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Distributions of forecasting errors of forecast
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Devon Barrowa,∗, Nikolaos Kourentzesb

aFaculty of Business, Environment and Society, Coventry University
Coventry University, Coventry, West Midlands, CV1 5FB, UK

bLancaster University Management School
Department of Management Science, Lancaster, LA1 4YX, UK

Abstract

Inventory control systems rely on accurate and robust forecasts of future

demand to support decisions such as setting of safety stocks. Combining

forecasts is shown to be effective not only in reducing forecast errors, but

also in being less sensitive to limitations of a single model. Research on

forecast combination has primarily focused on improving accuracy, largely

ignoring the overall shape and distribution of forecast errors. Nonetheless,

these are essential for managing the level of aversion to risk and uncertainty

for companies. This study examines the forecast error distributions of base

and combination forecasts and their implications for inventory performance.

It explores whether forecast combinations transform the forecast error dis-

tribution towards desired properties for safety stock calculations, typically

based on the assumption of normally distributed errors and unbiased fore-
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casts. In addition, it considers the similarity between in- and out-of-sample

characteristics of such errors and the impact of different lead times. The

effects of established combination methods are explored empirically using a

representative set of forecasting methods and a dataset of 229 weekly de-

mand series from a household and personal care leading UK manufacturer.

Findings suggest that forecast combinations make the in- and out-of-sample

behaviour more consistent, requiring less safety stock on average than base

forecasts. Furthermore we find that using in-sample empirical error distri-

butions of combined forecasts approximates well the out-of-sample ones, in

contrast to base forecasts.

Keywords: Time Series, Forecasting, Combination, Inventory, Safety Stock

1. Introduction

The combination of multiple forecasts is a well-established procedure for

improving forecast accuracy. The two key reported advantages are the reduc-

tion of both forecast error variance and reliance on a single forecast method

(Clemen and Winkler, 1986; Timmermann, 2006). While there is general

acceptance that forecast combination improves accuracy, there is limited re-

search on its impact on the distribution of forecast errors (de Menezes et al.,

2000), and even less on the impact this has on inventory (Chan et al., 1999).

In this work we examine the key properties of the forecast error distribu-

tions of both base and combined forecasts, and the impact combination has

on setting the safety stock. We focus on safety stock as this affects the en-
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tire control system including total inventory, reorder levels, backorders, and

stockouts. Many inventory control systems assume that forecast errors are

normally distributed and unbiased. This is often violated in practice. We

investigate whether the combination of forecasts leads to any improvement

in the shape of the error distribution towards desired properties of normality

and unbiasedness.

Specifically the contributions of this paper are as follows: (a) investigate

the effect that forecast combinations have on the shape of the forecast er-

ror distributions, as measured in terms of bias, variance and deviation from

normality; (b) compare base and combined forecasts error characteristics bet-

ween in-sample, where inventory variables are estimated, and out-of-sample,

where these are utilised to support decisions; and (c) evaluate the impact of

combinations on safety stock.

The rest of the paper is organised as follows. Section 2 provides the re-

search background of this work, motivating its research questions. Section 3

describes the various forecast combination methods that are considered. Sec-

tion 4 presents the setup of the empirical evaluation, and section 5 discusses

the results, followed by concluding remarks.

2. Forecast combinations, error distributions and safety stock

Forecast combination has been used successfully in many areas of research

and practice including economics, meteorology, insurance and retail forecast-

ing (Clemen and Winkler, 1986; Timmermann, 2006). Evidence from empir-
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ical several studies (Aksu and Gunter, 1992; Macdonald and Marsh, 1994;

Elliott and Timmermann, 2004; Stock and Watson, 2004; Dekker et al., 2004;

Clements and Hendry, 2007; Jose and Winkler, 2008; Guidolin and Timmer-

mann, 2009; Andrawis et al., 2011; Kourentzes et al., 2014a), and forecasting

competitions (Makridakis et al., 1982; Makridakis and Hibon, 2000) have

been almost unanimous in concluding that combining forecasts improves fore-

casting accuracy.

Since the seminal paper of Bates and Granger (1969) there has been ex-

tensive research in combining forecasts. The main focus is proposing better

combination methods and the evaluation has focused on improving forecast-

ing accuracy. However evaluating the benefits of forecast combination only

in terms of better point forecasts can be rather misleading (Chatfield, 1995,

1996; Fildes and Howell, 1979; Fildes, 1989) as it ignores all other information

contained in the entire distribution of the forecast errors.

This falls short of what is required of inventory control systems, where the

decision maker needs to take an explicit account of the risk and uncertainty

associated with such forecasts (Chen et al., 2007; Gerchak and Mossman,

1992). The safety stock (SS) required for a given item is defined as:

SS = kσ̂L, (1)

where k is the safety factor for achieving the target service level, typically cal-

culated based on reference to the normal distribution, and σL is the standard
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deviation of forecast errors for the respective lead time L. The σ̂L is typically

estimated by calculating the respective Root Mean Squared Error (RMSE)

of the forecasts. This is a reasonable estimate of the true standard deviation

when the forecasts are unbiased. Hence, it is obvious that a good forecast

for inventory purposes should be unbiased and its errors having minimum

variance and deviation from normality.

