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Abstract 

In this paper we develop classification models for the identification of acquisition targets 

in the EU banking industry, incorporating financial variables that are mostly unique to the 

banking industry and originate from the CAMEL approach. Our sample comprises 168 

non-acquired banks matching 168 acquired banks over the period 1998-2002, covering 15 

EU countries. We compare and evaluate the relative efficiency of three multicriteria 

approaches, namely MHDIS, PAIRCLAS, and UTADIS, with all models developed and 

tested using a 10-fold cross validation approach. We find that the importance of the 

variables differs across the models. However, on the basis of univariate test and the 

results of the models we could state that in general after adjusting for the country where 

banks operate, acquired banks are less well capitalized and less cost and profit efficient. 

The results show that the developed models can achieve higher classification accuracies 

than a naïve model based on random assignments. Nevertheless, there is fair amount of 

misclassification that is hard to avoid given the nature of the problem, showing that as in 

previous studies for non-financial firms, the identification of acquisitions targets in 

banking is a difficult task.  
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1. Introduction  

The purpose of this study is to evaluate the performance of multicriteria decision aid 

(MCDA) prediction models developed specifically to identify acquisition targets in the 

banking industry, an area that is relatively under-researched
1
. Of approximately 30 papers 

that we can identify in the literature which utilised one or more methods for the 

prediction of acquisition targets, all but one (Pasiouras and Tanna, 2006
2
) have focused 

on samples of firms drawn from the non-financial sectors (i.e. manufacturing, retail, 

hospitality, etc.) and excluded banks from their analysis. One reason for their exclusion is 

the unusual structure of banks’ financial statements suggesting that certain bank specific 

characteristics distinguish them from other corporations (Bauer and Ryser, 2004). In line 

with Pasiouras and Tanna (2006) the present paper utilises financial variables that 

originate from the CAMEL
3
 approach in developing prediction models that distinguish 

acquired from non-acquired banks, based on a sample of commercial banks covering 15 

EU countries
4
 (the former EU15).   

Most of the past studies have used multivariate statistical and econometric 

techniques such as discriminant analysis (e.g. Stevens, 1973; Barnes, 1990) and logit 

analysis (e.g. Barnes, 1998; 1999, Powell, 2001) and only more recently the parametric 

nature and the statistical assumptions/restrictions of those approaches have led 

researchers to the application of alternative techniques such as artificial neural networks 

                                                   
1
 Most of the previous studies in banks’ M&As can be classified in four main categories. These are: (i)  

studies that examine the consequences of M&As on operating performance (e.g. Cornett and 

Tehrania,1992; Berger and Humphrey, 1992; Berger, 1998), (ii) event studies that examine the changes in 

the share prices of the stock of the merged banks around the M&A announcement date (e.g. Baradwaj et 

al., 1992; DeLong, 2001), (iii) studies that examine the determinants of the premium paid for the target 

(e.g. Cheng et al., 1989; Hunter and Wall, 1989; Gart and Al-Jafari, 1999; Henderson and Gart, 1999), and 

(iv) studies that examine the characteristics of the banks involved in M&As (e.g. Curry, 1981; Wheelock 

and Wilson, 2000, 2004). Other issues that have been examined are the consequences of banks M&As on 

small firms lending (e.g. Berger et al., 1998), the arguments for the merger (Went, 2003), the relation of 

M&As with CEO compensation and managerial incentives (e.g. Anderson et al., 2004), and the 

determinants of cross-border M&As (e.g. Focarelli and Pozzolo, 2001). 
2
Pasiouras and Tanna (2006) have used discriminant and logit analysis to re-examine various 

methodological issues while focusing on the banking industry.   
3
 CAMEL is an acronym commonly used by bank regulators to assess a bank’s financial condition. It refers 

to the analysis of the five key elements of banks performance (capital adequacy, asset quality, management, 

earning and liquidity) although we consider, in addition, factors that reflect size, market power and growth 

of banks as in Wheelock and Wilson (2004) and Pasiouras and Zopounidis (2006).  
4
 The studies that examine the EU banking industry mainly fall in the first (e.g. Vander Vennet, 1996; Diaz 

et al., 2004; Campa and Hernando, 2006) and second (e.g. Tourani Rad and Van Beek, 1999; Cybo-Ottone 

and Murgia, 2000; Scholtens and Wit, 2004; Valkanov and Kleimeier, 2006; Campa and Hernando, 2006) 

of the four main categories mentioned above. 
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(Cheh et al., 1999), rough sets (Slowinski et al., 1997), recursive partitioning algorithm 

(Espahbodi and Espahbodi, 2003) and multicriteria decision aid (MCDA) (e.g. Doumpos 

et al., 2004). Some of these studies focused on the search of the best predictive variables 

(e.g. Bartley and Boardman, 1990; Walter, 1994; Cudd and Duggal, 2000) and others on 

the search of the most effective empirical method for the development of the prediction 

models (e.g. Doumpos et al, 2004; Cheh et al., 1999; Slowinski et al., 1997; Espahbodi 

and Espahbodi, 2003).  

The present paper has two overall objectives that cover both categories mentioned 

above. First, it aims to jointly investigate the efficiency of three MCDA techniques. 

