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Abstract

In this paper an adaptive time-varying filter for unknown/unmeasurable
input reconstruction is proposed. The algorithm is based on parity-
equations and is applicable to Hammerstein-Wiener systems, i.e. systems
composed of a linear dynamic part followed and preceded by a memo-
ryless nonlinearity. An error-in-variables case is considered, i.e. known
input and output signals are both subjected to measurement uncertain-
ties. The scheme forms an extension to a filter previously proposed by
the authors. As the input reconstruction involves transformation of noisy
signals through memoryless static functions, measurement noise is either
amplified or reduced, depending on the gradient of the nonlinear func-
tion. Thus, in the proposed scheme the bandwidth of the filter is adjusted
depending on the operating point allowing for a trade-off between noise
attenuation and a phase lag.

1 Introduction

Block oriented models are convenient for modelling nonlinear systems. Their
relatively simple structure of a linear dynamic block interconnected with non-
linear memoryless function(s) provides a powerful tool for approximation of a
large class of nonlinear systems [13, 14]. Block oriented models have been used
for modelling such phenomena as for instance: infant EEG seizures [4], a radio
frequency amplifier [5], a glucose-insulin process in diabetes type I patient [3],
ionospheric dynamics [12] or human operator dynamics [19]. Furthermore, such
models are also used for control purposes [1, 6, 7] and fault detection [9, 10].

This paper deals with the problem of unknown/unmeasur-able input re-
construction for Hammerstein-Wiener systems, i.e. where the linear dynamic
block is preceded and followed by nonlinear static functions. (In the case of a
Hammerstein model a linear block is preceded by a static nonlinear function,
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whereas in the case of a Wiener model the order of these elements is reversed.)
An error-in-variables (EIV) framework [15] is considered, i.e. all the measured
signals are affected by white, Gaussian, zero-mean and mutually uncorrelated
measurement noise sequences. Up to date, few publications are available on the
subject of unknown input reconstruction of Hammertein and Wiener systems.
Szabo et al. [18] proposed an inversion of Wiener systems using a geometric
method, based on the assumption that the static nonlinearity transforming the
output is invertible, whilst Ibnkahla [8] used neural networks for Hammerstein
system inversion. In this paper an adaptive time-varying filter for unknown
input reconstruction is developed. The proposed scheme forms an extension to
the algorithm presented in [17] and allows to adjust the filter bandwidth as the
operating point changes leading to improved noise attenuation.

The paper is organised as follows: Section 2 states the unknown input re-
construction problem. In Section 3 the parity equation based unknown input
reconstruction method for Hammerstein-Wiener systems (PE-UIO-HW) is pre-
sented. The main contribution of this paper is described in Section 4, where
the PE-UIO-HW is expanded to an adaptive parity space order case. Then
the method is demonstrated using a numerical example in Section 5. Section 6
concludes the paper.

2 Problem statement

It is assumed that a two-input single-output nonlinear system can be described
by a Hammerstein-Wiener model. An EIV framework is considered [15], i.e.
both measured input and output signals are affected by white, Gaussian, zero-
mean and mutually uncorrelated noise sequences, see Fig. 1. Thus, the Hammerstein-
Wiener model model is given by the following state-space form:

ū0k = g (u0k)

xk+1 = Axk +Bū0k +Gvk

ȳ0k = Cxk +Dū0k +Hvk

y0k = f (ȳ0k)

uk = u0k + ũk

yk = y0k + ỹk

(1)

where g(·) is a static nonlinearity transforming the first system input u0k into
an inaccessible signal ū0k which serves as the first input to the linear subsystem.
It is assumed that the second input vk is fed directly (without nonlinear trans-
formation) to the linear block, which is described by the matrices: A ∈ Rn×n,
B ∈ Rn×1, C ∈ R1×n, D ∈ R1×1, G ∈ Rn×1 and H ∈ R1×1. The term ȳ0k
refers to the output of the linear part of the system, which is then transformed
by the memoryless function f(·) into the overall system output y0k . Since the
EIV case is considered, all measured variables, which are uk and yk, are affected
by white, Gaussian, zero-mean and mutually uncorrelated measurement noise
sequences denoted by ũk and ỹk, respectively. Noise sequences are postulated to
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Figure 1: Hammerstein-Wiener system in EIV framework