The majority of the forecast combination literature has focused mainly on

accuracy evaluation and there is limited research on the impact of combining

on the overall distribution of forecast errors (the most notable papers being

those by de Menezes and Bunn, 1993, 1998; de Menezes et al., 2000), and even

fewer studies on the impact this has on inventory. Chan et al. (1999) find

that combined forecasts outperform base forecasts for inventory management

applications. However the evaluation is again focused on RMSE and does not

consider the entire error distribution. Thus the aspects of bias and deviation

from the assumed normality are not explored. Furthermore de Menezes et al.

(2000) warn that forecast error variances should not be the single focus of

attention when evaluating forecast combination for decision making under

uncertainty. In this study we therefore consider the entire forecast error

distribution, and in- and out-of-sample behaviour of different combination

methods to understand the impact on inventory decisions.

This study expands on the work by Chan et al. (1999) by considering sev-

eral alternative forecast combination schemes, making use of different aspects

of the forecast errors of the individual forecasts. In that paper the authors
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evaluated the constrained OLS optimal method by Newbold and Granger

(1974), albeit with different weight procedures based on fixed and rolling

windows. Here we valuate combinations methods which are qualitatively

different in their approach to estimating model weights including the Out-

performance method by Bunn (1975) based on probabilities, several methods

based on OLS regression, and multiple variants based on minimisation of the

covariance matrix of forecast errors including the Optimal method. This

extension is useful as the Optimal method is known to suffer from poor per-

formance under certain conditions, but also as we directly evaluate the need

for more complex combination methods over simpler ones.

The out-of-sample errors are of essence for inventory management. Since

these are not available the in-sample errors are used instead as an approxi-

mation. The accuracy of this approximation is crucial for the quality of the

inventory decisions. Makridakis and Winkler (1989) find differences between

the properties of in- and out-of-sample errors to be quite large and variable.

Their results suggest that even when in-sample one-step ahead errors satisfy

the usual conditions of normality, independence and bias, the out-of-sample

errors do not. This may result in over optimism with regards to the accu-

racy and uncertainty of forecasts, for example making confidence intervals

too narrow (Makridakis et al., 1987). Makridakis (1986) and Makridakis and

Winkler (1989) find little correlation, on average 0.2, between in-sample one-

step ahead forecast accuracy and out-of-sample accuracy for lead times one

to three steps ahead. Pant and Starbuck (1990) obtained similar results using
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the M-Competition data. The implications for calculating inventory safety

stocks are obvious. Considering forecast combinations, a relevant question

is whether they increase the quality of approximation of the out-of-sample

error behaviour over base forecasts.

So far we ignored the additional uncertainty introduced by the lead time.

A traditional approach is to assume that forecast errors are independent

over time (Silver et al., 1998), and to approximate the lead time standard

deviation in (1) by multiplying the lead time by the standard deviation of

the one-step ahead forecast errors σ̂1 (Axsäter, 2006):

σ̂L =
√
Lσ̂1. (2)

This approach assumes rather importantly that forecast errors are uncorre-

lated with constant variance over time, both often violated in practice. In

doing so it ignores potential covariance between errors of the different h-step-

ahead forecasts and covariances due to the cumulative demand across lead

times. While we do not claim that (2) is the only or best way to calculate

σ̂L, it does illustrate the importance of understanding how the forecast error

distribution changes over different lead times. Furthermore, if the assump-

tions of homoscedasticity and normality are lifted one would expect that the

empirically calculated safety stock will differ from the one prescribed by the

theoretical formulas. Given that forecasts combination alters the error dis-

tribution it is important to understand, when compared to base forecasts,
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how it performs over increasing lead time horizons and how empirical safety

stock diverge from theoretical ones.

Understanding these aspects of forecast combinations will enable us to

help managers decide whether combinations lead to better inventory decisions

over base forecasts and to what extent.

3. Forecast combination methods

Forecast combination methods are based on in-sample forecast error vari-

ance minimization (Newbold and Granger, 1974; Min and Zellner, 1993),

ordinary least squares (OLS) regression (Granger and Ramanathan, 1984;

Macdonald and Marsh, 1994), Bayesian probability theory (Bunn, 1975; Bor-

dley, 1982; Clemen and Winkler, 1986; Diebold and Pauly, 1990), regime

switching and time varying weights (Diebold and Pauly, 1987; Elliott and

Timmermann, 2005; Lütkepohl, 2011; Tian and Anderson, 2014), Akaike

weights (Kolassa, 2011), meta-learning (Lemke and Gabrys, 2010), compu-

tational intelligence methods e.g. artificial neural networks (Donaldson and

Kamstra, 1996), and countless other innovations.

