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Abstract: This paper considers a compensation strategy for respiratory-induced
tumour motion for adaptive radiotherapy using a controlled patient support system
(PSS). A model predictive control (MPC) scheme for the PSS to track the tumour
motion is proposed together with two methods for predicting tumour motion,
including a Kalman filter and neural networks. Simulation results using a clinical
data set consisting of 27 traces of respiratory motion show the potential of the
proposed control strategy.

Keywords: Adaptive radiotherapy, Kalman filter, model predictive control, neural
networks, tracking control, tumour motion.

1. INTRODUCTION

Radiotherapy aims to precisely deliver a lethal
dose to tumours while minimizing radiation dose
to the surrounding healthy tissues. Tumour move-
ment is a challenge for achieving this objective.
Respiration induces significant movement of tu-
mours in the vicinity of thoracic and abdomi-
nal structures (Malone et al. 1999, Ross et al.
1990, Seppenwoolde et al. 2002, Suramo et al.
1984). A classical approach to accommodate the
uncertainty of tumour location due to respiration
is to add a relatively large planning target vol-
ume (PTV) margin to the clinical target volume
(CTV) (McKenzie 2000, van Herk et al. 2000, van
Herk 2004). A larger volume is thus irradiated to
ensure adequate dose coverage of the tumour. This
causes increased healthy tissues complications and
the dose that can be delivered to a tumour is thus
limited by the tolerance of the healthy tissue.

Several methods have been developed to increase
tumour localization accuracy during irradiation.
Breath-holding (Hanley et al. 1999, Mah et al.
2000) is a method to minimize the range of res-
piratory tumour motion. Respiratory gating is
proposed to reduce tumour localization errors dur-
ing irradiation by limiting the radiation exposure
to a portion of the breathing cycle (Ohara et
al. 1989, Kubo and Hill 1996). A sophisticated
method is an adaptive radiotherapy scheme using
a real-time tumour tracking strategy to synchro-
nize the radiation beams with the moving tumour.
A dynamic multi-leaf collimator (MLC) approach
is proposed in (Keall et al. 2001, Neicu et al.
2003). In (Schweikard et al. 2000), a robotic arm
is used to move the accelerator that produces the
radiation beam.

In this paper an approach involving a controlled
patient support system (PSS) to automatically
reposition the patient in order to keep the moving



tumour in the path of the radiation beams is con-
sidered. A feasibility study for such an approach
has been reported in (D’Souza et al. 2005). The
PSS-based approach has an advantage in that it
is potentially able to compensate 3D motion of
the tumour, whilst a MLC-based approach is only
able to compensate 2D motion. Furthermore, the
approach only requires basic modification of the
currently available PSS technology and retains the
existing gantry-based treatment machine, which is
a less expensive and more efficient option com-
pared to the robotic-arm-based approach that
needs a new machine configuration.

The current work focuses attention on the control
strategy for the PSS to compensate for respira-
tory tumour motion, which is not considered in
(D’Souza et al. 2005). A control scheme consist-
ing of a model predictive controller (MPC) and
a prediction algorithm to predict future tumour
position based on current tumour position mea-
surements is proposed.

The remainder of the paper is organised as follows:
In Section 2 a model of a clinical PSS is described.
Section 3 presents a proposed control scheme
whilst its verification by simulation is presented
in Section 4. Conclusions are given in Section 5.

2. MODEL OF PATIENT SUPPORT SYSTEM

Simulink and SimMechanics are the software tools
exploited to implement a mechanical model of the
longitudinal, lateral and vertical axes of the PSS
(Spriestersbach et al. 2004). Each SimMechanics
block represents mechanical or electromechanical
parts such as rigid bodies, joints, drivers, sen-
sors, actuators etc. The shape, mass, centres of
gravity and inertia tensors of the rigid bodies
are defined using information from manufacturers.
The rigid bodies are then linked together using
various means, including welds, joints and gears.
Electromechanical blocks of SimMechanics such
as sensors or actuators can be interfaced with
Simulink blocks, so that Simulink blocks are used
to model the electrical components of the PSS.
Actuator inputs represent drive signals for the
motors, which are equivalent to the input voltage
that is applied. The output signals represents the
actual axes displacement in mm.