Second, it attempts to reveal the factors that contribute in the identification of 

acquisitions targets. The major advantages of the MCDA over the traditional techniques 

are that they do not make any prior assumptions
5
 about the normality of the variables or 

the group dispersion matrices (e.g. discriminant analysis), and that they are not sensitive 

to multicollinearity or outliers (e.g. logit analysis). Furthermore, MCDA techniques can 

easily incorporate qualitative data, while they are also very flexible in terms of 

incorporating preferences of the decision maker.  

The rest of the paper is as follows. In Section 2 we first describe our sample of 

EU commercial banks and explain the cross validation procedure for developing and 

validating the models
6
. We then provide a detailed discussion of the financial variables 

representing bank-specific characteristics that we consider appropriate for the 

                                                   
5
Barniv and McDonald (1999) summarize some of the problems related to the use of discriminant, logit and 

probit. Their argument, based on previous studies, is that Logit and Probit are sensitive to: (a) data 

properties, such as departure from normality of financial variables (Frecka and Hopwood, 1983; 

Richardson and Davidson, 1984; Hopwood et al., 1988); (b) overall small sample size (Noreen, 1988; Stone 

and Rasp, 1991); (c) multicollinearity (Aldrich and Nelson, 1984; Stone and Rasp, 1991). Hopwood et al. 

(1998) also point out that discriminant analysis (DA) is generally sensitive to departure from normality, and 

logit and probit are both sensitive to extreme non-normality. DA assumes normality, symmetry and equal 

covariance matrices, which are usually strong assumptions. 
6
Prior studies that have applied MCDA techniques for the prediction of acquisition of non-financial firms 

conclude that they can be more efficient than traditional techniques (Zopounidis and Doumpos, 2002; 
Doumpos et al., 2004). However, the evaluation procedure in these studies has been based on the back 

testing approach where the models are developed with data from one year prior to acquisition, and tested on 

data from two or three years prior to the acquisition. Hence, their evaluation approach utilises the dataset 

that is effectively drawn from the same set of firms used for model development. It has been shown that 

when classifications models are used to reclassify the observations of the training sample, the classification 

accuracies are biased upwards (Altman, 1993). In the present study we re-examine the relative efficiency of 

MCDA techniques using a 10-fold cross validation approach that allows the maximum use of the available 

data in the training stage and ensures the proper validation of the models. 
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identification of bank acquisition targets. The three MCDA approaches are described in 

Section 3, while section 4 discusses the empirical results. Finally, Section 5 presents our 

concluding remarks on the use of the MCDA models for identifying acquisition targets 

and highlights some issues for further research.        

 

2. Sample and variables selection  

2.1 Sample selection  

In order to obtain data and information on commercial bank acquisitions in the EU, 

certain criteria had to meet.  For example, the acquisition represented the purchase of 

50% or more of the ownership of the acquired bank, and all banks were classified as 

commercial banks in Bankscope database
7
. The reason only commercial banks were 

considered is to avoid comparison problems between other types of banks (e.g. co-

operatives, investment, etc.) across the EU countries.  Secondly, all financial data have to 

be available for two years before the year of acquisition. We considered the time span for 

acquisitions to be 1998-2002, which allowed 168 acquisitions matched by a randomly 

selected set of 168 non-acquired banks (as of end 2002), resulting in a total sample of 336 

banks
8
.   

Matching of firms is now common practice when conducting classification studies 

in finance, such as bankruptcy or acquisitions prediction (e.g. Kira and Morin, 1993; 

Bhargava et al., 1998; Laitinen and Kankaanpaa, 1999; Neophytou and Mar Molinero, 

2004; Charitou et al., 2004; Doumpos et al., 2004; Gaganis et al., 2005). There are two 

primary reasons for following this procedure, known as choice based sample. The first is 

the lower cost of collecting data compared to an unmatched sample (Zmijewski, 1984; 

                                                   
7
 The sources of information for the acquisitions were the Bankscope, BANKERSalamanac.com and 

ZEPHYR databases of Bureau van Dijk’s company, with all financial data collected from the Bankscope 

database. 
8
 In addition to time, researchers usually match firms on the basis of size. Nevertheless, Bartley and 

Boardman (1990) argue that “matching by size or other variables may be an appropriate control 

mechanism when the research objective is to examine the statistical significance of individual causal 
variables” (p.55) and that “Further, given the lack of a theoretical model, the choice of variables to be 

matched is inherently arbitrary” (p. 55). Furthermore, as they point out in an earlier study (Bartley and 

Boardman, 1986) where firms were matched by industry and size, this procedure reduces the classificatory 

power of the discriminant models. Another important issue that should be considered is that if a 

characteristic is used as a matching criterion, its effects will be obviously excluded from the analysis 

(Hasbrouck, 1985). For example, matching by size prevents analysis of the effects of size on the likelihood 

of acquisition. Since the literature suggests that size is an important explanatory variable in acquisitions, it 

was preferred in this study to use size as an independent variable rather as a matching characteristic. 
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Bartley and Boardman, 1990; Ireland, 2003). The second and most important is that a 

choice based sample provides higher information content than a random sample
9
 

(Cosslett, 1981; Palepu, 1986; Imbens, 1992).  

Although the year of acquisition is not common for all banks in the sample, they 

were all considered as acquired in the year “zero”, referred to as the year of reference.  