be uncorrelated with the noise-free but unmeasured system input and output,
denoted as u0k and y0k , respectively. It is assumed here that f(·) is strictly
monotonic, hence its inverse exists. Note that (1) represents a Hammerstein or
a Wiener model if, respectively, f(·) or g(·) is an identity function.

The objective of the proposed scheme is to estimate the unknown input vk,
simultaneously minimising the effect of the measurement noise. It is assumed
that the model of the system is known.

3 Description of unknown input reconstruction

filter

3.1 Parity equations

Consider the system described by (1). The following stacked vector of the
unknown input, vk, is introduced [11]:

Vk =
[

vk−s vk−s+1 · · · vk
]T

(2)

where the term s denotes the order of the parity space. Analogously, one can
build stacked vectors of yk, y0k , ȳ0k , ỹk, ū0k , uk, u0k and ũk which are denoted,
respectively, as Yk, Y0k , Ȳ0k , Ỹk, Ū0k , Uk, U0k and Ũk. By making use of this
notation the system defined by (1) can be expressed in the form of:

Ū0k = g(U0k) (3a)

Ȳ0k = Γxk−s +QŪ0k + TVk (3b)

Y0k = f(Ȳ0k) (3c)

where g(U0) is a vector whose elements are g(u0k−s
), g(u0k−s+1

), · · · , g(u0k),
cf. (2). Analogously, the function f(ȳ0) is defined. The term Γ is an extended
observability matrix:

Γ =











C

CA
...

CAs











∈ R(s+1)×n (4)
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and Q is the following block Toeplitz matrix:

Q =















D 0 · · · 0
CB D · · · 0
CAB CB · · · 0

...
...

. . .
...

CAs−1B CAs−2B · · · D















∈ R(s+1)×(s+1) (5)

Analogously, the matrix T ∈ R(s+1)×(s+1) is constructed by replacing B and D
in (5) by G and H, respectively.

In order to eliminate the unknown state vector from (3b), a row vector
W ∈ R1×(s+1) is defined, which belongs to the left nullspace of Γ, i.e.

WΓ = 0 (6)

Hence (3b) can be transformed to:

WȲ0k = WTVk +WQŪ0k (7)

which, since f(·) is assumed to be invertible, can be reformulated as:

Wf−1(Y0k) = WTVk +WQg(U0k) (8)

where f−1(·) denotes an inverse of f(·). Due to the fact that y0k and u0k are
inaccessible, the parity relation (8) can be approximated by the measured values
of the input and output:

Wf−1(Yk) = WTVk +WQg(Uk) + ξk (9)

where ξk accounts for an overall error resulting from the presence of measure-
ment noise. By rearranging the measured (known) variables to the left-hand
side and the unknowns to the right-hand side, the following PE is obtained [11]:

Wf−1(Yk) −WQg(Uk) = WTVk + ξk (10)

3.2 Unknown input estimation

The unknown input is estimated as follows [17]:

v̂k−τ = Wf−1(Yk) −WQg(Uk) (11)

where τ is the estimation delay and is defined further in this section. In the
case of noise-free input and output measurements (11) becomes

v̂k−τ = WTVk (12)

Thus, the unknown input estimate is calculated as a linear combination of the
sequence vk−s, vk−s+1, · · · , vk, i.e.

v̂k−τ = α0vk + α1vk−1 + · · · + αsvk−s (13)
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where the α parameters are dependent on the choice of the vector W , such that:

WT =
[

αs αs−1 · · · α0

]

(14)

One can note that (13) represents a moving average finite impulse response
filter with the gain being given by the sum of the α parameters, i.e. the sum of
elements of the vector WT . Thus, the vector W is selected in such a way, that
this sum is equal to unity, i.e. the gain of the FIR filter (13) is equal to one.
Furthermore, the estimation lag τ of the filter (13) is given by a weighted sum
of α elements.

