected in abnormal 
conditions or in a hostile environment. 

In e-voting research the focus has been mostly on the 
conformance to integrity, privacy and verifiability. 
Despite its crucial importance robustness is seldom 
addressed explicitly. Either it is implicit or it refers to 
issues that pertain to undifferentiated levels of concern. 
Since most e-voting systems are deployed as distributed 
systems, robustness is bound to involve many facets 
across different levels.  

In the Prêt à voter system, for example, robustness is 
concerned ‘with the resilience in the face of random 
faults, as well as deliberate attempts to disrupt the 
election, such as denial of service’ [10]. It is seen as an 
indication of the ability of the implementation of the 
protocol to deal with unexpected input, faults or 
cheating by an election authority.  

This perspective on robustness is quite broad and lacks 
focus. It covers issues that pertain specifically to the e-
voting application, such as cheating, and those that may 
occur in the underlying distributed system such as faults 
and denial of service. It is evident that there is a 
semantic difference in behaviour between an election 
authority that attempts to cheat and the faulty server 
that implements it.  

 

 



 

 

2.3 e-voting protocols 

In most e-voting systems the design of protocols is 
driven by two major concerns, which identify two main 
virtual spaces: 

1. Ensuring that if the voter is known the vote is not 
known 

2. Ensuring that if the vote is known the voter is not 
known.  

It is this complete dissociation between a vote and the 
voter who cast it, namely anonymity or untraceability, 
which lends credibility to an e-voting system. E-voting 
systems can be classified according to the way they 
implement it. Three main schemes were devised to 
support it:  

• Schemes based on homomorphic encryption reduce 
a ballot to a number and ensure that all the voter 
choices are kept secret [11].  This has the 
advantage that the vote can be performed without 
decrypting any of the ballots. It is however 
computationally expensive. 

• Schemes that generate mixes (mix nets) permute 
different entities to hide the correspondence 
between input and output items, and ensure that an 
item is only processed once [2]. The connection 
between voters and ballots is difficult to establish. 

• Schemes based on blind signatures [6, 12] allow an 
agency to sign a message without knowing its 
contents. Schemes based on blind signatures 
present a number of advantages. They are more 
flexible and can accommodate various ballot 
formats. Moreover, their relatively small 
communication and computational complexity 
makes them suitable for large-scale elections.  

 
3 Robustness  
A distinction between an application and the system 
that serves it is useful for a clear identification of the 
issues related to robustness. This consideration suggests 
an appreciation of robustness at two different levels. It 
promotes an awareness of issues at protocol level such 
as integrity and privacy and those that pertain to the 
distributed system, such as resilience and scalability. It 
is also helpful in identifying more refined requirements 
and promoting appropriate configurations. The generic 
definition of robustness can be refined to capture the 
distinctive features of robustness at the two levels:  

Robustness at protocol level is defined as the 
capability of the application to ensure that the privacy, 
integrity and verifiability of the e-voting process are 
preserved, when faced with incorrect procedures or 
malicious behaviour and attacks. Robustness at this 
level is seen as an overarching concept that helps 
evaluate the ability of a system to conform to e-voting 
requirements. All agencies contribute to the voting 
process to satisfy stated requirements; measures are in 
place to discourage and hinder cheating behaviour and 

no agency or group of agencies can attempt to thwart 
the democratic process without being detected. 

An additional component of robustness at protocol level 
is recoverability. It is defined as the capability of the e-
voting application to recover from malfunctions by 
restoring the state of the voting process, and by 
resuming successfully its operations [13]. 

 

Robustness at system level is defined as the capability 
of the distributed system to support the functions of the 
e-voting application when faced with component failure 
or abnormal behaviour. The system should deal 
effectively with unexpected input or volume of data, 
and detect and recover from malicious attacks. It should 
continue to provide a service in conformance with 
stated requirements. Robustness at this level is a 
prerequisite for robustness at protocol level. For 
example, insecure servers or channels cannot ensure the 
privacy of the voter or the secrecy of the vote.  
Although robustness of e-voting systems at system level 
can be expressed in terms of many properties [14], 
resilience, scalability, flexibility and cost were deemed 
particularly relevant: 
Resilience: the capability of a system to mitigate the 
impact of abnormal conditions and failures on its 
behaviour. 
Scalability: the capability of a system to accommodate 
growth and to deal effectively and adaptively with 
fluctuations in load. 
Flexibility: capability of a system to operate in different 
platforms and environments and to support 
interoperability and various configurations. 
Cost:  an evaluation of the resources used in the 
system, the mode of interaction of the components and 
the implied processing involved in its operation. 
Implementing a robust system may be expensive 
because of the replication of resources and heavy 
communications required. 
 

 3.1 Robustness in e-voting systems  

The range of robustness issues that arise in e-voting can 
be partially uncovered by reviewing the properties of 
some e-voting systems. Sensus [5] presents the issue of 
robustness under the ‘democracy’ criterion, but 
provides limited support for it.  In Sensus it is assumed 
that communication occurs over anonymous channels. 
The issue of robustness is not considered explicitly, and 
robustness at system level is not addressed. SEAS [15] 
is presented as an improvement to Sensus in preventing 
the Validator from voting on behalf of eligible voters 
who abstain. It implicitly enhances the robustness of the 
e-voting system at protocol level.  

REVS was designed with robustness as a key property 
of the system, and considers robustness at two levels 
[16]. REVS deals with robustness at system level by 
replicating servers, maintaining state information and 
ensuring ‘resumability’ in case of interruption. At 
protocol level, the system is evaluated against the 



 

 

integrity criterion. The provision of many servers which 
contribute to a quorum policy is considered an 
impediment to collusion. REVS makes use of redundant 
information and servers to improve robustness. 