Financial statements for the most recent year prior to the “zero” year were used to obtain 

the data (i.e. the first or the second year before the year of acquisition, depending on data 

availability, for the acquired banks and the same fiscal year for the non-acquired ones). 

Table 1 presents the sample by year and country, distinguishing between the acquired and 

the non-acquired banks.  

[Insert Table 1 Around Here] 

 

An important issue of concern in evaluating the classification ability of a model is 

to ensure that it has not over-fit to the training (estimation) dataset, as this might affect its 

out-of-sample performance. This raises the question of how to appropriately validate the 

model, given that “a model without sufficient validation may only be a hypothesis” 

(Stein, 2002). Evaluating the model’s performance on the training data set is obviously 

not adequate, as prior research indicates that this tends to bias the classification 

accuracies upwards (Altman, 1993). Therefore, using some kind of a holdout-testing 

sample is appropriate.  

The simplest technique for estimating the error rates is a holdout sample that 

involves a single train-and-test procedure. However, insufficient data on acquired banks 

can lead to problems when constructing an appropriate holdout sample. Furthermore, in 

implementing such an approach the number of acquired banks to be included in the 

training and holdout samples is a crucial point: if too many acquired banks are left out of 

                                                   
9
 Given that the number of acquired firms is relatively small compared to non-acquired, random sampling 

will consequently result in a sample comprising of many non-acquired firms and only a few (if any) 

acquired firms, which from an estimating procedure perspective is inefficient (Palepu, 1986; Barnes, 1990; 

Ireland, 2003). Thus, it is essential to select the sample in a way that will ensure that acquired firms in 

sample represent an adequate proportion. Manski and Lerman (1977) and Manski and McFadden (1981) 

point out that such a choice based sample will provide more efficient estimates than a random sample of the 

same size, Cosslett (1981) characterizes such a sample as a close-to-optimum design, while Imbens (1992) 

concludes that the equal share sample is significantly better than random sampling to the extent that 

controlling with an equal share sample gives more relevant information.   
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the training sample (in-sample data) then over-fitting becomes likely, whereas if too 

many acquired banks are left out of the testing sample (out-of-sample data) then it would 

be difficult to estimate the true performance of the model (Sobehart et al., 2000). To 

mitigate this problem, a re-sampling technique such as the jackknife, bootstrap or cross 

validation can be used, thus obviating the need for a separate test sample and ensuring 

maximum use of the data. Shao and Tu (1995) provide a useful introduction to the use of 

resampling techniques, and Bartley and Boardman (1986, 1990), Kira and Morin (1993), 

and Fairclough and Hunter (1998) apply such techniques to the prediction of acquisition 

targets.   

In the present study, we adopt a 10-fold cross validation approach to develop and 

evaluate the models. Under this approach, the total sample of 336 banks is initially 

randomly split into 10 mutually exclusive sub-samples (i.e. non-overlapping folds of 

approximately equal size). Then, 10 models are developed in turn, using nine folds for 

training and leaving one fold out each time for validation. Thus, in each of the 10 

replications, the training sample consists of 302 (or 303) banks, whereas the validation 

(holdout) sample consists of not-the-same 34 (or 33) banks. The average error rate over 

all the 10 replications is the cross-validated error rate. 

 

2.2 Choice of Variables   

Mergers and Acquisitions (M&As) between banks occur for various reasons and the 

underlying motives suggest a variety of financial characteristics possessed by the ideal 

target bank. In a pan-European setting, the need for comparable data across different 

countries sets obvious restrictions on the type of variables one can use. To minimize 

possible bias arising from different accounting practices, broad variable definitions as 

provided by Bankscope are used. We select 8 variables that cover most aspects of banks 

performance and serve as proxies for the basic motives behind banks M&As
10

. Table 2 

                                                   
10

 Palepu (1986) criticized previous studies that typically started with a large number of financial ratios and 

then, simply on a step-wise basis determined which ratios to retain. He formulated six hypotheses of 

acquisition likelihood and chose a single representative ratio. Barnes (1998), Cudd and Duggal (2000) and 

Powell (1997, 2001) followed the same approach and is the one employed in the present study too. The 

variables we choose reflect some aspects of the CAMEL characteristics (except management capacity) 

although we relate our discussion to the underlying motives for bank M&As.   
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presents a list of the variables while the discussion that follows briefly outlines their 

relation to the motives for banks M&As.  

[Insert Table 2 Around Here] 

 

Capital strength  

The fact that financial regulators require commercial banks to sustain a minimum amount 

of capital reflects the importance of defense against the risk of bank insolvency. Studies 

in the US that examined the relation between capital strength and the acquisition 

likelihood of a bank have in general found a negative relationship although not 

statistically significant in all cases (e.g. Hannan and Rhoades, 1987; Moore, 1996; 

Wheelock and Wilson, 2000).  There are two possible explanations for this finding. First, 

a lack of financial strength tends to attract buyers who can infuse capital into the acquired 

banks (Moore, 1996). Second, banks attract buyers with skillful managers who are able to 

operate successfully with high leverage (Hannan and Rhoades, 1987; Wheelock and 

Wilson, 2000). By contrast, while investigating the role of regulatory capital in bank 

M&As, Valkanov and Kleimeir (2006) find that US targets have, on average, 

significantly higher pre-merger Total and Tier 1 capital ratios capitalized?? than  their 

non-acquired peers, although this not the case in the EU. However, the authors mention 

that their results do not necessarily contradict those of the above mentioned US studies 

and the differences might be due to the measure used to access capital strength (i.e. 

capital to assets ratio versus risk-weighted ratios). In the present study we measure bank’s 

capital strength by its equity to asset ratio
11

 (EQAS), following its use in numerous recent 

studies (e.g. Cyree et al., 2000; Wheelock and Wilson, 2000, 2004; Pasiouras and 

Zopounidis, 2006; Campa and Hernando, 2006).  