τ =

∑s
i=0 iαi

∑s
i=0 αi

(15)

3.3 Selection of optimal W

In the case of noisy input and output measurements the unknown input estimate
is affected by the error, cf. (10):

v̂k = WTVk + ξk (16)

resulting from both input and output measurement uncertainties, which can be
deduced to be given by:

ξk = W
(

f−1(Yk) − f−1(Y0k)
)

−WQ (g(Uk) − g(U0k)) (17)

Using the notation

˜̄Yk = f−1(Yk) − f−1(Y0k)

˜̄Uk = g(Uk) − g(U0k)
(18)

Equation (17) can be rewritten as:

ξk = W ˜̄Yk −WQ ˜̄Uk (19)

Since g(·) and f(·) are memoryless, the sequences

˜̄uk = g(uk) − g(u0k) (20)

and
˜̄yk = f−1(yk) − f−1(y0k) (21)

are white and mutually uncorrelated (as ũk and ỹk are white and mutually un-
correlated). The variance of ˜̄uk, further referred to as var(˜̄uk), is time varying
and depends on g(uk), uk and the variance of ũk (denoted as var(ũk)). Analo-
gously, the variance of ˜̄yk, i.e. var(˜̄yk), is dependent on var(ỹk) and the current
values of f(yk) and yk. The expression g(u0k) can be approximated using a
Taylor expansion at uk:

g(u0k) ≈ g(uk) +
∂g(uk)

∂uk
(u0k − uk)

≈ g(uk) −
∂g(uk)

∂uk
ũk

(22)
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Thus, the dependency between the ˜̄uk and ũk can be approximated via, cf. (20)

˜̄uk ≈
∂g(uk)

∂uk
ũk (23)

This means that the ratio between ˜̄uk and ũk is proportional to the tangential

of g(uk). Analogously, the ratio between ˜̄yk and ỹk is proportional to ∂f−1(yk)
∂yk

.

Thus, the variances of ˜̄uk and ˜̄yk can be approximated, respectively, as:

var(˜̄uk) ≈

(

∂g(uk)

∂uk

)2

var(ũk)

var(˜̄yk) ≈

(

∂f−1(yk)

∂yk

)2

var(ỹk)

(24)

It should be noted that var(˜̄uk) and var(˜̄yk) are, in general, time varying as they
depend on the current values of the functions g(uk) and f−1(yk).

The PE-UIO-HW algorithm minimises the variance of the error term ξk by
appropriate selection of W

var(ξk) = E{(W ˜̄Yk −WQ ˜̄Uk)(W ˜̄Yk −WQ ˜̄Uk)T }

= WΣ˜̄yW
T +WQΣ˜̄uQ

TWT−

WΣT
˜̄u˜̄yQ

TWT −WQΣ˜̄u˜̄yW
T

(25)

where Σ˜̄u = E{ ˜̄Uk
˜̄UT
k }, Σ˜̄y = E{ ˜̄Yk

˜̄Y T
k }, Σ˜̄u˜̄y = E{ ˜̄Uk

˜̄UT
k }. The term Σ˜̄u is

calculated via, cf. (24):

Σ˜̄u =











var(˜̄uk−s) · · · 0 0
...

. . .
...

