
 

Exact Distributions for Stochastic Gene 
Expression Models with Bursting and 
Feedback 
 
Niraj Kumar, Thierry Platini  and Rahul V. Kulkarni 
 
Published PDF deposited in CURVE January 2015 
 
Original citation: 
Kumar, N., Platini, T. and Kulkarni, R.V. (2014)  Exact Distributions for Stochastic Gene 
Expression Models with Bursting and Feedback Physical Review Letters 113 (26) DOI 
10.1103/PhysRevLett.113.268105 
 
http://dx.doi.org/ 10.1103/PhysRevLett.113.268105 
 
Publisher 
American Physical Society 
 
The publisher allows the published PDF to be deposited in an institutional repository 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders. 
 

CURVE is the Institutional Repository for Coventry University 
 

http://curve.coventry.ac.uk/open  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228140752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://curve.coventry.ac.uk/open
http://dx.doi.org/%2010.1103/PhysRevLett.113.268105
http://curve.coventry.ac.uk/open
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Stochasticity in gene expression can give rise to fluctuations in protein levels and lead to phenotypic
variation across a population of genetically identical cells. Recent experiments indicate that bursting and
feedback mechanisms play important roles in controlling noise in gene expression and phenotypic
variation. A quantitative understanding of the impact of these factors requires analysis of the corresponding
stochastic models. However, for stochastic models of gene expression with feedback and bursting, exact
analytical results for protein distributions have not been obtained so far. Here, we analyze a model of gene
expression with bursting and feedback regulation and obtain exact results for the corresponding protein
steady-state distribution. The results obtained provide new insights into the role of bursting and feedback in
noise regulation and optimization. Furthermore, for a specific choice of parameters, the system studied
maps on to a two-state biochemical switch driven by a bursty input noise source. The analytical results
derived provide quantitative insights into diverse cellular processes involving noise in gene expression and
biochemical switching.

DOI: 10.1103/PhysRevLett.113.268105 PACS numbers: 87.10.Mn, 02.50.-r, 82.39.Rt, 87.17.Aa

Introduction.—Cellular responses to environmental
fluctuations often involve biochemical reactions that are
intrinsically stochastic. For example, stochasticity (noise)
plays an important role in processes leading to gene
expression [1–3] and in biochemical switching between
distinct states [4–7]. Regulation of noise in these processes
is critical for the maintenance of cellular functions as
well as for the generation of phenotypic variability among
clonal cells. Quantitative modeling of mechanisms of noise
regulation is a key step towards a fundamental under-
standing of cellular functions and variability.
Noise regulation in cells is typically implemented by

regulatory proteins such as transcription factors (TFs).
Recent research has demonstrated that, at the single-cell
level, regulatory proteins are often produced in bursts
[8–12]. Such proteins can be further involved in autor-
egulation (e.g., the Tat regulatory protein which controls
the latency switch of HIV-1 viral infections) [13–19] or in
downstream regulation of biochemical switches (e.g.,
switching of flagellar rotation states in bacterial chemo-
taxis) [4–7]. Some interesting questions arise from these
observations: How does feedback from proteins produced
in bursts regulate noise in gene expression and biochemical
switching? How can gene expression parameters be tuned
to optimize noise in the presence of bursting and feedback?
The aim of this Letter is to address these questions by
developing a gene expression model that combines bursting
and feedback for which we obtain the exact stationary
distribution.
Previous work on noise in gene expression has focused

on exact analytical solutions for models with (a) bursting
but no feedback effects [20] or (b) feedback effects but no

protein production in bursts [18,19,21,22]. Similarly, pre-
vious work on noise-induced biochemical switching [7]
does not consider the case of input noise source produced in
bursts. In this Letter, we introduce a single model that
addresses these gaps in the field. Our model reduces to
multiple previously studied models in limiting cases. We
obtain exact analytical distributions that significantly
extend previously obtained results and lead to new insights.
Model.—A schematic representation of the model is