 

Inefficient management  

                                                   
11

It might be argued that the employment of risk-weighted ratios, such as the Tier 1 ratio, is more 

appropriate, especially when considering the argument of Valkanov and Kleimeier (2006). However, due to 

many missing values for Tier 1, we rely on the use of equity to assets ratio. Furthermore, Estrella et al. 

(2000), in a study of bank default prediction, illustrate that simple leverage ratios predict as well as much 

more complex risk-weighted ratios over one or two year horizons.  
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The inefficient management hypothesis (Manne, 1965) argues that if the managers fail to 

maximize their firm’s value, then the firm is likely to be acquired so that inefficient 

managers will be replaced. Thus, according to this hypothesis acquisitions are motivated 

by a belief that the acquiring bank’s management can handle better the recourses of the 

acquired bank (Hannan and Rhoades, 1987). Hannan and Rhoades (1987) found no 

evidence to support the hypothesis, while the results of Curry (1981) are mixed. 

However, Moore (1996), Focarelli et al. (1999), Wheelock and Wilson (2000) and 

Pasiouras and Gaganis (2006) found that less efficient banks (either in terms of 

profitability or expenses management or both) are more likely to be acquired. We use two 

measures, the return on average assets (ROAA) and the cost/income ratio (COST) to 

access the efficiency of managers in terms of profits and costs.  

 

Size 

Size is related to both synergy and agency motives for M&As and therefore can influence 

acquisitions through several channels. More detailed, economies of scale and scope are 

probably the most well known synergy motives associated with size. Nevertheless, there 

could be diseconomies associated with size and this could negatively influence a target 

bank’s acquisition likelihood, not least because large banks are generally more expensive 

to be acquired, have greater resources to fight unwanted acquisitions and are more 

difficult to be absorbed within the organization of the acquiring bank. Furthermore, 

agency conflicts between shareholders and managers could lead to M&As that are 

motivated by managers’ self interest. In the latter case, there is a potential for managers 

to pursue their own aims such as enhance their salary and prestige, diversify personal risk 

or secure their job, through empire building, rather than maximize profits, at the expense 

of shareholders.  In the present study, as in most studies in banking, we measure size with 

bank’s total assets (SIZE).  

 

Loan activity 

Data from the European Central Bank report (2004) on the stability of the EU banking 

sector indicate that the share of total loans in total assets was approximately 67% in 2003, 

highlighting the importance of loans for EU banks. Therefore loan activity may be 
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another factor influencing the decision to acquire a bank. Hannan and Rhoades (1987) 

argue that, on the one hand, a high level of loans would seem to indicate aggressive 

behaviour by the target bank and a strong market penetration with important established 

customer relationships that would make it an attractive target; whereas, on the other hand, 

a low level of loan activity may indicate a bank with conservative or complacent 

management, which an aggressive acquiring bank could turn around to increase returns. 

While most of the studies suggest a negative relationship (Curry, 1981; Hannan and 

Rhoades, 1987; Moore, 1996; Pasiouras and Zopounidis, 2006), this is not significant in 

all cases. The results in Wheelock and Wilson (2000, 2004) are also mixed with total 

loans to total assets, being negatively related but not statistically significant in some 

instances and positively related but not always statistically significant in other instances, 

depending on the specification of the estimated model. We follow previous studies in 

banking (Curry, 1981; Hannan and Rhoades, 1987; Moore, 1996; Wheelock and Wilson, 

2000, 2004), and measure the level of loan activity with the total loans to total assets ratio 

(LOANS).   

 

Liquidity 

Without the necessary liquidity and funding to meet obligations, a bank may fail unless 

external support is given (Golin, 2001). Therefore liquidity management is important for 

bank managers and may also have an influence on the attractiveness of a bank as a target. 

On the one hand, banks may be acquired because of their good liquidity position (i.e. the 

size of their liquid assets attracts acquirers). On the other hand, banks may be acquired 

because they have run into liquidity problems that are difficult to resolve. In the present 

study, we measure liquidity with the ratio liquid assets to customer & short term 

funding
12

 (LIQ). This ratio shows the percentage of customer & short term funding that 

could be met if they were suddenly withdrawn and the higher it is the more liquid the 

bank is.  