In Prêt à voter, robustness is considered implicitly as 
the ability of the system to cope with, for example, the 
cheating behaviour of the mix servers. This is achieved 
by the removal of a cheating mix server and its 
simulation by a quorum Q of other mix servers [10]. 
Other aspects of robustness are considered as part of the 
practical implementation at system level. There is 
however no explicit distinction between the different 
levels of robustness.  

The design of Civitas [17] is motivated by the need to 
achieve full conformance to e-voting requirements, 
especially coercion resistance. Robustness is addressed 
explicitly and is expressed in terms of trust, namely the 
ability of a legitimate voter to cast a vote without 
coercion and to have the vote cast as intended, recorded 
as cast and counted as cast. The focus is on robustness 
at protocol level; issues that relate to the underlying 
distributed system are identified as limitations for 
further work. Helios [18] does not address robustness 
explicitly at any level, and relies on extensive auditing 
and verification to detect malicious behaviour and 
ensure conformance to integrity. Implicitly the focus is 
at the protocol level.  

This brief review reveals that most of these systems 
address robustness mainly at protocol level, either 
implicitly or explicitly as in Civitas. REVS appears as 
one of the exceptions where robustness is considered at 
two levels without an explicit differentiation.  It can be 
argued however that the design of some of these 
systems may be motivated by transparency 
considerations.   

3.2 Robustness in distributed systems  

The rationale for considering robustness at two levels 
stems from the realisation that the ability of an e-voting 
application to deal with unexpected situations depends 
on the flexibility of the underlining distributed system 
and on the choice of technology. The selection of a 
client-server or P2P architecture, the inclusion of 
stateful or stateless servers, the reliance on Web 
services or distributed object middleware are all 
implementation decisions that affect the robustness of 
the distributed systems, and by implication that of the 
application itself. Client-server architectures may be 
easy to implement but the server may be a single point 
of failure; P2P systems offer more flexibility and 
resilience but critical interactions require a trustworthy 
environment; Web services may be simpler and easier 
to integrate but require verbose and inefficient 
encoding; stateful servers offer more convenience but 
require the active maintenance of a consistent state. 
Most significantly, however, networks and servers can 
be subjected to denial of service (DOS) attacks [19]. 
Typically, these attacks involve either swamping the 
network with garbage messages or overloading a server 

with computationally intensive and useless requests. In 
both cases the aim is to prevent the system from 
performing its role effectively.  

Various methods were proposed for enhancing the 
robustness of a distributed system: distribution of tasks 
and state, replication of resources and servers, provision 
of flexible routes and inclusion of stateless protocols 
and servers.  

4 An e-Voting system  
The proposed approach is illustrated by the design and 
implementation of an electronic voting system. It will 
be used as a vehicle for exploring the issue of 
robustness and in particular the impact of selected 
technologies and architecture on robustness at the two 
levels. The proposed approach is based on two 
premises: 1) a sound implementation of an   e-voting 
application requires the sound implementation of the 
underlying distributed system and 2) a holistic design 
and implementation approach that addresses both levels 
simultaneously offers more resilience and lead to better 
integration.  

The scope of the investigation of robustness will be 
confined to specific issues. At system level, the main 
concern will be denial of service and faulty servers. At 
protocol level, the focus will be on integrity issues such 
as cheating and collusion, and privacy issues such as 
anonymity and secrecy. In the design of the e-voting 
system it is assumed that the registration of voters is 
done before the election, and that voters obtain their 
codes and aliases through out-of-band authentication. It 
is also assumed that the voter’s machine is reliable and 
trustworthy and that votes are cast as intended. In line 
with the rationale that underpins the design of the 
Helios system, coercion resistance is not considered a 
critical issue because of the context and the limited 
scope of the deployment of the system.  

 4.1 FOO92 Protocol  

An implementation of the FOO92 protocol is used as a 
basis for a case study of the impact of engineering 
solutions on the robustness of an e-voting system. 
Thanks to its flexibility, its efficiency and its 
conformance to most e-voting criteria, the FOO92 
protocol has formed the basis for many voting protocols 
and has been the subject of various enhancements. It 
has also a high degree of compatibility with manual 
systems [20]. The FOO92 protocol has the advantage of 
simplicity, offers a clear separation between concerns 
and can accommodate flexible implementations at 
distributed system level. The protocol is based on blind 
signatures [12] and models the voting process as 
follows: 

1.Voter retrieves ballot from Administrator  
2.Voter completes the ballot and blinds it. 
3.Voter constructs a message containing the ballot and 
his identity and encrypts it with the Validator’s public 
key.  
4.Voter sends the message to Validator.  



 

 

5.Validator decrypts the message, validates Voter and 
signs the ballot.  
6.Validator returns the blinded ballot to Voter.  
7.Voter unblinds the ballot and encrypts it with 
Counter’s public key.  
8.Voter forwards the ballot to Counter over an 
anonymous channel, through Collector.  
9.Counter checks for Validator’s signature on the 
ballot, decrypts it and increments the corresponding 
count.  
The development of the system involves essentially 
mapping the election authorities to specific servers, 
providing support for validation and authentication 
through access to the electoral roll, setting up 
anonymous channels and recording votes. The design of 
the system should also cater for the requirements of 
robustness at two levels. 

4.2 The voting process  

The system architecture that supports the voting process 
is shown in Fig. 1. It incorporates all the servers and 
their modes of interaction.  

The processing of the vote information identifies three 
distinct virtual spaces in the diagram: validation where 
the voter is known but the vote is not known; 
transmission of the vote where the voter is not known 
and the vote is not known, and recording of the vote 
where the voter is not known and the vote is known.  