...
0 · · · var(˜̄uk−1) 0
0 · · · 0 var(˜̄uk)











(26)

Analogously, the expression Σ˜̄y is obtained by replacing the terms var(˜̄u(·)) from
(26) by var(˜̄y(·)). Due to the fact that ũk and ỹk are mutually uncorrelated,
Σ˜̄uỹ = 0. For the sake of brevity the variable Σ is introduced

Σ = Σ˜̄y +QΣ˜̄uQ
T (27)

Subsequently, the vector W should be selected to minimise the cost function
φ(W ):

φ(W ) = WΣWT (28)

subject to the following constraints:

1. Sum of elements of WT is equal to 1.

2. WΓ = 0.
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Note that the ratio between var(˜̄uk) and var(˜̄yk) is not constant, i.e. the
impact of either input or output measurement noise on the unknown input es-
timation error can be prevailing, depending on the system operating point. As
a result Σ is time-varying. Therefore, the unknown input reconstruction filter
should adapt to these changes and the optimal vector W should be updated
at each time instance. In order to acknowledge that W is time-varying, the
notation Wk is used further in this paper. The PE-UIO-HW algorithm, which
minimises cost function (28) has been derived in [17] using the Lagrange multi-
pliers method [2] and is summarised in Algorithm 1.

Algorithm 1 PE-UIO-HW

1: Select the order of the parity space s ≥ n and build matrices Γ, Q and T .
2: Obtain the matrix spanning the left nullspace of Γ, denoted as Γ⊥.
3: for k = 1 to N do

4: Calculate variances of ˜̄uk and ˜̄yk using (24)
5: Compute Σ using (27)
6: Calculate the matrix S and the column vector ψ as, respectively1

S = Γ⊥Σ(Γ⊥)T + (Γ⊥Σ(Γ⊥)T )T (29)

ψ = sumrow(Γ⊥T ) (30)

7: Obtain the Lagrange multiplier λ as

λ =
(

(

S−1ψ
)T
ψ
)−1

(31)

8: Calculate the parameter vector P as

P = λS−1ψ (32)

9: Compute the vector Wk as:

Wk = PT Γ⊥ (33)

10: if k = 1 then

11: Compute estimation lag τ using (15)
12: end if

13: Obtain the estimate of vk−τ via equation (11).
14: end for

4 Extension to variable parity space order

As it has been discussed in [16] an increase of the parity space order s reduces the
bandwidth of the unknown input reconstructor thus improving the noise filtering
properties of the filter (i.e. reducing the impact of the noise on the unknown
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input estimate). However, the reduction of the filter bandwidth results in the
input reconstruction filter being sluggish. Due to the fact that var(˜̄uk) and
var(˜̄yk) are time varying, the impact of the noise on the unknown input varies.
Therefore, it is beneficial to vary the bandwidth of the filter (via changing the
value of the parity space order s) as values of var(˜̄uk) and var(˜̄yk) change. In the
algorithm proposed in this section the order of the parity space varies according
to the changes of var(˜̄uk) and var(˜̄yk). In order to recognise that the order of the
parity space is time varying, its value at the time instance k is further denoted
as sk.

4.1 Choice of sk

It can be observed from (25), that the variance of the error term var(ξk) can be
represented as a sum of two terms, each of which depends solely on either the
output or the input measurement noise, such as:1

var(ξk) = φuk
+ φyk

(34)

where φuk
and φyk

are defined as:

φuk
= WkQΣ˜̄uQ

TWT
k (35a)

φyk
= WkΣ˜̄yW

T
k (35b)

Therefore, it can be noted that the PE-UIO-HW algorithm minimises the sum
of φuk

and φyk
. The accuracy of the unknown input estimation alters over the

time, as var(ξk) is changing.
The choice of sk should depend on both var(˜̄uk) and var(˜̄yk). It is proposed

to create a two-dimensional map, which assigns the value of sk for each cou-
ple of var(˜̄uk) and var(˜̄yk). Furthermore, as the values of var(˜̄uk) and var(˜̄yk)
are calculated based on the current values of the measured input and output
signals (affected by noise), cf. (24), sk selected based on the current values of
var(˜̄uk) and var(˜̄yk) may jitter unnecessarily. In order to avoid this problem, it
is proposed to select sk based on moving averages of var(˜̄uk) and var(˜̄yk) defined
as:

var(˜̄uk) =
1

k1 + k2 + 1

k+k2
∑

i=k−k1

(var(˜̄ui)) (36a)

var(˜̄yk) =
1

k1 + k2 + 1

k+k2
∑

i=k−k1

(var(˜̄yi)) (36b)

where k1 and k2 are arbitrarily defined by the user.