 

                                                   
12

 Liquid assets are generally short-term assets that can be easily converted into cash (e.g.. cash itself, 

deposits with the central bank, treasury bills, other government securities and interbank deposits). The use 

of the value of customer & short term funding on the denominator is motivated by the fact that data from 

the European Central Bank report (2004) indicate that the share of customers and other credit institutions 

deposits in total liabilities was 62.29% in 2003.  
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Growth 

Growth can affect bank acquisition in two opposing ways. On the one hand, as Kocagil et 

al. (2002) point out, empirical evidence suggests that some banks with relatively high 

growth rates experience problems because their management and/or structure is not able 

to deal with and sustain exceptional growth. Hence, it is possible that a faster growing 

firm could be an attractive acquisition for a firm with surplus resources or management 

available to help (Barnes, 1999). On the other hand, Moore (1996) finds a negative 

relationship between a bank’s growth rate and the acquisition probability to lend support 

to his argument that a slow growing firm may attract a buyer seeking to accelerate its 

growth rate and thereby increase its market value. In line with previous studies, we use 

the annual change in bank’s total assets to measure growth
13

 (GROWTH).  

 

Market Power  

Market power, interpreted as an increase in market share, has been quoted as one of the 

most important motivating factors for within-country, within-segment mergers in the 

financial sector (Group of Ten, 2001). Moore (1996) points out several channels through 

which market share could influence the decision to acquire a bank. First, regulatory 

concerns about anticompetitive effects could reduce the probability of acquisition of 

banks with high market share. Second, there may not be acquirers large enough to take 

over a bank with considerable market share. Third, a bank’s small share could reflect a 

lack of success in the market and therefore, consistent with the inefficient management 

hypothesis, this bank would be a potential target for banks with more efficient 

management. In the present study, we measure market share by dividing the deposits of 

the bank with the total deposits of the banking sector in which it operates
14

 (MSHARE).  

                                                   
13

As an anonymous reviewer suggested, focused versus unfocused growth could make a difference along 

with the industry targeted group. More precisely, it has been suggested that retail versus commercial 
growth may make a difference in returns given the economic environment and management abilities. 

Unfortunately, data availability has not allowed us to empirically examine this issue, and we hope that 

future research will improve upon this.  
14

 As correctly suggested by an anonymous reviewer, total assets could also have been used as a measure of 

market power. Furthermore, market share in terms of loans is another measure that could be used. 

However, since we have already considered total assets as a measure of size and we have accounted for 

bank’s loans to a large extent through the inclusion of LOANS (i.e. total loans/total assets) and/or SIZE 

(i.e. as mentioned above loans accounted for more than 65% of total assets in the EU in 2003) we 
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Industry-relative financial variables 

In a recent study on mergers and acquisitions in the financial sector, the Group of Ten 

(2001) points out that the nature of acquisition activity and the dominant motivations for 

acquisitions may differ between countries. For example, the motives or the opportunities 

for acquisitions, and hence the characteristics of the acquired banks, are likely to be 

different in a country where a number of acquisitions have already occurred than in one 

where there has been little acquisition activity.  Furthermore, the levels of profitability, 

liquidity, cost efficiency and other aspects of bank’s performance vary across EU 

countries. Therefore, as Harris et al. (1982) point out, financial ratios for individual firms 

may have little meaning in isolation and their relationship to industry averages can 

enhance the explanatory power of financial ratios.  

For the purposes of the present study, we use industry relative variables calculated 

as follows
15

 : 

 

Banks Industry relative Ratio X1 in year t = Banks X1 ratio in year t / Average value of 

X1 ratio in the commercial banking industry of the corresponding country in year t 

 

This is done for each of the 15 EU countries, and for every year between 1996 

and 2001. Standardizing by country average deflates raw values and expresses the 

variables in terms of percentages to enhance comparability. Also, because the values of 

the ratios were computed over different years, standardizing controls for the mean shift in 

the ratios from year to year (Barnes, 1990; Platt and Platt, 1990).  

3.  Multicriteria Decision Aid methods  

The problem considered in the present study is a classification one that in general 

involves the assignment of a set of m alternatives A={a1, a2, …, am}, evaluated along a 

set of n criteria g1, g2, …, gn, to a set of q classes C1, C2,…, Cq. In our case the 

alternatives are the banks in the sample, the criteria correspond to the eight financial 

                                                                                                                                                       
considered deposits, as an alternative measure of market power often used in the literature, to provides a 

slightly different picture.  
15

 The only variable for which we do not calculate the industry average is market share, which by definition 

expresses the value of a bank relative to the industry in which it operates.  
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variables and there are two classes, the non-acquired banks (class C1) and the acquired 

banks (class C2). Hence, in what follows we consider the simple two-class case, while 

details on the multi-class case, and how they can be handled with multicriteria 

techniques, can be found in Doumpos and Zopounidis (2002) and Zopounidis and 

Doumpos (2002). 

The present study employs three techniques, namely UTADIS, MHDIS, and 

PAIRCLAS. The first two originate from the preference disaggregation approach while 

the latter one adopts pairwise comparisons
16

. UTADIS and MHDIS have been used in 

other classification problems in finance and accounting (e.g. bankruptcy, credit risk, 

auditing) in the past and so will be described only briefly here. We provide a more 

extended discussion for PAIRCLAS as this method is relatively new.  