Following Newbold and Granger (1974), all methods can be expressed as

a linear combination such that:

ŷcmt =
M∑
m=1

wmtŷmt = w′tŷt, (3)

where ŷt is the column vector of one-step-ahead forecasts (ŷ1t, ŷ2t, ŷ3t, . . . , ŷMt)
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at time t produced by the mth forecasting method, and wt is the column vec-

tor of weights for the set ofM forecasting methods (w1t, w2t, w3t, . . . , wMt).The

weights wmt will generally depend on the historical accuracy of base forecasts.

Therefore when forecasting at time t, we use all observations prior to t to

estimate both base forecast model parameters and forecast weights. In the

methods described below, weights obtained in forecasting at time t are also

utilised in forecasting multiple steps ahead.

In this paper we focus on a number of methods outlined below that are a

good representation of different degrees of sophistication and common prac-

tice.

3.1. Simple average and median

This is the simplest of all the forecast combination methods. It is popular

due to its ease of implementation, robustness, and a good record in economic

and business forecasting (Jose and Winkler, 2008; Timmermann, 2006). The

simple average forecast is obtained by setting all weights wm = M−1. This

will be referred to in the empirical evaluation as Mean. The simple average

is sensitive to outliers and assumes symmetric distributions. Alternative

combination operators such as the median and the mode can be used. The

former is less sensitive to outliers. We will refer to this as Median. The mode

is insensitive to either outliers or lack of distribution symmetry, but has been

shown to require about 30 or more forecasts to function well (Kourentzes

et al., 2014a) and therefore will not be used here.
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3.2. The Optimal method

This method provides optimal weights in the sense that the variance

of the combined forecast error is minimised, while producing an unbiased

combined forecast. The error variance at time t is minimized with weights

wt determined according to the formula:

wt =
S−1I

I ′S−1I
, (4)

where I is an m dimensional column vector of ones, and S is the covariance

matrix of the one-step-ahead forecast errors. We will refer to this as Optimal.

3.3. Optimal with independence assumption

When forecasts are (assumed) independent the diagonal of S is sufficient.

This mitigates estimation issues when only short time series are available

(Bates and Granger, 1969; Newbold and Granger, 1974). We will refer to

this in the empirical evaluation as Optimal adaptive.

3.4. Optimal with restricted weights

Another variation on the optimal method is that weights must belong to

the interval [0, 1]. We will refer to this as Optimal adaptive RW.
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3.5. Regression

In this method, actual values of the time series are regressed on the base

forecasts with the inclusion of an intercept

yt = w0 + w′tŷt + εt. (5)

The coefficients are used as combination weights. Granger and Ramanathan

(1984) argued that this method guarantees unbiased combined forecast. This

will be referred to as Regression.

3.6. Regression with restricted weights

Granger and Ramanathan (1984) shows that a constrained regression

(weights restricted to sum to one) with the constant suppressed is equivalent

to the optimal method. Granger and Ramanathan (1984) suggests the vari-

ant of employing a constrained least squares regression with the inclusion of

a constant

yt = w0 + w′tŷt + εt, s.t. w′tI = 1. (6)

We will refer to this as Regression RW.

3.7. Outperformance

One of the first attempts at using Bayesian analysis for forecast combina-

tion was by Bunn (1975). In this method each weight is interpreted as being

the probability that the corresponding one-step-ahead forecast outperforms

all others as measured by the absolute error. This easy to implement robust
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nonparametric method is attractive due to its intuitive interpretation, the

ability to incorporate expert judgement through priors, and its robust per-

formance particularly when there is relatively little past data. We will refer

to this as Outperformance.

3.8. Bates methods

In our analysis we include the five methods of Bates and Granger (1969).

For each forecast m: Emt =
∑t−1

i=t−ν(emt)
2, where emt are the forecasts errors

at time t. The weight of each forecast is calculated as

wmt = Emt/
M∑
m=1

Emt.

This constitutes method Bates I. In the second variant, Bates II, the weights

are generated using

wmt = αwmt−1 + (1− α)
Emt∑M
m=1Emt

,

where α ∈ (0, 1). In the third variation, Bates III, S2
m =

∑t−1
i=1 w

t(emt)
2 is

estimated, which for w > 1 assigns greater weight to more recent errors than

ones further in the past. The weight of each forecast becomes

wmt = S2
m/

M∑
m=1

S2
m.

The first three methods utilise the variance of forecast errors. Bates IV
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utilises the weighted covariance C =
∑t−1

1 wteitejt, with i = 1, 2, 3, . . . ,M

and j = 1, 2, 3, . . . ,M . The weight given to forecast m at time t is wmt =

S2
m − C/

∑M
m=1 S

2
m −mC.

The final method, Bates V, utilises an exponentially smoothed weighting

based on the absolute error of the forecast

wmt = αwmt−1 + (1− α)
|emt−1|∑M
m=1|emt−1|

, (7)

where α is a smoothing constant between one and zero. The reader is asked

to refer to this paper for full details of each method.

4. Empirical evaluation

4.1. Dataset

To empirically evaluate the effect of forecast combination we use a set of

229 products from a major UK fast moving consumer goods manufacturer.