shown in Fig. 1. Here, 0 and 1 represent the inactive and
active states of the promoter, respectively. Note that the
terms inactive or active are simply used to label the two
states since protein production can occur from either state.
Specifically, protein production from the inactive (active)
state occurs with rate k0 (k1). Each production event results
in a random burst of proteins, and we assume that these
bursts are distributed geometrically with mean size b. The
degradation rate of proteins is denoted by μ. The rate of
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FIG. 1 (color online). (a) Schematic representation of the
model. Protein bursts from inactive (active) state are generated
with rate k0ðk1Þ. Rate of transition from inactive to active state
is αþ ~αn, and that from active to inactive is β. (b) For k0 ¼ k1
the model maps onto a two-state switch driven by a bursty
input source.
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switching from the active to inactive state is denoted by β.
The rate at which the inactive state switches to the active
state has two contributions: the spontaneous contribution
with rate α, and the feedback contribution, with rate ~αn
(where n is the number of proteins, and ~α measures the
strength of the feedback). The linear dependence on n for
the feedback term is consistent with experimental charac-
terization of the genetic circuit for expression of HIV-1 Tat
protein [13].
Since we allow protein production from both active

and inactive states, the model can be used to analyze the
effects of positive feedback as well as negative feedback.
When k1 > k0, the feedback term enhances protein pro-
duction leading to positive feedback. In contrast, k1 < k0
leads to negative feedback. For k1 ¼ k0, protein produc-
tion is independent of the promoter state. As indicated in
Fig. 1(b), the model then corresponds to a bursty input
noise source controlling switching between the two states.
Thus, the same model can be used to analyze the impact of
input protein noise on the statistics of a simple two-state
switch [7].
Let Pσ;nðtÞ denote the probability of finding, at time t,

the promoter in state σ (σ ¼ 0; 1) with n proteins in the cell.
The temporal evolution of Pσ;nðtÞ is given by the following
master equations [23]:

∂tP0;n ¼ k0
Xn
p¼0

gðpÞP0;n−p þ μðnþ 1ÞP0;nþ1

þ βP1;n − ½k0 þ αþ ~αnþ μn�P0;n;

∂tP1;n ¼ k1
Xn
p¼0

gðpÞP1;n−p þ μðnþ 1ÞP1;nþ1

þ ðαþ ~αnÞP0;n − ½k1 þ β þ μn�P1;n; ð1Þ

where gðnÞ ¼ bn=ð1þ bÞnþ1 is the protein burst distribu-
tion. To proceed further, let us define the generating func-
tionsGσðz;tÞ¼

P
nPσ;nðtÞzn with σ¼0;1. Correspondingly,

Eq. (1) can be recast as

∂tG0 ¼ k0 ~gG0 þ μ∂zG0 þ βG1

− ðk0 þ αÞG0 − ð ~αþ μÞz∂zG0;

∂tG1 ¼ k1 ~gG1 þ μ∂zG1 þ αG0 þ ~αz∂zG0

− ðk1 þ βÞG1 − μz∂zG1; ð2Þ

where ~gðzÞ is the generating function of the protein burst
distribution given by ~gðzÞ ¼ 1=½1þ bð1 − zÞ�. In the long-
time limit, Eq. (2) is used to derive an equation for the
generating function of the protein steady-state distribution,
GðzÞ ¼ G0ðzÞ þG1ðzÞ. After a sequence of transformations
(see Supplemental Material [24]), Eq. (2) reduces to a
hypergeometric differential equation, leading to the solution

GðzÞ ¼
�

1

1þ bð1 − zÞ
�
k1=μ

× 2F1½u; vjuþ vþ 1 − wj1 − ϕf1þ bð1 − zÞg�
2F1½u; vjuþ vþ 1 − wj1 − ϕ� ;

ð3Þ

where the quantities, u, v, w, and ϕ are related to model
parameters by

uþv¼Δkþαþ β− ~αk1=μ
μþ ~α

; uv¼ βΔk
μðμþ ~αÞ ;

w¼Δkþμþ ~αð1þbÞð1− k1=μÞ
μþ ~αð1þbÞ ; ϕ¼ μþ ~α

μþ ~αþb ~α
;

ð4Þ

with Δk ¼ k0 − k1, and 2F1 represents the Gaussian hyper-
geometric function. This solution for the generating function
is the central result of this Letter. It can be shown that our
result reduces to previously obtained results in different
limiting cases (SupplementalMaterial [24]). It can be used to
derive exact analytical results for several quantities of
interest. For example, the steady-state probability that the
promoter is in state 0 [P0 ¼ G0ð1Þ] is given by (see
Supplemental Material [24])