 

3.1 UTADIS 

The UTADIS approach implies the development of an additive utility function that is 

used to score the firms and decide upon their classification. The utility function has the 

following general form:  

                                                   
n

i

iii guwU
1

]1,0[)(a  (1) 

where wi is the weight of criterion gi (the criteria weights sum up to 1) and )( ii gu  is the 

corresponding marginal utility function normalized between 0 and 1. The marginal utility 

functions provide a mechanism for decomposing the aggregate result (global utility) in 

terms of individual assessment to the criterion level. To avoid the estimation of both the 

criteria weights and the marginal utility functions, it is possible to use the transformation 

)()( iiiii guwgu . Since )( ii gu is normalized between 0 and 1, it becomes obvious that 

)( ii gu  ranges in the interval [0, wi]. In this way, the additive utility function is simplified 

to the following form:           

                                                   
16

In the case of the preference disaggregation approach the problem is to develop a criteria aggregation 

model based on absolute judgments, which provides a rule for the classification of the alternatives on the 

basis of their comparison to some reference profiles (cut-off points) that distinguish the classes. The 

alternative approach adopted in PAIRCLAS is based on pairwise comparisons between the alternatives that 

need to be classified and some other reference alternatives (training sample) that constitute typical 

examples of each class. 
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n

i

ii guU
1

]1,0[)()(a  (2) 

The developed utility function provides an aggregate score aU  of each bank 

along all criteria. In the case of acquisitions prediction, this score provides the basis for 

determining whether the bank could be classified in either the group of non-acquired or 

acquired ones. The classification rule in this case is the following (C1 and C2 denote the 

group of non-acquired and acquired banks respectively, while u1 is a cut-off utility point 

defined on the global utility scale, i.e. between 0 and 1):   

                                    
21

11

              )(

              )(

CuU

CuU

aa

aa
                                               (3) 

The estimation of the additive value function and the cut-off threshold is 

performed using linear programming techniques so that the sum of all violations of the 

classification rule (3) for all the banks in the training sample is minimized. A detailed 

description and derivation of this mathematical programming formulation can be found in 

Doumpos and Zopounidis (2002). 

 

3.2 MHDIS 

In contrast to UTADIS, MHDIS distinguishes the groups progressively, starting by 

discriminating the first group from all the others, and then proceeds to the discrimination 

between the alternatives belonging into the other groups. To accomplish this task, instead 

of developing a single additive utility function that describes all alternatives (as in 

UTADIS), two additive utility functions are developed in each one of the q-1 steps, 

where q is the number of groups. The first function akU  describes the alternatives of 

group C1, while the second function akU ~  describes the remaining alternatives that are 

classified in lower groups Ck+1,…,Cq.  