To validate the developed model, measurements
were obtained using actual RT equipment. Data
acquisition devices comprising a 6024E PCMCIA
card and a signal conditioner SC2345 from Na-
tional Instruments were used. The measurement
device was connected to the output of a pulse-
width modulated (PWM) amplifier to measure
the signals to the motors to drive the PSS along
its axes (the longitudinal axis is considered here).

Signals from potentiometers measuring the posi-
tion of the PSS were simultaneously logged. To
gauge the likely performances, the PSS was loaded
with a range of masses (40, 68 and 94kg) to sim-
ulate the effect of different patient loads. Signals
obtained from motors corresponding to the actual
system, after filtering and resampling, were used
as inputs to the SimMechanics model. The output
(position) of the actual system and output of the
simulation were then compared. It was found that
the model was able to adequately replicate the
behaviour of actual system.

The SimMechanics model was developed for the
purpose of simulation and includes nonlinearities
such as friction and stiction, quantization of mea-
surements, backlash and input saturation. How-
ever, for the purpose of model-based controller
design, nonlinearities are removed resulting in a
simplified linear model, which is considered to be
realistic.

3. PROPOSED CONTROL SCHEME

In this section, the proposed MPC control scheme
designed in order for the PSS to track respiratory
tumour motion is described. The main reason to
choose a MPC control scheme is that it is able to
accommodate the latencies of the controlled plant
and it also provides the possibility to constrain the
response such as restriction in the allowed actua-
tor velocity and acceleration (Maciejowski 2002).
Furthermore, MPC has been widely adopted in
industrial applications. The novelty in the pro-
posal scheme is in the generation of the reference
signal required by MPC. The reference signal is
required to be predicted in advance in order, for
the controller to take advance action, thereby ac-
commodating delays and latencies in the overall
system.

MPC
PSS

Model 
Predictor

Tumour

Position 

Measurement

z(k) T(k) u(k)
y(k)

x(k)

Fig. 1. Schematic of proposed control system

z(k) represents the current tumour position, T̂ (k)
is a vector of predicted tumour positions, y(k) and
u(k) are PSS output and input, respectively, and
x(k) denotes state variable feedback.

3.1 Respiratory motion prediction

Respiratory movement can be either regular or
irregular. Regular breathing is defined by periodic
exhalation (deflation of lung) and inhalation (ex-
pansion of lung) with more time spent in exhale



than inhale. Irregular breathing is illustrated by
either additional states between or within cycles
or changes in frequency and amplitude of the mo-
tion. In addition to the cycle-to-cycle changes data
are corrupted with noise, due to the acquisition
process of imaging devices.

Various proposals have been put forward for pre-
dicting such motion, see for example (Sharp et al.
2004, Vedam et al. 2004, Isaksson et al. 2005, Pu-
tra et al. 2006). In this work two methods are
investigated: a Kalman filter with a constant ve-
locity model and a set of neural networks using
a regularization procedure. Both approaches aim
to generate predicted reference trajectories that
are suitable for a receding horizon MPC scheme.
The predicted trajectories are then utilized to
determine an optimal control which is is calcu-
lated based on a minimization of future predicted
tracking errors.