P0 ¼
ϕβ

αþ β þ k0 ~αb
μþ ~αð1þbÞ

× 2F1½uþ 1; vþ 1; uþ vþ 2 − w; 1 − ϕ�
2F1½u; v; uþ vþ 1 − w; 1 − ϕ� : ð5Þ

Furthermore, Eq. (3) can be used to obtain an analytical
expression for the protein steady-state distribution Pn ¼
P0;n þ P1;n and to analyze the corresponding moments.
These expressions lead to quantitative insights into multiple
topics of current research interest as discussed below.
Regulation of protein noise.—There has been consid-

erable focus in previous work on analyzing the effects of
feedback on the noise η ¼ hn2i=hni2 − 1 characterizing the
protein steady-state distribution [13–16,25]. To analyze
the impact of feedback, we first compare the noise for the
case with feedback ( ~α > 0) to the case without feedback
( ~α ¼ 0) in Figs. 2(a) and 2(b). It is interesting to observe
that negative feedback increases the noise when compared
to the case without feedback: ηð ~αÞ=ηð0Þ > 1. On the other
hand, positive feedback leads to a decrease of noise
ηð ~αÞ=ηð0Þ < 1. While this may appear surprising given
previous results [26], this observation is consistent with
recent results from simulations [16]. It should be further
noted that negative feedback leads to a reduction in mean
levels, whereas positive feedback increases mean levels;
thus, the changes in η can be driven largely by changes in
the mean levels. It follows that, to determine the effects of
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feedback on noise, it is desirable to compare models which
give rise to the same mean levels.
To address this issue, we introduce an effective model

with no feedback that is characterized by a constant rate
αeff for promoter switching from the inactive to the
active state. The parameter αeff is determined analytically
(Supplemental Material [24]) by the condition that the
mean protein levels hni and P0 are identical in the original
and effective models. The remaining parameters are the
same as in the original model. In the following, we compare
noise in protein distributions for the original and effective
models.
Figures 2(c) and 2(d) illustrates the ratio η=ηeff for

negative as well as positive feedback. For negative feed-
back, protein noise in the original model is lower than the
noise in the effective model; i.e., the effect of negative
feedback is to reduce noise. For positive feedback, as
shown in Fig. 2(d), we observe that feedback increases the
noise when compared to the noise for the effective model.
Thus, in the context of regulation of protein noise, the
results obtained indicate that the choice of reference
model plays a critical role. In relation to the model without
feedback, we observe that negative (positive) feedback
increases (decreases) the noise. However, in relation to the
effective model, which preserves the average number of
proteins, the opposite behavior is observed.
Figures 2(c) and 2(d) also indicate that the effective

model provides a useful approximation to the original
model for a wide range of parameters, in particular, for
positive feedback. In this case, for the range of parameters
considered in Fig. 2(d), the effective model provides a good
approximation in regions of parameter space for which a)
αeff ≈ α or b) αeff ≫ β. In the former case, fluctuations in

protein levels make a negligible contribution to the pro-
moter switching rate, whereas the latter condition repre-
sents (almost) constitutive production of protein bursts,
making the effective model indistinguishable from the
original model. However, there is a class of problems
for which the effective model is inadequate, and it is
necessary to analyze the complete model. An important
example includes noise optimization in the presence of
feedback by varying system parameters, as discussed in the
following.
Noise minimization.—Recent work [27] has analyzed

noise minimization due to negative feedback for a model
similar to the one outlined in Fig. 1. In this model, the
binding of a TF switches its promoter to a repressed state,
(i.e., set k1 ¼ 0) and the switching rate β corresponds to the
dissociation rate of the TF from its promoter. In the limit
β → ∞, there is no feedback, since protein bursts are
effectively produced constitutively with rate k0. To examine
noise minimization, the system parameters k0 and β are
varied subject to the constraint that the mean protein
number hni is held fixed. In particular, it is of interest to
determine: (a) the minimum dissociation rate, βmin,
required for negative feedback to result in a reduction of
noise relative to the model with no feedback and (b) the
optimal rate βc at which noise suppression is maximal. In
the following, we explore the insights gained for this
problem (for the model in Fig. 1) using exact analytical
results for moments derived using Eq. (3).
Figure 3 illustrates the variation of protein noise η as a

function of TF dissociation rate β, keeping the mean protein
levels fixed by changing the transcriptional rate k0. In the
limit β → ∞ (i.e., no feedback), we have η ¼ ð1þ bÞ=hni.
As β is reduced, the noise initially decreases, reaches a
minimum value at β ¼ βc and subsequently increases. In
contrast, for the corresponding effective model with a
constant rate of promoter transitions (as defined in the
preceding paragraphs), we have η > ð1þ bÞ=hni for all
finite β; i.e., there is no noise reduction. This indicates that
it is essential to consider the role of fluctuations in the rate