 
n

i

ikikik guwU
1

a  and 
n

i

ikikik guwU
1

~~~ a , 1,...,2,1 qk    (4) 

 

The corresponding marginal utility functions for each criterion gi are denoted as 

iki gu  and iki gu~  which are normalized between 0 and 1, while each set of the 
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criterion weights kiw and kiw~  sum up to 1. In the formulation above, the model is 

developed in q-1 steps. Obviously, with two groups, the procedure consists of only one 

stage during which a pair of additive utility functions a1U  and a1~U  are developed to 

discriminate between the alternatives of group C1 and the alternatives of group C2. In that 

case the rule to decide upon the classification of any alternative has the following form: 

 

If aa 1~1 UU  then a belongs in C1 

Else if aa 1~1 UU  then a belongs in C2                                     (5) 

 

As with UTADIS, the estimation of the criteria weights and the marginal utility 

functions is accomplished through mathematical programming techniques. More 

specifically, in this case the formulation involves solving three programs, two linear and 

a mixed-integer one, to minimize the classification error and estimate optimally the 

criteria weights in the two additive utility functions. Further details of this mathematical 

programming formulation can be found in Zopounidis and Doumpos (2002).  

 

3.3 PAIRCLAS 

In this method the alternatives and their classification provide representative examples on 

the way the decision-maker implements his judgment policy and the system of 

preferences. The alternatives of the estimation set provide the basis to which any 

alternative ak A is compared in order to decide upon its classification. Within this 

decision-making context, given a set of classification decisions made by the decision-

maker (reference set), a decision for a new alternative can be made through its 

comparison to the reference alternatives already judged by the decision-maker. In 

particular, the classification of any ak is decided on the basis of the pairwise comparisons 

(ak, ai), for all ai A. The results of these comparisons lead to the estimation of the 

outranking and the outranked character of ak as opposed to the reference alternatives.  

In outranking relation methods developed for ranking and choice problems (such as 

in most of the ELECTRE methods (Roy, 1991) and the PROMETHEE methods (Brans 

and Vincke, 1985)), this information is used to rank the alternatives from the best to the 

worst ones or to select a limited set of the most preferred alternatives. In the proposed 
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methodology this information is used for classification purposes. In particular, the 

alternatives are organized in a valued outranking graph, as in the PROMETHEE II 

method (Brans and Vincke, 1985). For the reference alternatives that belong to class C1 

(ai A C1) only the arcs entering node ak are considered (i.e., the arcs ai ak). Each arc 

ai ak is associated with a preference index Pik [0, 1] representing the intensity of 

preference of the decision-maker for the alternative ai over ak. Values of Pik close to 1 

indicate strong preference for ai over ak. On the other hand, for the reference alternatives 

that belong to class C2 (ai A C2) only the arcs leaving node ak are considered (i.e., the 

arcs ak ai). Each arc ak ai is associated with the preference index Pki representing the 

intensity of preference of the decision-maker for the alternative ak over ai. 

The preference index Pik is specified as the weighted average of the preference of ai 

over ak on each criterion gj: 

                                                 
1

( , )
n

ik j j i k

j

P w p a a  (6) 

where wj [0, 1] is the weight of criterion gj representing the significance attributed to the 

criterion by the decision-maker in the pairwise comparisons between the alternatives. The 

preference function ( , )j i kp a a [0, 1] indicates the strength of the preference of the 

decision-maker for ai over ak defined on the basis of the performances of the two 

alternatives on the criterion gj (denoted as gij and gkj, respectively). In the case where 

gij<gkj it is assumed that no preference can be established for ai over ak on the basis of gj, 

i.e., ( , ) 0j i kp a a . On the other hand, if gij gkj the decision-maker has some degree of 

preference for ai over ak (i.e., ( , ) 0j i kp a a ), which is an increasing function of the 

difference 
ik

j ij kjd g g . Therefore, each preference function ( , )j i kp a a  can be defined 

as follows: 

                                                       
0 if 0

( , )
( ) if 0

ik

j

j i k ik ik

j j j

d
p

h d d
a a  (7) 

Values of ( , )j i kp a a  close to 1 indicate a strong preference for ai over ak on the 

basis of criterion gj, whereas values close to 0 indicate weak preference. Generally, the 

preference functions pj may have different forms depending on the form of the functions 



 16 

hj. For example, it is possible to consider the six forms of preference functions 

(generalized criteria) proposed by Brans and Vincke (1985) for the PROMETHEE 

methods that require the specification of some preferential parameters such as the 

preference and indifference thresholds. However, in a real-world situation it may be 

difficult for the decision-maker to specify which specific form of preference function is 

suitable for each criterion and to determine the parameters involved. To avoid this 

problem, instead of using a pre-specified form of preference functions, in the proposed 

methodology the form of these functions is induced from the information provided by the 

reference alternatives (Doumpos and Zopounidis, 2004).  

The preference indices Pik for the pairwise comparisons (ai, ak) constitute the basis 

for the development of a rule that can be used to decide on the classification of ak. The 

classification rule used is based on the difference between the leaving and entering flow 

for the alternative (node) ak. This difference defines a net flow fk for ak: 

                  
2 12 1 2 1

1 1 1 1

i i

k k k ki ik

A C A C

f f f P P
m m m ma a

 (8) 

The leaving flow 
kf  represents the outranking character of ak over all reference 

alternatives that belong to class C2, whereas the entering flow 
kf  represents the 

outranked character of ak over all reference alternatives that belong to class C1. The net 

flow is estimated as a weighted average of these leaving and entering flows. The weights 

used (1/m1 and 1/m2) are defined on the basis of the number of reference alternatives 

belonging to each class (m1, m2 denote the number of reference alternatives belonging to 

classes C1 and C2, respectively). The use of this weighting scheme eliminates the effects 

that possible significant differences among the number of references alternatives in each 

class may have on the estimation of the net flow f.  

The net flow ranges in the interval [-1, 1]. A net flow fk -1 indicates that the 

alternative ak does not outrank the reference alternatives from class C2 (i.e., 0kf ), 

while being strongly outranked by all reference alternatives from class C1 (i.e., 
1kf m ). 

Similarly, a net flow fk = 1 indicates that ak strongly outranks all reference alternatives 

from class C2 (i.e., 
2kf m ), while not being outranked by any reference alternative 

from class C1 (i.e., 0kf ). Finally, the case fk 0 indicates an “average” alternative, i.e., 
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an alternative that in some sense is “between” C1 and C2 and its classification can only be 

made marginally (i.e. the classification is not clear enough). 

Within this context an alternative that belongs into class C1 is expected to have a 

high leaving flow f  and a low entering flow f , whereas an alternative that belongs 

into class C2 is expected to have a low leaving flow f  and a high entering flow f . 

Intuitively, this means that: (1) an alternative from the class C1 is expected to have a high 

outranking character over the alternatives of class C2 (i.e. it strongly outranks the 