Kalman filter

The Kalman filter (KF) is an optimal state esti-
mator of linear systems that minimizes the mean
of the squared error of the estimation (Kalman
1960). The recursive feature of the KF makes it
suitable for online prediction. The KF algorithm
consists of prediction and correction steps. As-
sume that the evolution of the respiratory motion
over a short-period of time can be described by

ξ(k) = Fξ(k − 1) + Gυ(k − 1)
z(k) = Hξ(k) + ω(k) (1)

where ξ =
[

ξ1

ξ2

]
, F =

[
1 ∆t
0 1

]
, G =

[
∆t
1

]
with

ξ1 and ξ2 denoting the position and the velocity
of the tumour, respectively, ∆t is the sampling
period, z the measured tumour position, H =[
1 0

]
, v and w are the process and measurement

noises which are uncorrelated zero-mean Gaussian
white noises with covariance matrices Qυ and
Rω, respectively. The KF for the tumour position
prediction is as follows.
For given ξ̂(k|k − 1), P (k|k − 1) and z(k)
compute

r(k) = z(k)−Hξ̂(k|k − 1)
S(k) = HP (k|k − 1)HT + Rω

K(k) = P (k|k − 1)HT S−1

ξ̂(k|k) = ξ̂(k|k − 1) + K(k)r(k)
P (k|k) = P (k|k − 1)−K(k)S(k)K(k)T .

Next prediction is given by

ξ̂(k + 1|k) = F ξ̂(k|k), ẑ(k + 1|k) = Hξ̂(k + 1|k)
P (k + 1|k) = FP (k|k)FT + GQυGT .

To obtain Hp future samples of tumour position
as required by MPC the following computations
are added to the prediction step

ξ̂(k + j|k) = F j ξ̂(k|k),
ẑ(k + j|k) = Hξ̂(k + 1|k), for j = 2, .., Hp.

Neural network

A neural network (NN) is a nonlinear model which
is trained to ‘learn’ a relationship between input
and output data. If sufficient input/output data
is available, the training of a NN provides a
useful ‘black-box’ approach to model input-output
mappings with little or no requirement for a priori
knowledge of the process. They have also found
use in predictive control (Haykin 1999, Tsoukalas
and Uhrig 1997, Liu 2001).

In this paper Hp parallel time series predic-
tion multi-layer perceptron neural networks (TSP
MLPs) (Tsoukalas and Uhrig 1997) are used to
produce a vector of predicted future marker po-
sitions. The NN architecture is optimized off-
line deterministically using the first portion cor-
responding to 10 s of each data set. An optimal
architecture is then implemented throughout. The
same approach is taken by (Sharp et al. 2004).
The resulting NN architecture has 7 inputs, 9
hidden neurons and a scalar output ≡ r(k +
i|k). Each hidden neuron uses the tansig func-
tion y = (ev − e−v)(ev + e−v)−1, where v and y
represent the neuron input and output respec-
tively, while the output neuron is linear. A hybrid
training method is used which combines a reg-
ularization algorithm (RA) with conjugate gradi-
ent backpropagation (CGBP) (Haykin 1999). The
RA uses a weight decay function Fw, which is
the mean-square of the total number of weights
and biases, wj , j = 1, 2, . . . ,W, in the NN i.e.
Fw = 1

W

∑W
j=1 w2

j . This is added to the training
performance function

F =
1
N

N∑

i=1

(zi − ri)2 (2)

where zi, ri are the observed target data and NN
output respectively, to give an energy function
defined as

Fr = αF + (1− α)Fw

=
α

N

N∑

i=1

(zi − yi)2 +
1− α

W

W∑

j=1

w2
j (3)

where 0 < α < 1 is a regularization parameter
which controls the amount of influence exerted by
Fw on the energy function. CGBP employs a line
search to find successive local minimum values of
F . At each local minimum, the algorithm is re-
set by calculating a new search direction until the
algorithm either converges or is terminated by a
suitable criterion e.g. time limitation or validation
error. CGBP is used to train a static MLP in
(Sharp et al. 2004). NN training is carried out
using the following procedure



(1) Train with the first 5 s of data using regular-
ization.

(2) Subsequently up-date at intervals of 1s lim-
iting training time to a maximum of 0.1 s,
using the latest 5 s of data. This ensures that
at least one complete breathing cycle is used
for training at each update. Due to the longer
time required for regularization convergence,
only CGBP is used for on-line updating.