1the operator sumrow(A) denotes a column vector whose elements are sums of the appropri-
ate rows of the matrix A. (In the case of a row vector x, the term sumrow(x) is simply a scalar
being the sum of elements of the vector x, whilst, if x is a column vector, sumrow(x) = x.)
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4.2 Variable estimation lag

At the time instance k, the following delayed unknown input estimate is calcu-
lated:

v̂t−τk = Wkf
−1(Yk) −WkQkg(Uk) (37)

where τk is time varying, due to the alternating value of sk. (Note that the
notation τk and Qk has been used instead of τ and Q in order to indicate that
the estimation lag τ and the matrix Q as well as the dimensions of Q are time
varying.) This would eventually lead to difficulties, such as some time instances
of the unknown input would be omitted, and some of them estimated more than
once. Therefore, a logic must be implemented, which copes with the variable
estimation lag. A difficulty may arise in two situations:

(i) τk > τk−1

(ii) τk < τk−1

In the first case a particular time instance of the unknown input estimate is
calculated twice. In such a case when two values of the unknown input estimate
sample are available, the one should be selected which is less affected by noise.
The fact that τk increases means an increase of the noise influence, i.e. var(˜̄uk)
or var(˜̄yk) has increased. Therefore, the impact of the measurement noise on
the unknown input estimate has also increased. Consequently, the value of the
unknown input estimate which has been calculated as first is less affected by
noise.

In the second case, the situation is opposite, i.e. some time instances of v̂k
will be omitted. It is proposed to use Wk−1 and Qk−1 to calculate the missing
values of the unknown input estimate.

Incorporating this logic into Algorithm 1 the adaptive order PE-UIO-HW
(AO-PE-UIO-HW) is obtained which is summarised in Algorithm 2.

5 Numerical Example

Consider an examplary system, whose matrices of the linear block are given by:

A =

[

0 −0.56
1 1.5

]

B =

[

−0.1200
0.4125

]

D = 0.125 (40)

C =
[

0 1
]

G =

[

0.0055
0.0963

]

H = 0.025

The memoryless input and output nonlinearities are arbitrarily selected as:

ū0k = exp
(

0.165 · 10−5u30k + u0k
)

− 1

y0k = exp
(

11 + 0.165 · 10−5ȳ30k

)

− 59874
(41)

An output error case is considered for this simulation study, where ỹk is a white,
Gaussian, zero-mean sequence with the variance equal to 3. It is assumed that
there is no noise on the input, i.e. ũk = 0.
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Algorithm 2 AO-PE-UIO-HW

1: for k = 1 to N do

2: Calculate var(˜̄uk) and var(˜̄yk)

3: Using a look-up table select sk based on var(˜̄uk) and var(˜̄yk)
4: Obtain Wk, Qk, and τk as in Algorithm 1
5: if τk = τk−1 then

6: Calculate v̂(t− τk) as:

v̂(t− τk) = Wkf
−1(Yk) −WkQkg(Uk) (38)

7: else if τk < τk−1 then

8: for j = τk−1 to (τk − 1) do

9: Compute missed samples of unknown input

v̂k−j = Wk−1f
−1(Yk−j)

−Wk−1Qk−1g(Uk−j) (39)

10: end for

11: v̂t−τk = Wkf
−1(Yk) −WkQkg(Uk)

12: else

13: do nothing
14: end if

15: end for

Left subfigures of Fig. 2 depict functions g(·) and f(·). As they are both
monotonic and with their gradients strictly increasing, the impact of the output
measurement noise on the unknown input estimate is expected to be relatively
low for high values of yk (as the gradient of f−1(yk) is small for large values of
yk). On the other hand, this impact is relatively high for small values of yk (as
the gradient of f−1(yk) is large for high values of yk).