Validation: the voter is known and the vote is not 
known.  This phase is concerned with authentication of 
the voter by the Administrator and the retrieval of 
election details and identification information (Step 1, 
2). A vote with a personal random number (RN) and 
election details is blinded and sent to the Validator 
(Step 3). With blind signatures the Validator signs the 
message sent by the Voter without being able to read its 
content [17]. The validation of the voter through its 
alias VT1 involves checking its credentials against the 
electoral roll (e-roll nodes) (Steps 4, 5) and determining 
whether they have already been validated (Steps 6, 7). 
If the voter is eligible the blinded vote is signed and 
returned to the voter by the Validator (Step 8). The 
Validator requires an acknowledgment from the Voter 
in order to prevent multiple requests for validation from 
the same voter.  

Transmission: the voter is not known and the vote is 
not known. On successful validation, the voter 
unblinds the message signed by the Validator and 
encrypts it with the public key of the Counter (V= 

{{choice, electionId, RN}val-priv}count-pub). It then transmits 
the message to the Counter via a chain of routing nodes 
(Steps 9, 10, 11, 12) and the Collector (V, {{col}N3-pub, 

N3}N2-pub, N2}N1-pub). The chain acts as an anonymous 
channel. On receipt of the message, the Collector 
extracts the packaged ballot, checks its validity and 
forwards it to the Counter (Step 13).  

Recording: the voter is not known and the vote is 
known.  The Counter checks the ballot for validation by 
the Validator, extracts the vote and adds it to the 

appropriate tally. The vote is also recorded in the 
database against the personal random number of the 
Voter.  

4.3 Secure and anonymous processing  

The notation used in Fig. 1 includes the application of 
asymmetric encryption to the messages. In the exchange 
of these messages, secure and anonymous transmission 
is achieved by:  

- The generation of a random number by the voter as a 
unique identification token, RN. This number facilitates 
individual verifiability and prevents multiple votes by 
one voter.  

 - The anonymity and secrecy of the vote is achieved in 
two ways, by blinding signatures and by asymmetric 
encryption. The is illustrated by the message sent to the 
Validator by the Voter ({{choice, electionId, RN}blinded, 

VT1, electionId, voter-pub}val-pub).  

 - The asymmetric encryption where messages are 
encrypted for secrecy using the public key of a server 
(Counter), or signed by a server (Validator) with its 
private key ({{{choice, electionId, RN}blinded}val-priv}voter-

pub).  

 - The onion-routing itinerary is generated randomly 
and transmitted to the voter with the election details. It 
is designed to support anonymous communication. In 
the proposed system a Tor-like circuit [21, 22] is built 
by the Administrator randomly from a set of available 
nodes ({{{col}N3-pub, N3}N2-pub, N2}N1-pub) and passed to the 
Voter.   Ni contains the address of node Ni and its public 
key, Ni-pub. Although three nodes are used in this 
example the length of the circuit is variable. The 
innermost node of the circuit is the Collector (Col) and it 
is encrypted with the public key of N3, the node that 
precedes it ({col}N3-pub). At the next layer the encrypted 
innermost nodes are encrypted with the public key of 
N2, which precedes N3 ({{col}N3-pub, N3}N2-pub). The first 
node on the path, N1, corresponds to the outer layer; all 
the inner nodes, which are its successors are encrypted 
with its public key ({{{col}N3-pub, N3}N2-pub, N2}N1-pub). 
During transmission only the successor node is known 
to its predecessor. Hence, only routing node N1 on the 
outer layer is known to the Voter. The Voter constructs 
a message which includes the vote and the path, and 
encrypts it with the public key of N1, ({V, {{{col}N3-pub, 

N3}N2-pub, N2}N1-pub }N1-pub). When N1 receives the 
message it decrypts it, firstly to access the vote V, and 
secondly to retrieve the encrypted route to determine 
the next node in the network ({{{col}N3-pub, N3}N2-pub}, 

N2). N1 then constructs a message with the vote V and 
the rest of the route, and encrypts it with the public of 
its successor, N2 ({V,{{col}N3-pub, N3}N2-pub}N2-pub). The 
procedure of encryption and decryption is repeated at 
each node until the message reaches the Collector (col). 

 - Each server contributes to the monitoring of the 
voting process by logging and signing explicitly its 
transactions and authenticating messages where 



 

 

appropriate. Unauthenticated messages are discarded in 
order to minimise the overload on the network and on 
the Counter.  

 5 A service-oriented architecture 
The selection of a service-oriented architecture was a 
key decision in the fulfilment of the e-voting 

Fig. 1  e-Voting process and architecture  



 

 

requirements. One attractive feature of this application 
is the ability to create aggregate services through 
dynamic composition.  

5.1 Web services 

As ‘self-contained and self-describing applications’ 
Web services offer a number of advantages. Their 
adherence to well-established standards for Web service 
description (WSDL), serialisation of messages (SOAP) 
and Web service indexation (UDDI) underpin their 
ubiquity and their interoperability. They enable 
heterogeneous applications to communicate and to be 
integrated through composition into modular Web 
services. In addition, they can be deployed over 
standard Internet technologies and take advantage of the 
Web infrastructure and protocols [23]. 

Although the partial statelessness of SOAP/HTTP, as 
the underlying protocol, is often seen as a drawback in 
many applications,  the intermittent connections of Web 
services and the regular flushing of state that they 
initiate make them very suitable for an e-voting 
application. The absence of state makes them more 
resilient to failure. 

5.2 Architecture  

The service-oriented architecture which implements the 
FOO92 protocol identifies the different stages of the 
voting process and specifies the roles of the agencies 
and the entities in the e-voting system. It also represents 
an instance of the composition of the system from key 
services. These include:  

• Administrator Service: provides a user interface for 
specifying the election; coordinates the agencies 
used in an election; serves the Voter Client to the 
voter and publishes the results when an election 
ends.  