The manufacturer specialises in the production of household and personal

care products. For each product there are 173 weekly sales observations.

The historical data are separated into an in-sample estimation set of 104

weekly observations allowing a reasonable estimate of any seasonal effects

when present in the data, and the remaining 69 observations are used as a test

set, where out-of-sample forecasts will be evaluated. About 21% of the time

series are identified as trended and none as seasonal. Trend was identified

using the nonparametric Cox-Stuart test on a centre moving average estimate
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of each series. Fig. 1 provides representative examples of the time series in

the dataset.
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Figure 1: Example time series.

4.2. Forecasting Methods

To conduct the empirical evaluation a number of forecasting methods are

used to produce base forecasts. These are subsequently combined using the

methods in section 3.

Näıve

The random walk forecast, hereby referred to as Näıve, is a fundamental

benchmark that requires no parameter identification, and should be out-

performed by more complex methods to warrant the additional complexity.

Given the most recent actual observation yt the forecast for h steps ahead is

calculated as ŷt+h = yt.
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Exponential Smoothing (ETS)

Exponential smoothing methods model the various structural components

of a time series: level, trend and season, which may interact with each other

in an additive or multiplicative way. Hyndman et al. (2002) proposed a

state space formulation, which provides a statistical framework for estimat-

ing model parameters, choosing between alternative forms and constructing

prediction intervals. The reader is referred to Hyndman et al. (2008) for a

detailed description of the model, which we refer to as ETS. Here the ap-

propriate model is chosen using the Akaike’s Information Criterion (AIC)

(Hyndman et al., 2002).

Autoregressive models (AR)

Autoregressive models, named here AR, attempt to capture the time

series dynamics in a regression framework, thus having a different information

base than ETS. This is useful so as to provide a variety of forecasts for the

combinations. The first p lags of the time series are used as explanatory

variables. Seasonal lags are permitted, which are of order P . The resulting

forecast is:

ŷt+h =

p∑
i=1

αiyt−i +
P∑
j=1

βjyt−(js), (8)

where s is the seasonal length of the time series and αi and βj the autore-

gressive coefficients. In case of nonstantionary time series differencing may

be used first. To identify the order of p and P , as well as the need for dif-

ferencing we follow the methodology proposed by Hyndman and Khandakar

15



(2008). This uses the KPSS and OCSB tests to decide the order of first- and

seasonal-differencing respectively and the autoregression order is identified

using a stepwise procedure based on AIC.

Autoregressive Integrated Moving Average model (ARIMA)

Autoregressive Integrated Moving Average models extend AR to include

moving average components. These models, although statistically elegant,

are regarded as hard to specify and have not been widely applied in practice.

Here we will be using the methodology by Hyndman and Khandakar (2008)

to specify the models. In addition to the steps considered in specifying the

AR models, the order of the moving average is also identified through a

stepwise process. We refer to them as ARIMA.

Theta method

The Theta method, referred to as Theta in our results, was initially

proposed by Assimakopoulos and Nikolopoulos (2000) as a decomposition

method, but latter shown by Hyndman and Billah (2003) to be in its most

basic form, equivalent to a single exponential smoothing with drift. Theta

can capture seasonality by first de-seasonalising the time series. It has been

shown to perform very well in multiple empirical evaluations and specifically

in the M3 competition, one of the most well known forecasting competitions,

where it ranked overall best (Makridakis and Hibon, 2000).
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Multiple Aggregation Prediction Algorithm (MAPA)

This method employs multiple temporal aggregated series of the original

time series to achieve better estimation of the various time series compo-

nents. It was proposed by Kourentzes et al. (2014b) who argued that since

by temporally aggregating a time series different structural components are

attenuated or strengthened; a series should be modelled across multiple ag-

gregation levels. This way a more holistic identification and estimation of the

time series components can be achieved. The combination of the various esti-

mates from the different aggregation levels is done by time series components,

which makes ETS a natural model to use at each level. The authors showed

that this approach resulted in substantial performance improvements over

conventional modelling, while at the same time increasing the robustness of

the forecasts to model misspecification. Petropoulos and Kourentzes (2014)

found similar findings for slow moving items. Here we used MAPA with mean

combination of the components at the different temporal aggregation levels,

as described in detail by Kourentzes et al. (2014b).

All forecasts were constructed using the R statistical package (R Core

Team, 2012). ETS, AR and ARIMA are built using the forecast package

(Hyndman, 2014). Theta is build using the TStools package (Kourentzes

and Svetunkov, 2014) and MAPA using the MAPA package (Kourentzes and

Petropoulos, 2014).
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4.3. Experimental setup

For each time series all forecasting methods are fitted using the first 104

observations of the series, and the in-sample errors calculated as the difference

between the historical and the fitted values, providing a distribution of in-

sample errors. Based on the fitted values and errors, the various combination

weights are calculated for the different methods as outlined in section 3. This

allows calculating the in-sample fit of the combined forecasts. Subsequently,

a rolling origin evaluation is performed on the remaining out-of-sample obser-

vations. The manufacturer of our case study is interested in both short and

medium term forecasts, therefore we consider the following forecast horizons:

t+1, t+3 and t+5 for the out-of-sample period. We also track t+1 in-sample

forecast errors. Forecasts from the individual base methods and the combina-

tions of their forecasts are calculated, providing the respective out-of-sample

error distributions for each model and time series.