The known input and output signals as well as g(uk) and f−1(yk) are pre-
sented in right subfigures of Fig. 2. For the first 800 samples of the simulation
yk is relatively small and, as the slope of f(·) is less steep for small values of ȳk,
the inversion of the noisy measurement yk leads to amplification of the impact
of the output measurement noise in the first 800 samples of the unknown input
estimate, which can be seen in the bottom right subfigure of Fig. 2. After 1200
samples both uk and yk increase, which results in a reduction of the impact of
the output measurement noise on the accuracy of the unknown input estimate,
cf. Fig. 2.

Variables k1 and k2 have been selected as 2τk and 0, respectively. A look-up
table has been designed which assigns appropriate value of sk to var(˜̄yk) and
is presented in Fig. 3. The reconstructed input is compared with the original
one in Fig. 4. The lower subfigure of Fig. 5 presents sk and τk as functions
of time, whilst the upper subfigure of Fig. 5 compares var(˜̄yk) with φyk

. Note
that, although τk ≈ 1

2sk, a change of sk does not necessary yield a change in the
value of estimation delay τk and vice versa. For the first 100 simulation samples,
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Figure 2: Simulation setup

when sk remained constant and equal to 25, the value of τk changed 16 times
(8 times increased from 12 to 13 and 8 times decreased from 13 to 12). This
is caused by variations of Σ˜̄y and, consequently, variations of Wk, cf. equation

(35b).On the contrary, between the 800th and 1000th simulation sample, when
sk is decreasing, the rate of change of τk is lower than the rate of change of sk.
Furthermore, the value of var(˜̄yk) varies significantly. However, by altering the
order of the parity space, one can reduce variations of φyk

. It is particularly
visible between 300th and 400th and between 1000th and 1600th samples. These
results have been compared with PE-UIO-HW with a fixed parity space order
for two cases, namely sk = 14 and sk = 24. Values of φyk

for the two cases
of fixed parity space order are also presented in the upper subfigure of Fig. 5.
Fig. 6 compares the unknown input estimation error of AO-PE-UIO-HW with
its non-adaptive version. Also Table 1 compares PE-UIO-HW and the AO-PE-
UIO-HW in terms of variance of input reconstruction error. Note that, whilst
PE-UIO-HW with a large parity space order (s = 24) leads to good disturbance
attenuation for the first 800 samples of simulation, its bandwidth is to narrow
to reconstruct all frequency components of vk which is visible when the impact
of the noise becomes less significant, see Fig. 6. On the other hand, sk = 14
does not allow for optimal noise attenuation during the first 800 samples. For
completeness, the frequency responses of the unknown input reconstruction filter
defined in equation (13) for different values of sk are presented in Fig. 7.
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Figure 5: Parity space order and its influence on noise filtering
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Figure 6: Unknown input estimation error
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Figure 7: Frequency response of the unknown input reconstruction filter for
different values of sk
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Table 1: Comparison of efficacy of the PE-UIO-HW and the AO-PE-UIO-HW
in terms of variance of input reconstruction error

PE-UIO-HW AO-PE-UIO-HW
sample range s = 14 s = 24 variable s

100:2000 0.0031 0.0018 0.0013
100:800 0.0074 0.0030 0.0028

1200:1800 2.9e-4 9.5e-4 2.9e-4

6 Conclusions and further work

In this paper an adaptive time-varying filter scheme for unknown input recon-
struction has been developed. The proposed filter adjusts to the operating
point of the system resulting in an improved noise attenuation. The scheme,
since inherently adaptive, requires at each discrete time step a non negligible
computational effort. Therefore, the future work aims towards an optimisation
of the computational procedure. It is also intended to extend the algorithm to
the multivariable case.
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