• Electoral roll nodes: they hold voter information. 
The alias of each voter is mapped to one of the 
three nodes by a hash function. 

• Validator Service: receives the blinded ballot from 
the Voter Client, using the alias provided by the 
voter; checks whether the voter exists and whether 
he or she has not been validated.  

• Collector Service: receives the validated ballot 
from the Voter Client; signs and forwards the ballot 
to the Counter.  

• Counter Service: receives the ballot from the 
Collector; checks the collector signature; extracts 
and records the personal random number (RN) and 
the vote; adds the vote to the tally.  

• Routing Node: receives a ballot either directly from 
a Voter Client or via a routing node; decrypts the 
routing path and determines the following node in 
the path.  

• Voter Client: an applet used for casting a vote.  

The Administrator service 

The Administrator is the most important service in the 
system. It is the trusted election authority that initiates 
and coordinates elections. Conceptually it includes 
seven key components (Fig. 2):  

• Administrator User Interface: the administrator 
provides a web-based User Interface (UI) for the 
Election Official to view the status of agencies, 
specify elections, view the agencies in use by an 
election, monitor the election and view the results.  

• Voter Client Access Service: this component 
provides an interface for the voter client to interact 
with the Administrator service and obtain the list of 
the candidates and of the agencies for validating 
and submitting the completed ballot.  

• Public User Interface: the voter UI provides a 
simple Web application to access all the public 
functions of the system. This includes access to the 
voter client applet, checking if their vote has been 
recorded and how it was recorded, and viewing the 
results of an election.  

• Check voter status service: this provides an 
interface for the Validator service to check if a 
voter exists, if the voter has voted or to mark the 
voter as voted if applicable.  

• Agency Monitoring: this monitors the status of the 
agencies in the system. If an agency is in use for an 
election and becomes unavailable this component 
selects another suitable one and allocates it to the 
election (Fig. 3).  

• Election coordination: this monitors the list of 
elections in the system and starts and ends them as 
appropriate.  

• Persistence Layer: the persistence layer contains a 
set of entities which represent the database model. 
Details of elections, election results, electoral rolls, 
log messages and agencies used are stored in the 
database. 

5.3 Web Service generation and composition 

 

Web services are implemented within the JAX-WS 
framework which generates a Web service stub for a 
service and publishes its WSDL file. This WSDL file is 
used by applications that consume the Web service to 
create clients. WSDL files are created for all the 
services and for different tasks. 

The composition process is controlled by the 
Administrator. At the start of the election the 
Administrator selects a Validator, a Collector and a 
Counter at random from the agencies that are online and 
are not used by another election. Once selected, these 
agencies are notified and given the election id and the 
details of the relevant nodes in the system. For example, 
once the Administrator has built the network of e-roll 
nodes, it will inform the Validator of the location of the 
electoral roll nodes and their public keys: 



 

 

 

<dhtUpdate> 

  <agency id="0" pubKey="1ed$f43fv3s"> 

     http://eroll5.vote.council.gov.uk</agency> 

  <agency id="1" pubKey="3d34v3shbdf">     

http://eroll8.vote.council.gov.uk</agency> 

  <agency id="2" pubKey="03DX3tfxzy6"> 

     http://eroll4.vote.council.gov.uk</agency> 

  <agency id="3" pubKey="f36hbtgb88r"> 

     http://eroll0.vote.council.gov.uk</agency> 

</dhtUpdate> 

 

Fig. 4 presents an outline of the methods that contribute 
to the composition process. The Collector and the 
Counter are given the details of the public key of the 
Validator so they can check that the ballot validation 
signature is correct. The process for composing the 
electoral roll agencies is similar, except that the 
administrator will attempt to compose the electoral roll 
agencies as requested by the election official.  
A key feature of the system is its Just-in-time (JIT) 
configurability. The JIT strategy is implemented by the 
dynamic composition of the servers and by the dynamic 
provision of routing paths. 
 

5.4 Cryptography  

The Secure Socket Layer (SSL) was deemed unsuitable 
for securing communication as it only provides point to 
point security. Specific cryptography functions had to 
be implemented. These include methods for key 
generation, key storage, encrypting XML elements, 
decrypting XML elements, signing XML elements and 
verifying the signatures added to XML elements.  

A hybrid cryptosystem was used for sending efficiently 
and securely messages between the agencies. Each 
message is encrypted using a freshly generated 
symmetric AES-128 key, which is used to encrypt the 
message content. This plain key is then encrypted using 
the RSA-2048 public key of the recipient and forwarded 
along with the message. When it receives the message 
the recipient decrypts the encrypted symmetric key with 
its private key so that it can decrypt and access the 
content of the message. Public keys are distributed to 
agencies when they are setup as X.509 certificates 
stored in the key store. A version of an encrypted XML 
message is shown below:  

<encrypted-message>  

     <sym-key> 

           esf234tr4g4t23fgg5y6 

     </sym-key>  

     <encrypted-content> 

          f4wrt3rt5egbdbdfbvt5Y2r3vevsf435gd  

     </encrypted-content>  

 </encrypted-message> 

 

 

 

5.5 Implementation issues 

Java was chosen as the programming language for the 
implementation of the system because of its suitability 
for Web development and the availability of libraries 
for Web services and cryptography. All the application 
logic was written in EJBs with Glass Fish 3.0 as the 
application container. EJBs provide many transparent 
services such as transactions, security, and pooling and 
thread safety.  