We measure the forecast bias and error using scaled errors (sE) and scaled

squared errors (sSE):

sEt =
yt − ŷt∑n
i=1 yi

, (9)

sSEt =
(yt − ŷt)2∑n

i=1 yi
, (10)

where the denominator is the mean level of the time series and is used to

make the errors and squared errors scale independent in order to be able to

summarise the results across time series and forecast origins. We do that by
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calculating the mean and the median of the above metrics, resulting in the

scaled mean error (sME) and scaled median error (sMdE) to measure forecast

bias and scaled mean squared error (sMSE) and scaled median squared error

(sMdSE) to measure the magnitude of forecast errors. For the latter two, we

can calculate their square root, resulting in sRMSE and sRMdSE respectively.

We adopt these scaled errors instead of percentage errors because our time

series contain periods with zero observed demand. Furthermore, we focus on

the RMSE because under zero or small bias it approximates the variance of

the distributions, the determining factor of the size of safety stock.

5. Results

5.1. Forecasting accuracy and bias

First we present the forecast accuracy and bias results. Tables 1 and 2

summarise the sME/sMdE and the sRMSE/sRMdSE respectively. Values in

brackets refer to the median metrics, and the rest to the mean metrics. Each

column refers to a specific forecast horizon and the best base and combined

forecasts are highlighted in boldface. The best forecast overall in each column

is underlined.

In both tables we can observe substantial differences between the sME

or sMSE and their median counterparts, providing some evidence that the

error distributions deviate from normality. For the base methods Theta and

MAPA perform best in terms of bias and accuracy. This is consistent with

the literature (Makridakis and Hibon, 2000; Kourentzes et al., 2014b). Fot

19



Table 1: Forecast bias for in- and out-of-sample sets in sME (sMdE)
Method In-sample Out t+1 Out t+3 Out t+5
Näıve 0.922 (0.170) 0.777 (0.172) 0.809 (0.177) 0.844 (0.185)
ETS 0.453 (0.090) 0.459 (0.117) 0.474 (0.120) 0.505 (0.124)
AR 0.472 (0.095) 0.500 (0.124) 0.517 (0.127) 0.544 (0.131)
ARIMA 0.459 (0.092) 2.090 (0.124) 0.492 (0.128) 0.519 (0.130)
Theta 0.454 (0.088) 0.455 (0.117) 0.469 (0.117) 0.496 (0.122)
MAPA 0.446 (0.090) 0.446 (0.118) 0.449 (0.119) 0.472 (0.120)
Mean 0.458 (0.091) 0.486 (0.112) 0.456 (0.115) 0.485 (0.117)
Median 0.447 (0.090) 0.437 (0.112) 0.448 (0.114) 0.474 (0.117)
Optimal 0.456 (0.091) 0.500 (0.112) 0.456 (0.115) 0.485 (0.117)
Optimal adaptive 0.439 (0.087) 0.500 (0.112) 0.453 (0.115) 0.482 (0.118)
Optimal adaptive RW 0.418 (0.081) 0.729 (0.119) 0.463 (0.119) 0.488 (0.123)
Regression 0.500 (0.103) 0.508 (0.120) 0.475 (0.123) 0.503 (0.127)
Regression RW 0.473 (0.091) 0.488 (0.108) 0.455 (0.111) 0.483 (0.114)
Outperformance 0.488 (0.092) 0.586 (0.113) 0.483 (0.119) 0.514 (0.122)
Bates I 0.491 (0.101) 0.508 (0.124) 0.527 (0.128) 0.554 (0.132)
Bates II 0.482 (0.095) 0.470 (0.115) 0.480 (0.119) 0.509 (0.122)
Bates III 0.611 (0.146) 0.504 (0.116) 0.478 (0.118) 0.507 (0.121)
Bates IV 0.605 (0.143) 0.491 (0.116) 0.469 (0.119) 0.499 (0.121)
Bates V 31.075 (0.103) 20.729 (0.135) 39.156 (0.140) 48.487 (0.143)