3.2 Model Predictive Controller

In MPC, the controlled input is calculated such
that the system model follows a given future
reference signal whilst optimizing a defined cost
function. The cost function to be minimised is
(Maciejowski 2002):

V (k) =
Hp∑

i=1

∣∣∣∣ŷ(k + i|k)− r̂(k + i|k)
∣∣∣∣2

Q(i)

+
Hu∑

i=1

∣∣∣∣∆û(k + i− 1|k)
∣∣∣∣2

R(i)

(4)

where: Hp and Hu are prediction horizon and con-
trol horizon, respectively; ŷ and û are predicted
output and input, respectively; r̂ is a reference to
be followed provided by the predictor; ∆ = 1−z−1

with z−1 denoting the backward shift operator,
and Q(i) and R(i) are controller weights.

At each sample step k the predictor calculates
a vector of predicted tumour positions T̂ (k) =
{r̂(k +1|k), . . . , r̂(k + i|k), . . . , r̂(k +Hp|k)} which
is fed to MPC as a reference trajectory to be
tracked. In this paper the latency of organ motion
monitoring was assumed to be zero for simplicity.
If it was n samples, then the vector of predictions
would be T̂ (k) = {r̂(k + 1 + n|k), . . . , r̂(k +
i + n|k), . . . , r̂(k + Hp + n|k)}. The prediction
of tumour position r̂(k + i|k) is typically more
accurate than r̂(k + j|k) for j > i. Hence ŷ(k +
i|k) − r̂(k + i|k) shall be of greater importance
than ŷ(k + j|k) − r̂(k + j|k), and the controller
weights are chosen such that Q(i) = (Hp − i +
1)2. It is also assumed that ∆û should be equally
penalised for the whole control horizon, and the
ratio of penalisation of predicted tracking error
and penalisation of ∆û should remain constant
regardless of Hp and Hu, leading to:

∑Hp

i=1 Q(i)∑Hu

i=1 R(i)
= constant

∀(i, j ∈ 〈1,Hu〉) R(i) = R(j)

therefore

R(j) = ρ ·
∑Hp

i=1 Q(i)
Hu

, j ∈ 〈1, Hu〉 (5)

where ρ is a scalar valued tuning parameter.

The cost function given in Equation (4) is linear
quadratic. It is therefore possible to analytically
obtain an optimal control action denoted u(k)opt,
and this value is computed using a least-squares
approach (Maciejowski 2002).

4. SIMULATION STUDIES

To evaluate the proposed control scheme for dif-
ferent horizons and sampling frequencies, simula-
tion studies were carried out using a clinical data
set consisting of 27 traces, each of 200s respira-
tory motion, collected at Virginia Commonwealth
University, USA (George et al. 2006). Different
horizons are tested to assess their influence on
the tracking performance. Although the data set
corresponds to the motion of external markers
and not the tumour itself, it has been shown that
for some parts of the body (e.g. pancreas) there
is a close correlation between motion of external
markers and actual organ motion (Murphy 2004).
In this paper it is assumed that the motion of
external markers represents motion of the tu-
mour. Characteristics (amplitude and period) of
the data is presented in Figure 2.
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Fig. 2. Histograms of amplitude and frequency of
the respiratory motion data

The time of computation of reference T̂ (k) and
u(k)opt is assumed to be 10ms. The time of propa-
gation of the control signal via a network to motor
drives is assumed to be 10ms.

A total of 20 scenarios were simulated for con-
troller sampling rates fc = {10Hz, 15Hz} and
different prediction horizons. The maximum pre-
diction horizon was 0.5 second. Original motion
data was sampled at 30Hz, thus it was resampled
online within the predictor to match the sampling
rate of the controller.