Data management was supported by the design and 
implementation of a MySQL relational database. The 
Java Persistence API was used to implement Object 
Relation mapping between Java objects and the 
relational database tables. 

6 Evaluation  
The evaluation is concerned with the conformance of 
SOREV to e-voting requirements, and with the level of 
robustness it provides at protocol level and at system 
level. The role of some architectural elements in 
enhancing robustness is also considered. 

6.1 Robustness at protocol level 

This form of robustness is assessed in terms of integrity, 
privacy, verifiability and recoverability.  

Integrity  

The Administrator is performing a number of critical 
functions under the fundamental assumption that it is 
trusted. Other agencies however need to be monitored 
and their behaviour constrained. Some potential cases 
of misbehaviour are considered below.  



 

 

 

startElection(election) { 

  allocateElectoralRollAgencies(election); 

 populateElectoralRollAgencies(election); 

 allocateAgency("validator", election); 

 allocateAgency("counter", election); 

 allocateAgency("collector", election); 

}   

//Allocate an agency to an election e.g. validator, collector, counter. 

allocateAgency(agencyType, election, electoralRollNodeId = 0) { 

  //Randomly select  one of the available agencies. 

 agencyToAllocate = getRandomAgencyOfType(agencyType); 

 //Inform agency it has been selected, distribute addresses and keys to agencies  

 initialiseAgency(agencyToAllocate, election, electoralRollNodeId); 

 recordAllocation(agency, election); 

} 

allocateElectoralRollAgencies(election) { 

                numElectoralRollAgenciesRequired = election.getPrefferedNumberOfElectoralAgencies(); 

                while (numElectoralRollAgenciesRequired > 0) { 

                  //select and initialise the node 

                  allocateNode("eroll", election, electoralRollNodeId);   

                  numErollAgenciesRequired--; 

                  electoralRollNodeId++;  }  

} 

populateElectoralRollNodes(election) { 

             for (all voters of election) { 

      //Determine the electoral roll agency to add the voter to. 

                      electoralRollAgency = calculateErollAgencyToUse(voter.voterToken1); 

     //Add the voter to that agency. 

                       ElectoralServiceStub.addVoter(electoralRollAgency, voter.voterToken1);  } 

} 

monitorAgencies() { 

  for (all agencies) { 

  If (checkAgencyAlive && !agencySetToAlive)  { agency.setAlive(true);} 

  else if (checkAgencyAlive && agencySetToAlive) { //do nothing } 

  else if (!checkAgencyAlive && agencySetToAlive) { 

   //this agency has gone down, check if in use. 

   agency.setAlive(false);  

   handleAgencyNotAvailable(agency) } 

   else if (!checkAgencyAlive && !agencySetToAlive) { //do nothing } } 

}  

void endElection(Election election) { 

         notifyNodesThatElectionHasEnded(election); 

 //counter will no longer ballots and returns the results of the election. 
} 

 

Fig. 4 Composition methods 



 

 

It would be difficult for a Validator to vote on behalf of 
a voter who abstained. The use of aliases [24] and the 
distribution of the electoral roll across many nodes are 
designed to prevent the Validator from identifying the 
voters who abstain. Although it can always create a new 
identifier, the alias will not be cleared by the 
Administrator and will therefore lead to discrepancies 
in the tally of the votes. The provision of multiple 
Validators would reinforce this security constraint. As 
for the Collector, without collusion, it cannot forge or 
modify votes since they must be signed by the 
Validator. It can however drop votes but this can be 
detected through verifiability and tallying. A Counter 
may be able to add spurious votes but this can also be 
detected since the Administrator is keeping track of the 
total number of validated voters, which should be 
greater than or equal to the tally of the votes produced 
by the Counter. Modification of votes by the Counter is 
hindered by verification by voters. The recording of the 
random number (RN) in the Counter allows for votes to 
be computed accurately and to prevent multiple votes 
by voters. With the storage of the personal random 
number with its corresponding vote the replaying of 
messages is made idempotent and voters are not able to 
cast two votes. 

Besides potential individual misbehaviour, collusion 
between agencies is another cause for concern. The 
transient configurations that the JIT approach generates 
can be an obstacle to the collusion between servers. The 
use of onion routing ensures that votes arrive to the 
Collector from different routes.   Although it is possible 
for a routing node to replace a vote by another one, this 
can only be done with the collusion of the Validator. 
This will eventually be detected by voters. Votes are 
only accepted by the Counter if they are sent and signed 

by the Collector. The injection of spurious votes by 
entities outside the e-voting system is made difficult by 
the dynamic generation of the network and therefore its 
lack of predictability. Whilst existing measures can 
deter illegal practices, they are ineffective against 
wholesale collusion between the election authorities.  

The integrity of the system is also enhanced by the logs 
of server transactions and the monitoring of server 
activity by the Administrator and the Voter (Fig. 5). 
The combination of server monitoring and voter 
verification can help detect malicious behaviour by 
servers and voters. It is difficult for a server to drop, 
add or modify votes without being detected. Thanks to 
the Web Services framework it is possible to replace a 
server if it is faulty or is dishonest.  All these design 
features contribute to robustness. 

Privacy  

The system provides support for the anonymity of the 
voters and the secrecy of the vote through a 
combination of asymmetric encryption and blinding 
schemes. Privacy requirements and anonymity in 
particular, are also supported by architectural features 
such as onion routing and dynamic routing allocation. 
The onion routing approach was considered more 
suitable than mix nets [3] thanks to its impact at the two 
levels. Mix nets are concerned mainly with 
untraceability and operate at protocol level.  