FIG. 2 (color). Protein noise regulation: In the upper panel,
density plots for the noise ratio ηð ~αÞ=ηð ~α ¼ 0Þ as a function of b
and ~α for (a) negative feedback (k0 ¼ 10, k1 ¼ 0) and (b) positive
feedback (k0 ¼ 0, k1 ¼ 10). In the lower panel, comparison
between the original and effective models: Density plots for
η=ηeff are plotted as a function of b and ~α for (c) negative
feedback (k0 ¼ 10, k1 ¼ 0) and (d) positive feedback (k0 ¼ 0,
k1 ¼ 10). Other parameters are: α ¼ β ¼ μ ¼ 1.
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FIG. 3 (color online). Optimization of noise suppression in
negative feedback: Noise is shown as a function of dissociation
rate β for hni ¼ b ¼ 20. Corresponding variations for the optimal
dissociation rate βc and the probability P0 are plotted for different
values of hni in the inset, dotted lines representing the prediction
of Ref. [27]. Other parameters are: μ ¼ 1, α ¼ 0, ~α ¼ 25.
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of promoter transitions (from the active to the repressed
state) in understanding noise reduction due to negative
feedback.
The parameter βmin can be determined by the condition

that for β ¼ βmin, we have η ¼ ð1þ bÞ=hni. The exact
expression for η in combination with some approximations,
specifically P0 ¼ β=ðβ þ αþ ~αhniÞ, can be used to derive
the result obtained in [27] for βmin (Supplemental Material
[24]). Our analysis indicates that this rate corresponds to
βmin ¼ P0k0b=ðbþ 1Þ which implies that for noise reduc-
tion, the rate of TF dissociation must be greater than the rate
of arrival of nonzero bursts of proteins.
Our results can also be used to analyze the optimal value

β ¼ βc at which noise suppression is maximal. The results
derived in [27] using moment-closure approaches serve as a
good approximation in the limit of large hni. Since our
exact results apply for arbitrary parameter values, they can
be used to connect large hni results with those for low hni.
As discussed below, this analysis leads to some interesting
observations.
In Ref. [27], it was shown that the optimal value of

dissociation rate βc is linearly dependent on hni; i.e.,
βc=hni remains constant as hni is varied by changing k0.
As expected, we recover this feature when hni is large (see
Fig. 3). However, for small hni we see a strong deviation
from the large hni limit, characterized by nonmonotonic
variation. Furthermore, this nontrivial variation in the
optimal dissociation rate is also reflected in the probability
of the promoter state being transcriptionally active, P0. As
shown in the figure, P0 decreases monotonically with hni,
and, in the limit of large hni, it approaches the result
derived in Ref. [27]. Thus, our results predict that, for
optimal noise suppression in low abundance TFs, the
fraction of time that the promoter is active decreases as
we increase TF concentration.
Switching statistics.—As noted in Fig. 1(b), when

k0 ¼ k1, the model analyzed can be mapped to a two-state
system driven by a bursty input signal. Several cellular
systems can be modeled (at a coarse-grained level) as two-
state switches; thus, it is of interest to explore how such
switches respond to fluctuating inputs [4–7]. The results
obtained in this Letter lead to exact analytical expressions
for the corresponding switch statistics.
The quantity of interest is the variance of the switch,

σ2 ¼ P0ð1 − P0Þ, with P0 given by Eq. (5). Note that
Eq. (5) is valid for proteins produced in geometrically
distributed bursts with mean burst size b. On the other
hand, previous work [7] has considered the case such
that each burst leads to creation of exactly one protein
(i.e., protein dynamics is a simple birth-death process).
Remarkably, there exists a mapping between the analyti-
cal solutions in these two cases (Supplemental Material
[24]). Using this mapping, we obtain the following
exact result for the problem considered in previous
work [7]