Table 2: Forecast accuracy for in- and out-of-sample sets in sRMSE (sRMdSE)
Method In-sample Out t+1 Out t+3 Out t+5
Näıve 0.960 (0.412) 0.882 (0.415) 0.900 (0.421) 0.919 (0.431)
ETS 0.673 (0.300) 0.677 (0.343) 0.688 (0.347) 0.711 (0.352)
AR 0.687 (0.309) 0.707 (0.353) 0.719 (0.356) 0.737 (0.361)
ARIMA 0.677 (0.304) 1.446 (0.352) 0.701 (0.357) 0.721 (0.360)
Theta 0.674 (0.297) 0.674 (0.342) 0.685 (0.342) 0.705 (0.349)
MAPA 0.668 (0.300) 0.668 (0.343) 0.670 (0.344) 0.687 (0.346)
Mean 0.677 (0.302) 0.697 (0.335) 0.675 (0.339) 0.696 (0.342)
Median 0.668 (0.299) 0.661 (0.334) 0.669 (0.338) 0.689 (0.342)
Optimal 0.675 (0.302) 0.707 (0.335) 0.675 (0.340) 0.696 (0.342)
Optimal adaptive 0.663 (0.295) 0.707 (0.335) 0.673 (0.339) 0.694 (0.343)
Optimal adaptive RW 0.646 (0.284) 0.854 (0.345) 0.680 (0.345) 0.699 (0.351)
Regression 0.707 (0.321) 0.713 (0.347) 0.690 (0.351) 0.709 (0.356)
Regression RW 0.688 (0.302) 0.699 (0.329) 0.675 (0.333) 0.695 (0.337)
Outperformance 0.698 (0.303) 0.766 (0.337) 0.695 (0.345) 0.717 (0.349)
Bates I 0.700 (0.318) 0.713 (0.353) 0.726 (0.358) 0.744 (0.363)
Bates II 0.695 (0.309) 0.686 (0.339) 0.692 (0.346) 0.713 (0.349)
Bates III 0.781 (0.382) 0.710 (0.341) 0.692 (0.344) 0.712 (0.348)
Bates IV 0.778 (0.378) 0.700 (0.341) 0.685 (0.345) 0.706 (0.348)
Bates V 5.575 (0.320) 4.553 (0.368) 6.257 (0.374) 6.963 (0.378)
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the combined forecasts, the best performing ones are the Median, Optimal

adaptive RW and Regression RW, depending on the use of mean or median

errors. The Mean combination performs better than several of the various

combination methods (Timmermann, 2006), but is consistently outperformed

by the Median, as one would expect for distributions of forecasts that may

deviate from normality (Kourentzes et al., 2014a).

Comparing base with combined forecasts, the latter are overall better.

For all out-of-sample measurements Median has the best overall sME and

sMSE performance, while Regression RW has the best sMdE and sMdSE

performance. With regards to the in-sample errors the Optimal adaptive

RW performs best, however this is not consistent with its out-of-sample

performance, which can be attributed the combination weights having overfit.

This behaviour is not observed by the relatively simpler Optimal and Optimal

adaptive counterparts.

5.2. Shape and variability of error distributions

Next we evaluate the shape of the error distributions. For RMSE to be

appropriate for the calculation of safety stock it is assumed that the errors are

normally distributed. Figure 2 shows the percentage of normally distributed

in and out-of-sample errors for base and combined forecasts across time series,

as tested using the Shapiro-Wilk test for normality.

The figure provides some interesting insight in the difference between in-

and out-of-sample behaviour of the error distributions, with the latter being
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Figure 2: Percentage of normally distributed errors.

more normal. Note that the Shapiro-Wilk test tests only deviation of the

empirical distribution from the normal and not the forecast performance,

which worsens for longer out-of-sample forecast horizons, as indicated by

Tables 1 and 2. When comparing base and combination forecast error it

is apparent that on average, errors of the combined forecasts exhibit more

normal behaviour, with most of the percentages around 40% for the out-of-
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sample. Crucially, considerably less than 50% of the time series have normally

distributed errors, for either base or combined forecasts. This demonstrates

that the assumption of normality is violated very frequently. The Näıve is an

exception to this. Further evidence of the nature of this deviation is provided

in Appendix A, where the skewness and kernel density estimations of the

error distributions are provided.

Figure 3 provides boxplots of the relative out-of-sample variance for the

different forecast horizons over the in-sample variance measured across all

time series. The different forecasts are grouped into Base and Combinations

to better highlight the differences between the two groups of forecasts. If the

in- and out-of-sample errors would have the same variance then the boxplots

should be very close to one, indicated by a horizontal line. This is equivalent

to measuring whether the in-sample variance is an appropriate estimation

of the out-of-sample variance, as is the standard practice in inventory man-

agement. The combined forecasts have smaller relative variance than the

base forecasts, supporting the argument that combinations violate less the

standard assumptions in comparison to base forecasts.

The results so far provide strong evidence that approximating the out-

of-sample error variance with the in-sample t+1 RMSE adjusted by
√
L for

longer lead times is inappropriate and overly simplistic, either due to the

differences between error distributions shape or variance. Although we do not

claim that this is the only way to approximate the out-of-sample variance, its

use is widespread and other approaches typically ignore some of the identified
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Figure 3: Relative variance of error distribution between in- and out-of-sample for Base
and Combination methods. The mean of the distribution is plotted with a diamond (�).

distributional differences as well (Chatfield, 2000).