An additional feature of this implementation of onion 
routing is that the public keys of the routing nodes do 
not have to be published, since the chain is created by 
the Administrator. A node knows only the address and 
the public key of its successor. Privacy is also ensured 
by enforcing one-way communications, especially in 
the last two virtual spaces of the voting process. Privacy 

Fig. 5  Server logs 



 

 

is further supported by the generation of a random 
number by the voter and its inclusion with the ballot 
rather than the reliance on the transmission of a receipt 
by the Counter.  

Coercion resistance  

There is a potential conflict between coercion-resistance 
and individual verifiability in e-voting schemes. The 
ability of voters to check that their vote was recorded 
accurately may make them vulnerable to coercion. It 
has been argued that in some voting contexts coercion 
resistance may not be a fundamental requirement [18]. 
This is relevant to student elections and online specialist 
communities such as ACM and IEEE. Helios is a 
system where the viability of a system does not depend 
on coercion resistance; the focus is instead on 
verifiability. This characteristic is common to many 
implementations of the FOO92 protocol such as Sensus 
[5], SEAS [15] and REVS [16].  

The focus of the proposed system was deliberately on 
the processing of votes and their recording in a robust 
manner. It is therefore assumed that the vote is cast as 
intended without support for coercion resistance. It is 
worth mentioning however that in some situations 
coercion-resistance may be an important aspect of 
robustness at protocol level. Civitas implements 
coercion resistance with the use of fake credentials [17].  
Recent elections have confirmed the critical importance 
of interfacing, one aspect of e-voting to which some 
researchers had already drawn attention [25].  

 

Verifiability  

Individual verifiability and universal verifiability are 
supported by the accurate recording of the votes and 
their subsequent publishing without compromising 
privacy. While individual verifiability can be performed 
immediately after a vote is cast, for the sake of fairness 

universal verifiability is only possible after the end of 
the election. Verifiability can be conducted by the 
stakeholders in general and the voter in particular by 
using their personal random number (Fig. 6).  

Through verifiability and auditing voters can contribute 
significantly to the robustness of the system at protocol 
level. This approach is strongly advocated in Helios. 
Should voters challenge the accuracy of their recorded 
vote they would have to produce the ballot and the 
random number signed by the Validator. 

 

Recoverability 

The provision for recoverability and its implementation 
may require the maintenance of state in different servers 
and at different stages of the voting process.  This 
requirement may not conform to the proposed approach, 
which is characterised by minimal statefulness in order 
to safeguard privacy.  

In SOREV recoverability is not supported explicitly. 
Instead a pre-emptive approach was adopted which 
preserves the integrity and the privacy of the system. 
Regular and reliable backup is performed on servers 
that record votes. The state that DHT-based servers 
hold can be reconstructed without loss of information 
since it is read-only. Recoverability is facilitated by the 
dynamic allocation of servers if failures occur.  

Recoverability is made possible by the facility that 
voters have, through verifiability, to check the status of 
their votes. They can resend their ballot if it has not 
been recorded.  

6.2 Robustness at system level 

Robustness at system level will be considered in terms 
of resilience, scalability, flexibility and cost. More 
emphasis will be put on resilience as it is the most 
critical component of robustness. 

Resilience  

Voter intervention in an e-voting system may be a 
source of insecurity. Voters are not trusted because of 
their autonomy and the arbitrary and unsupervised 
nature of their intervention. The impact of malicious 
attacks is mitigated by the dynamic generation of the 
routing path, the absence of obvious patterns in the 
composition of the system and the verification process, 
as well as the use aliases. Furthermore, only legitimate 
voters are given a path to the servers and each voter is 
given access to the first routing node only.  

Fig. 6  Individual verifiability 



 

 

Denial-of-service attacks can take different forms and 
many countermeasures were proposed to deal with 
these attacks at different levels. In some systems filters 
on the network are used for detecting and blocking 
DOS attacks [26]. At operating system (OS) level 
protocols can be configured to deter DOS attacks. DOS 
attacks rely on the knowledge of the architecture of the 
networks and of the servers. The resilience of the 
proposed system is underpinned by this assumption. For 
its defence against DOS attacks the proposed system 
relies primarily on the just-in-time (JIT) composition, 
its flexible configuration with onion routing, as well as 
the limited knowledge of the network structure and of 
the servers by the different election authorities and by 
the Voter. This can be an impediment to mapping out 
the network structure and mounting concerted DOS 
attacks. This task is supported by the active monitoring 
of the servers. The ability to replace defective or rogues 
servers by new ones can also limit the impact of the 
DOS attacks (Fig. 7).  

The dynamic composition of the servers and the 
provision of dynamic routes can be considered as 
‘temporal distribution’ when opposed to the ‘spatial 
distribution’ promoted by REVS and Prêt à voter. 
Different routes can be active at the same time. The JIT 
approach enhances reliability as only working and 
available servers are selected; in addition, the 
monitoring process helps with the detection of faulty 
servers and their replacement if required. Furthermore, 
at a lower level, the chain of routing nodes can be 
constructed adaptively in such a way as to minimise 
network congestion and to overcome network 
partitions.  

In the proposed system, no state is maintained on the 
intermediate servers, such as the Validator, routing 
nodes and the Collector. The distributed electoral rolls 
(e-rolls) hold the list of aliases of voters, which is read-
only and can be restored without loss of information. 
The Administrator and the Counter maintain however 
the state that underpins the functionality and the 
viability of the system. Strong back-up is required in the 
case of these stateful servers.  

 

Scalability and flexibility 

Scalability is primarily catered for by the dynamic 
configuration of the system.  Large volumes of traffic 
can be managed by redirecting messages adaptively 
through appropriate paths to servers in order to 
distribute load, avoid congestion and increase 
throughput. This function is more effective when 
combined with server monitoring. 