The performance of the proposed control scheme
utilizing the two prediction methods was bench-
marked against a PID controller and MPC with an
ideal predictor (which reads data from the file in
advance). The PID controller was initially tuned
for a linear PSS model using a pole-placement
method. It appeared, however, that the control
action was too high for the nonlinear simulation



Table 1. Results of simulation studies

MPC with predictor
Crit. PID Ideal Kalman Filter Predictor Neural Network Predictor

pred fc = 15Hz fc = 10Hz fc = 15Hz fc = 10Hz
Hp Hp Hp Hp

2 3 4 5 6 7 2 3 4 5 2 3 4 5 6 7 2 3 4 5

RMSE 0.87 0.18 0.56 0.46 0.44 0.44 0.44 0.45 0.53 0.49 0.48 0.48 0.29 0.25 0.24 0.25 0.24 0.26 0.38 0.35 0.34 0.33
V ar 0.77 0.03 0.31 0.21 0.20 0.19 0.20 0.20 0.28 0.24 0.23 0.23 0.08 0.06 0.06 0.06 0.06 0.06 0.14 0.12 0.12 0.11
OUT0.2 78.9 15.0 68.1 63.0 60.0 60.5 59.8 59.5 68.5 66.5 65.4 64.5 35.5 27.5 24.6 23.2 21.9 21.1 41.3 36.8 35.0 33.7
OUT0.5 54.6 0.5 28.5 20.2 17.2 17.5 17.1 16.7 28.0 25.0 23.3 22.4 5.2 3.3 2.6 2.3 2.0 1.8 9.1 7.2 6.4 5.9
OUT1 24.8 0.2 5.5 1.9 1.3 1.3 1.2 1.2 4.6 3.2 2.6 2.4 0.7 0.5 0.5 0.4 0.4 0.4 1.7 1.5 1.4 1.4
OUT2 2.4 0.1 0.4 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4

model due to the presence of torque limit (input
saturation), therefore lower gains were required.
For simulation with an ideal predictor the setup
was: Hp = Hu = 7, fc = 15Hz. The performance
criteria to evaluate the controllers are:

• Root mean square error (RMSE) and vari-
ance of tracking error (V ar)

• Percentage of time of absolute tracking error
being larger than a threshold (OUTthr), with
absolute thresholds of 0.2mm, 0.5mm, 1mm
and 2mm.

Evaluation of the proposed control scheme perfor-
mance started after 10 seconds of each trajectory
to allow the predictor to tune 1 . The performance
criteria were calculated using tracking errors of all
the 27 trajectories and the results are presented
in Table 1.

It was found that the proposed control scheme
outperformed the PID controller for every per-
formance criteria. The performance of MPC +
KF was similar for fc = 15Hz and fc = 10Hz.
However, the performance of MPC + NN was
significantly degraded for fc = 10Hz compared
to fc = 15Hz. The performance of MPC + NN
at fc = 15Hz and Hp = {6, 7} is comparable to
the case of MPC + ideal predictor and is better
than the performance of MPC + KF. However,
MPC + NN tends to produce large tracking errors
at fc = 10Hz more often compared to MPC +
KF (c.f. OUT2 of KF and NN at fc = 10Hz). It
was also found that the performance of MPC with
both prediction methods was always improved for
larger Hp.

5. CONCLUSIONS

This paper has presented work in progress con-
cerning the compensation strategy of respiratory
induced tumour motion for adaptive radiother-
apy using a controlled patient support system. A
model predictive control scheme with a reference
signal to be tracked (future tumour positions)

1 KF predictor requires only 2 samples for initialization,
but the NN predictor requires several seconds to ‘learn’.

provided by a Kalman filter or a set of neural
networks has been developed. The tracking per-
formance of the proposed control scheme has been
tested by means of simulation studies using a
clinical data set consisting of 27 traces of respi-
ratory motion. It was found that the MPC con-
trol scheme consistently outperformed a manually
tuned PID controller. The tracking errors of the
MPC with the NN was significantly smaller than
the MPC with the KF in terms of RMSE. How-
ever, the percentage of large tracking errors was
greater for MPC with the NN compared to MPC
with the KF when the controller was sampled at
10Hz. Further work is on going to fully evaluate
the limitations of the proposed schemes.
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