P0¼
βðμþ ~αÞ

~αkþðαþβÞðμþ ~αÞ

× 1F1

�
1;1þαþβ

μþ ~α
þ ~αk
ðμþ ~αÞ2 ;−

k
μ

�
~α

μþ ~α

�
2
�
: ð6Þ

As expected, the above expression, Eq. (6), reduces
to analytical results derived in [7] (for α ¼ 0) in
limiting cases. For example, in the slow switching
limit, i.e., ~αk ≪ μ ¼ 1, Eq. (6) leads to P1 ¼ 1 − P0 ¼
½ ~α=ð1þ ~αÞ�k=ðβ þ ½ ~α=ð1þ ~αÞ�kÞ, which is identical to the
result obtained in [7]. Similarly, in the fast switching limit
~αk ≫ μ ¼ 1, if we further set ~α → ∞ and k ≪ μ ¼ 1, we
obtain P1 ¼ kð1þ βÞ=ðkþ βÞ, consistent with the result
obtained in [7]. The exact result derived above, Eq. (6),
allows for analysis of switching statistics beyond these
limits, i.e., throughout parameter space.
Furthermore, the results derived can be used to explore

how bursty protein production affects switching statistics.
Figure 4(a) shows how the switch variance σ2 depends on
the burst size, b, and the average number of proteins, hni.
Some interesting observations can be made which highlight
the nontrivial variation of σ2 with bursting. For large hni
values, σ2 shows a nonmonotonic variation with b, with
a maximum at a critical burst size, bc [see Fig. 4(b)]. On the
other hand, for low hni, we observe that σ2 decreases
monotonically with b with the maximum corresponding to
bc → 0 [Fig. 4(b)]. These different behaviors can be
understood based on the following observations: (1) For
fixed hni, P0 increases with increasing burst size b, and
(2) for fixed b,P0 decreaseswith increasing hni. Thus, in the
limit b→0, for hni such thatP0≥1=2we obtain amonotonic
decrease in the variance σ2 ¼ P0ð1 − P0Þ as b is increased.
On the other hand, for hni such that P0 < 1=2 (in the limit
b → 0) we obtain a nonmonotonic variation with b.
Next, we focus on the variation of σ2 with mean protein

hni for a fixed b. As can be seen in Fig. 4(a), it shows a

(a) (b)

FIG. 4 (color). Two-state switch statistics. (a) Density plot for
σ2 is shown as a function of b and hni. (b) Variations of σ2 with b
for two different values of hni, 1 (solid line) and 10 (dashed line).
In both (a) and (b), ~α ¼ 1. (c) Variation of hnci=n0 with b,
different lines correspond to different values of feedback strength
~α ¼ 0.5 (solid line), 1 (dashed line), 3 (dotted line). In all plots,
other parameters are: Δk ¼ α ¼ 0, β ¼ μ ¼ 1.
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nonmonotonic variation, with σ2 being maximum at a
critical mean protein level, hnci. Often, it is of interest to
estimate the value hnci which maximizes the noise in
switching statistics. In Fig. 4(c), we compare the mean-field
estimate n0 (obtained by replacing the fluctuating n by its
mean value, hni) with the corresponding exact value. As
indicated in the figure, deviation from the mean-field
estimate is significant and increases with increasing burst
size and feedback strength. Thus, the analytical results
derived are useful in obtaining accurate estimates of
parameters that maximize noise in switching statistics.
To conclude, we have studied an exactly solvable model

that integrates key features of regulation of gene expression,
specifically: bursting, promoter switching, and feedback, in
a singlemodel. The derived results provide new insights into
the roles of bursting and feedback (both positive and
negative) in fine-tuning noise in protein distributions.
Furthermore, the results obtained can serve as building
blocks for future studies focusing on noise optimization
strategies by varying the underlying parameters. The model
developed can also be applied to study the statistics of a
simple two-state switch driven by a bursty protein noise
source. Our results show that such bursty input noise can
induce strong deviations in the optimal parameters for
switch variance from the corresponding mean-field predic-
tions. Thus, the development of analytical approaches, as
outlined in this work, is an important ingredient for accurate
quantitative modeling of stochastic cellular processes.
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