Enhancement to the distributed system can be achieved 
by the dynamic inclusion of new servers. For example a 
number of validators, collectors and counters can be 
integrated dynamically to improve processing or to 
replace defective servers. Scalability is also implicit in 
the distribution of state across a set of peers.  

Flexibility is manifest at different stages of the lifetime 
of the system. At initiation, the dynamic composition of 
the system allows for various configurations to be 
deployed. In the processing of the votes, the ability to 
dynamically generate the routing path and the selection 
of servers to suit environmental conditions is another 
facet of the flexibility of the system.  This also extends 
to recovery from failure. 

The architectural and technological features that sustain 
the resilience of the system are also key factors in the 
support for scalability and flexibility. This follows from 
the adoption of Web services as a versatile technology. 
With their affinity for interoperability they combine 
seamlessly client-server and P2P models, and guide the 
configuration of the loosely-coupled system.  

 

Cost 

The expectation of an acceptable level of resilience and 
the provision for scalability and flexibility in e-voting 
systems depend on the resources invested in the system 
and on their cost. The performance of the system can be 
affected, for example, by the large number of servers 
that must be maintained and by the creation and 
distribution of public keys. Some systems opt for a 
minimal set of servers [15], while others attempt to 

Fig. 7  Server availability 



 

 

satisfy e-voting requirements through multiple and 
redundant servers [16, 10]. In some cases the robustness 
of a system depends on the replication of mix nets and 
on the use of a quorum policy [27], which incurs yet 
higher performance costs. 

In SOREV the overheads are mainly associated with the 
availability of multiple servers and the processing of the 
routing path. The ‘validation virtual space’ is the 
context of intensive two-way inter-server 
communications, while the ‘transmission space’ is 
marked by heavy encryption and decryption. 

 

6.3 Architectural impact 

This section offers a brief assessment of the impact of 
some architectural features on robustness at protocol 
level and at system level.  

Virtual spaces 

Although most e-voting systems operate implicitly 
within two virtual spaces only, three distinct phases are 
identified in this system: validation, transmission and 
recording. While transmission and recording are 
relatively secure, validation involves many servers and 
two-way communications.  The level of activity and the 
patterns of behaviour it supports may expose the servers 
to malicious attacks. The distribution of state and tasks 
and the random selection of the servers form a 
significant part of the measures against potential 
attacks.  

Clear identification of roles of the servers and active 
monitoring of server behaviour are features that help 
pre-empt single points of failure and deter collusion. 
The use of aliases and the dynamic generation of the 
routing path contribute to voter privacy and the security 
of the distributed system. 

A service-oriented architecture 

The adoption of Web services allows for a considerable 
overlap between resilience, scalability and flexibility. 
This is also enhanced by the stateless nature of the 
combination of the HTTP and SOAP protocols and their 
support for ephemeral state information. One significant 
feature against denial of service attacks is the limited 
awareness that the servers have of each other. 
Additionally, one-way messages can hinder the 
identification of the source of a message through traffic 
analysis.   

As composition is initiated by the Administrator and 
involves a number of trusted Web services that possess 
security capabilities and are subject to security 
constraints, it can be stated that the composition process 
is inherently security conscious [28]. Moreover, the 
resilience of the system is enhanced by the loosely-
coupled configuration of Web services. 

 

Architectural components 
The merits of the architectural and technological 
features of the system have been outlined in the 

previous sections. A more focused assessment of their 
impact on robustness at the levels is given in Fig. 8. 
The elements of interest include the service-oriented 
architecture, JIT composition, e-roll nodes, onion 
routing and one-way communication. The table 
identifies the core components of robustness that were 
affected. At protocol level it is the integrity and privacy, 
whereas at system level it is mainly resilience and 
scalability and flexibility. Integrity and privacy are both 
supported by strong encryption. 

 

6.4 Comparative evaluation 

A comparative evaluation with other, albeit older, 
implementations of the FOO92 protocol will shed some 
light on the different forms of robustness and its 
distinctive features. Unlike more recent 
implementations of e-voting schemes which are mainly 
concerned with protocol level, systems such as Sensus 
and REVS have the merit of presenting concrete 
implementations that implicitly or explicitly address 
robustness at system level as well. 

At protocol level the comparative evaluation (Fig. 9) 
indicates that no system satisfies fully the criterion of 
recoverability. In many respects Sensus is weaker than 
REVS and SOREV.  In addition to the lack of universal 
verifiability its support for integrity is restricted and 
anonymity is not guaranteed. REVS and SOREV 
present similar capabilities but differ in the way they 
implement integrity. REVS relies mainly on an explicit 
quorum policy while SOREV combine aliases, 
distributed state, intermediate servers and dynamic 
routing to achieve integrity. 

At system level (Fig.10) both REVS and SOREV have 
benefited from the experience of Sensus and satisfy 
most of the e-voting requirements; they display a 
number of advanced features. Sensus was however 
designed with minimal resources and with multi-
function servers; as a result its overheads are lower.  

Although REVS and SOREV are close in many ways, 
the fundamental difference between them lies in the 
way they deal with resilience. REVS opts for the 
redundant replication of servers with alternative routing 
to support a quorum policy. Moreover the need to 
facilitate ‘resumability’ requires the maintenance of 
state across the whole system. SOREV, on the other 
hand, favours the dynamic allocation and configuration 
of servers and the dynamic route generation. To some 
extent the ‘spatial distribution’ of resources in REVS is 
equivalent to their ‘temporal distribution’ in SOREV. 
This difference has implications for scalability, 
flexibility and cost. Although both provide equivalent 
support for scalability SOREV offers more flexibility at 
system level than REVS and makes full use of its 
resources, a feature that helps minimise cost.  