5.3. Error distributions and safety stocks

Up this to point we have seen that combinations on average transform

the in- and out-of-sample error distributions closer to normal compared to

base forecasts. Furthermore, when the appropriate combination method is

used, it is found to have a beneficial impact in terms of forecast bias and

accuracy, as well as on the variance of the errors.

We turn our attention to the implication this has on safety stock calcu-

lation. We calculate the one-step ahead average safety stock level using the

theoretical approach, approximated as SS = k · sRMSE, and the empirical

in- and out-of-sample distribution for 80% and 95% service levels. Note that

the results from the empirical error distributions are bound to be different

than the theoretical ones, as the former include any covariance between fore-

cast errors, which are not present in the theoretical formula. The results
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across series are presented in Table 3. The smallest value in each column is

highlighted in boldface.

Table 3: Average in-sample (theoretical and empirical) and out-of-sample t+1 scaled
Safety Stock

Method

In-sample In-sample Out-of-
Theoretical Empirical sample t+1
80% 95% 80% 95% 80% 95%

Nave 0.74 1.44 0.95 1.71 0.93 1.65
ETS 0.51 0.99 0.66 1.11 0.71 1.16
AR 0.52 1.02 0.66 1.15 0.73 1.26
ARIMA 0.51 1.00 0.66 1.13 0.72 1.22
Theta 0.51 0.99 0.66 1.11 0.70 1.16
MAPE 0.50 0.98 0.65 1.09 0.70 1.14
Mean 0.51 1.00 0.66 1.13 0.69 1.16
Median 0.51 0.99 0.65 1.10 0.69 1.13
Optimal 0.51 1.00 0.66 1.13 0.69 1.16
Optimal adaptive 0.50 0.98 0.64 1.10 0.69 1.14
Optimal adaptive RW 0.49 0.95 0.63 1.07 0.71 1.17
Regression 0.55 1.07 0.67 1.23 0.70 1.23
Regression RW 0.53 1.03 0.65 1.18 0.68 1.18
Outperformance 0.53 1.03 0.68 1.18 0.71 1.21
Bates I 0.53 1.04 0.69 1.18 0.74 1.27
Bates II 0.53 1.03 0.68 1.17 0.71 1.20
Bates III 0.60 1.17 0.78 1.33 0.70 1.20
Bates IV 0.59 1.16 0.77 1.32 0.70 1.18
Bates V 0.93 1.82 1.11 2.10 0.78 1.70

The average in-sample theoretical estimation of SS is much lower than the

average in-sample empirical estimation of SS, and also the out-of-sample t+1

empirical SS. Using in-sample RMSE based on assumption of normality, when

distributions are in fact not normal, is on average underestimating safety

stock levels compared to both in- and out-of-sample empirical errors. The

in-sample empirical SS is much closer to the out-of-sample (t+1) empirical

SS, suggesting that using the in-sample empirical distributions of forecast

errors might be preferable to the theoretical approach. These findings hold
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for various service levels between 80% and 95% that were trialled.

To highlight the differences between base and combined forecasts, Fig-

ure 4 plots the relative sRMSE of the empirical in- and out-of-sample t+1

errors over the theoretical variance for 80%, 90%, and 95% percentiles of the

cumulative distribution, which refer to target service levels. The various base

and combination forecasts are grouped. The behaviour of the t+3 and t+5

out-of-sample errors is analogous to the t+1 case and therefore not shown,

but obviously any differences are further inflated due to the covariance that

is captured in the empirical error distributions and is missing in the theoret-

ical calculation. This covariance has two sources: between errors of forecasts

of different steps-ahead and errors forming the cumulative demand over lead

time, and therefore the differences increase further for longer lead times.

0.80 0.85 0.90 0.95

1.
0

1.
1

1.
2

1.
3

1.
4

In−sample t+1

Target service level

R
el

at
iv

e 
sR

M
S

E

Base
Combinations

0.80 0.85 0.90 0.95

1.
0

1.
1

1.
2

1.
3

1.
4

Out−of−sample t+1

Target service level

R
el

at
iv

e 
sR

M
S

E

Base
Combinations

Figure 4: Relative sRMSE of empirical in- and out-of-sample t+1 errors over theoretical.

There is very little difference in the behaviour between the base and the
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combined forecasts for the case of the in-sample t+1. However, for the out-

of-sample case, the combination forecasts result in substantially reduced rel-

ative sRMSE, implying lower required safety stocks. These results are based

on the empirical distributions and do not assume normality of the errors as

the theoretical approach does, which underestimates the observed variance.

Furthermore, note that in Figure 4 the behaviour of the combination fore-

casts between the in- and out-of-sample case is very similar, demonstrating

a consistency not seen for the base forecasts. Consequently the safety stocks

calculated using the t+1 in-sample empirical error distribution of the com-

bination forecasts are expected to be much more reliable than the ones for

the base forecasts.

The variance of combined forecasts is not only lower, but also better

behaved in terms of the correlation of the average in- and out-of-sample

error variance. Therefore, forecast combinations have a beneficial impact on

safety stocks and subsequently on inventory management.