In REVS the cost is mainly due to the overheads of the 
quorum policy; in SOREV it is the route generation that 



 

 

requires heavy processing. It can be concluded from the 
two tables that REVS performs better at protocol level, 
whereas SOREV satisfies better the system level 
criteria.    

This comparison may present Sensus in a relatively 
poor light. The system has the merit of being one the 
first realistic implementations of the FOO92 protocol. It 
served as a model for many e-voting schemes. Some of 
its limitations are mainly due to the restricted number of 
servers. In contrast to previous systems, some recent e-
voting systems such as Civitas, Prêt à voter and Helios 
appear to be more concerned with the protocol level and 
with a stronger form of verification.  Despite their 
concern with integrity and privacy, with the exception 
of Civitas, coercion resistance is still not supported in 
many e-voting systems.  

6.5 Contribution  

The review of e-voting systems has highlighted an 
overwhelming concern with protocol design and 
conformance to e-voting requirements. In most of these 
systems robustness at system level is not dealt with 
explicitly. It is often assumed that techniques for 
addressing robustness can be subsequently grafted onto 
the system.  

The main contribution of this work lies in the explicit 
approach to robustness in e-voting systems. This 
involved firstly, a distinction between two types of 
robustness and secondly, the design of a service-
oriented architecture which integrates appropriate 
technologies in order to address the two forms of 
robustness simultaneously.  

The design of the underlying distributed system was 
guided by a number of concepts [8]:   

• distributed trust concepts, separation of concerns 
and processing to prevent collusion.  

• restriction of access to state information to deter 
cheating. 

• distribution of e-roll state, use of aliases and unique 
identifiers to enhance the privacy of voters. 

• establishment of stateless servers to enhance 
reliability and recovery.  

• dynamic assignment of routes and servers to 
counter  malicious behaviour and facilitate efficient 
system behaviour.  

Although the focus of the work is on robustness the 
proposed architecture provides full support for the e-
voting process and satisfies all the e-voting 
requirements with the exception of coercion resistance. 
The identification of three virtual spaces played a 
significant part in achieving this conformance. 

 

7 Further work  

The approach to the development of e-voting systems 
offers scope for improvement and extension. Areas for 
further are sketched below. 

7.1 Enhancement with BPEL 

The Web Services composition process is ad hoc. A 
more disciplined approach can be supported by 
enabling WS-BPEL to preside over the management of 
Web services. WS-BPEL offers better transaction 
handling and can be used to orchestrate a set of web 
services to perform a specific task. 

WS-BPEL could be used to formalise the description of 
the interactions between the different Web services in 
the system. In addition to starting and ending an 
election, this would facilitate the process of monitoring 
the behaviour of agencies in the system. If a change of 
status was found the exception handlers would be called 
accordingly. 

 

7.2 Server replication 

The Administrator performs many functions and holds 
information critical to the whole process. This 
centralisation can be detrimental to the integrity of the 
system. A more robust and secure approach would 
involve the generation of the codes and aliases by a 
separate election authority followed by their distribution 
to different servers. This would prevent the 
Administrator from, for example, fabricating false 
identities and voting on their behalf or colluding with 
other agencies.  

Similarly, a single Counter is vulnerable to attacks and 
may be a single point of failure. It is possible to 
improve the resilience of the system by specifying 
different Counters through the Collector or a set of 
Collectors. The final tally will be gathered from all the 
Counters. Alternatively two counters can be provided 
that receive similar messages from the Collector. This 
scheme ensures resilience, verification and accuracy 
through mirroring. This will however incur some 
performance overheads.  

 

7.3 Onion routing 

Onion routing has the advantage of promoting 
decentralisation and distribution. This method of 
communication could be generalised to the exchange of 
messages between servers. It can present a more 
effective defence against denial of service attacks and 
collusion, since the routing nodes are arbitrary selected. 
Servers need not be aware of the source of a message as 
long as the signature is valid. The introduction of 
further redundancy into the system may be costly and 
may affect adversely its reliability. 

7.4 Mobility 

Many are advocating the use of mobile devices in e-
voting systems [29]. It is argued that the ability of 
voters to vote from their mobile devices would lead to 
greater flexibility and would encourage greater 



 

 

participation in elections. Although this enhancement 
would meet the mobility requirement, the introduction 
of mobile devices raises a number of issues.  Mobile 
networks are notoriously difficult to manage; the ad hoc 
and intermittent interventions of mobile devices pose 
serious issues of authentication and security.  It is 
however the current limitations of these devices that 
could be the main obstacle to their integration into e-
voting systems [30]. In addition to computational and 
memory constraints battery restrictions can lead to 
discontinuity in processing and loss of votes. 

 

8 Conclusion  
In this paper the implementation of the FOO92 protocol 
was used as a vehicle for presenting a perspective on 
robustness in e-voting systems. It is characterised by a 
distinction between robustness at protocol level and 
robustness at system level, and the identification of 
technologies and their integration into a service-
oriented architecture in order to address the two forms 
of robustness simultaneously. With its emphasis on the 
distribution of state, the decentralisation of tasks, the 
JIT routing configuration, the use of aliases and the 
active monitoring of server activity, the proposed 
approach aims at promoting the design of robust e-
voting systems. This is supported by the 
implementation of the servers as Web Services and their 
dynamic composition. This perspective on robustness 
offers scope for wider decentralisation, scalability and 
flexibility, and invites a more integrated and holistic 
approach to the development of e-voting systems. It 
contributes ultimately to the satisfaction of most e-
voting requirements.  
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Fig. 8 Architectural impact 
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    Fig. 9 Protocol level comparison

Robustness at Protocol level 
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Fig. 10 System level comparison 

 

Robustness at System level 
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