There are important practical implication of these findings. Although

the theoretical calculation of the safety stock is convenient, it requires the

assumption of normality and ignores any implied covariance. Violating these

can result in underestimating the observed error variance. On the other

hand, the empirical in-sample t+1 error distribution is a direct alternative

for statistical forecasts, as it is a typical output of model fitting. Our analysis

shows that while this is a poor approximation of the out-of-sample forecast

error behaviour for base forecasts, for the combined forecasts it is accurate.
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This is a useful finding for organisations. As long as combination forecasts

are used, using the readily available in-sample empirical variance can lead to

more reliable safety stock calculations.

6. Conclusions

In the forecasting literature combinations of forecasts are generally consi-

dered beneficial and have been found to improve the performance in terms of

forecast bias and accuracy. In this paper we focus on evaluating the impact

of forecast combinations on the forecast error distribution. This aspect is

important for inventory management, and in particular for the calculation of

the safety stock.

We find that forecast combinations improve forecast accuracy and bias, in

agreement with the literature, but also result in more normally distributed

errors. We also provide evidence that the empirical error distribution of

the combination forecasts is a good approximation of the out-of-sample one,

while this not as evident for the base forecasts. In any case, the empirical

distribution provides a better approximation of the out-of-sample behaviour

in comparison to the commonly used theoretical approximation, as the latter

is based on the strong assumption of normality.

In so doing we identify a practical way for organisations to achieve better

approximation of the demand uncertainty when using combined forecasts.

Using the empirical distribution of the forecast errors we are able to overcome

limitations of the standard theoretical formula for stock calculations which
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fails to account for deviations from normality and any covariance between

forecast errors of the cumulative demand over lead time. The impact of this

miscalculation for individual and combination forecasts is explored and the

latter is found to be more robust.

Approximating the out-of-sample empirical distribution requires appro-

priate handling of the data, i.e. the use of a validation sample, and adequate

sample size. This may make its use complicated for practice. We proceed

to identify an effective approximation of the out-of-sample uncertainty using

the empirical in-sample errors that holds for combination forecasts, but not

for individual forecasts. This greatly simplifies any calculations, as no spe-

cial separation of the sample is needed. In fact, this information is often

a result of the forecasting model estimation and can be readily available in

organisations.

Translating these results in terms of safety stock we find that combi-

nations behave more consistently between in- and out-of-sample errors and

require less safety stock to cover the observed forecast error variance. Fore-

casting method selection is a critical determinant of inventory costs (Fildes

and Kingsman, 2011). Thus, the overall conclusion is that when the ad-

ditional dimensions of this research are considered, forecast combinations

improve upon base forecasts, with beneficial implications for inventory man-

agement.

Although the focus of the paper was not to compare the different combi-

nation methods, we evaluated a wide selection of methods. Simple ones, such
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as the Median, performed at least as good, if not better, than more complex

methods. A useful finding is that the widely used Mean did not perform well

in the presence of irregular data. This is very relevant to inventory manage-

ment, where special events and promotions are common. This is helpful for

practice as it demonstrates that simple and easy to implement combination

methods can bring the desired benefits.
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Appendix A. Deviation of error distributions from normality

Here we provide further evidence on the nature of the deviations from

normality that the forecast error distributions exhibit. Figure A.5 plots the

distribution of the coefficient of skewness of the in- and out-of-sample scaled

errors for all methods across the various time series. The out-of-sample

distribution for all horizons are grouped as they have only smalls differences.

The forecast errors of the base forecasts are skewed, as are the errors of

the combined forecasts, with the only exception being the Näıve method.

However the boxplots indicate that some combination methods (for e.g. the

Outperformance method and Bates IV method) are effective at reducing

both the in- and out-of-sample skewness, thus reducing the non-normality of

the error distributions.

To further understand the shape of the distributions Figures A.6 and A.7

provide the t+1 in and out-of-sample scaled error average empirical distri-
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Figure A.5: Boxplots of skewness of error distribution per method. Normal distribution
corresponds to 0 skewness.

butions, using kernel density estimation. Note that these are smoothed since

these are averaged across all time series. Forecast horizons t+3 and t+5 are

not provided, as they are very similar to the out-of-sample t+1. These plots

are illustrative of the shape of the distribution and are not intended to pro-

vide a detailed view of the errors of each forecast method. Error distributions

exhibit heavy tails and multimodality. The difference in the shape between

the in- and out-of-sample errors is particularly clear, explaining the results

in Figure 2. Although combinations lead to some improvement in normality,

the distributions remain overall non-normal.
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Figure A.6: Densities for in-sample errors.

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2 Base methods

Reference normal
Naive
ETS
AR
ARIMA
Theta
MAPA

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2 Combinations

Reference normal
Mean
Median
Optimal
Optimal adaptive
Optimal adaptive RW
Regression
Regression RW
Outperformance
Bates I
Bates II
Bates III
Bates IV
Bates V

Figure A.7: Densities for out-of-sample t+1 errors.
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