reference alternatives of class C2) and a low outranked character by the alternatives of 

class C1 (i.e. it is weakly outranked by the reference alternatives of class C2), and (2) an 

alternative from the class C2 should have a high outranked character by the alternatives of 

class C1 and a low outranking character over the alternatives of class C2. This leads to the 

following classification rule:  

                                                        1ka Czf k  

                                                        2ka Czf k                                              (9) 

where z is a cut-off point (which can be either specified by the decision-maker or 

estimated from the data that the estimation alternatives provide). 

On the basis of these rules, the parameters of the preference model (i.e., the criteria 

weights wj, the preference functions pj and the cut-off point z) can be determined using 

linear programming techniques that seek to minimize the classification errors for the 

reference alternatives (Doumpos and Zopounidis, 2004).  

 

 

 

4. Empirical results 

Table 3 presents descriptive statistics (mean, median, standard deviation) and the results 

of the Kruskal-Wallis test for mean differences in the variables between the two groups 

of banks (acquired and non-acquired). The results of this chi-square test suggest that after 

adjusting for the country where banks operate, the differences in the mean values for the 

acquired versus the non-acquired banks are significant for the first three of the eight 

variables, representing capital strength and management performance.  
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The results indicate that non-acquired banks were better capitalized, on average, 

over the period 1998-2002. This might suggest that acquired banks were characterized by 

a lack of financial strength that attracted buyers capable of infusing capital (Moore, 1996; 

Wheelock and Wilson, 2000) or that they had skilful managers capable of operating 

successfully with high leverage, thus making them attractive targets (Wheelock and 

Wilson, 2000). However, the lower profit efficiency (as measured by return on average 

assets) and the higher cost inefficiency (as measured by the cost to income ratio) of the 

acquired banks appear to lend support to the inefficient management hypothesis 

indicating that acquisitions serve as a mean to remove inefficient managers.   

 

[Insert Table 3 Around Here] 

 

Despite the fact that only the first three variables in Table 3 appear to be 

significantly different between the two groups of banks, we include all eight variables in 

the development of the MCDA models. This is based on the presumption that while 

univariate tests may discriminate an individual variable, in a multivariate setting the 

collective set of variables may achieve a better degree of discrimination overall. 

The results presented in Table 4 are the average weights (in %) over 10 

replications of the model development and testing process described in section 2. In the 

case of UTADIS and PAIRCLAS, there is only one function categorising all banks in 

sample, hence only a single set of weights are determined. By contrast, in the case of 

MHDIS, there are two additive utility functions, U1 characterizes the non-acquired banks, 

and U~1 characterizes the acquired ones, hence giving two sets of weights.  

 

[Insert Table 4 Around Here] 

 

The results indicate that, in the case of the UTADIS model, the first three 

variables (EQAS, ROAA, COST) account for nearly 88% of the total weighting, which is 

consistent with the univariate test results shown in Table 3. In the case of PAIRCLAS, 

the three most important variables (ROAA, COST, GROWTH), together account for just 

over 78%.  In the case of MHDIS, the weights are more balanced and all the variables 
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contribute to some degree in the classification of the firms, with the first (EQAS) being 

the most important and the last (MSHARE) being the least important.  

While there is no reason why the importance of the variables differs across the 

three models, such differences have been observed in past studies as well. For example, 

Espahbodi and Espahbodi (2003) found that coefficients and therefore the significance of 

the variables tended to differ across models developed through discriminant, logit, probit 

analyses and recursive partitioning algorithm. Barnes (2000) also used discriminant and 

logit analyses and found different variables to be important. One possible explanation is 

that, although all methods attempt to classify correct as many firms as possible, they 

consider different ways of processing the same information in the dataset. Another 

explanation specific to multicriteria models is that, while UTADIS and PAIRCLAS 

develop only one utility function characterizing all banks, MHDIS develops two 

functions, each describing one of the two groups. Whether the weights attributed by one 

method are intuitively more appealing than those selected by another method is a matter 

of subjective judgment, although it would appear from the results below that a balanced 

set of weights may result in better classification accuracies.   

 Turning to the evaluation of the models in terms of their classification ability, 

Panel A in Table 5 shows the average classification accuracies obtained at the training 

stage by the 10 fold cross-validation process explained earlier, i.e over the data set used 

for model development. In this case, MHDIS obtains the highest classification accuracy, 

achieving 70.6% for the acquired and 72.2% for the non-acquired groups of banks 

(giving an overall classification accuracy of 71.4%); whereas the corresponding 

accuracies for PAIRCLASS are 54.4% and 73.3% (overall 63.9%), and for UTADIS are 

56.9% and 75.0% (overall 66.0%) respectively. However, since these results refer to the 

training sample, the potential upward bias should be kept in mind and appropriately, 

therefore, the out-of-sample efficiency of the models should be examined.   

 

[Insert Table 5 Around Here] 

 

Panel B presents the average classification results obtained over the 10 rounds at 

the validation sub-samples (i.e over the data set not used for model development). The 
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highest overall accuracy is again achieved by MHDIS, with 68% of the acquired and 

63.3% of the non-acquired banks classified correctly (implying an overall classification 

rate of 65.7%).  PAIRCLAS also achieves marginally better classification accuracies than 

UTADIS, and its ability to classify correct the non-acquired banks (75%) is even higher 

than MHDIS (72.2%).  It should be noted that UTADIS does better than PAIRCLASS in 

the training stage, but ends up slightly worse in the validation stage.  However, MHDIS 

performs better than others in both the training and the validation stages.  This might be 

attributed to the balanced overall weightings obtained under MHDIS and the 

development of separate utility functions for characterizing acquired and non-acquired 

banks.  

The results do indicate a fair amount of misclassification, however, ranging 

between 30-45% for all methods. This is not inconsistent with previous studies that have 

in general found the prediction of acquisitions to be a difficult task
17

 (e.g. Palepu, 1986; 

Barnes, 1998, 1999, 2000; Powell, 2001; Espahbodi and Espahbodi, 2003). As Barnes 

(1999) notes perfect prediction models are difficult to develop even in the bankruptcy 

prediction literature, where failing firms have definitely inferior or abnormal performance 

compared to healthy firms. The problem with the identification of acquisition targets is 

that are potentially many reasons for acquisitions, while at the same time managers do 

not always act in a manner which maximizes shareholder returns (i.e. hubris, agency 

motives). It is more reasonable, therefore, to compare the performance of the models with 

chance assignments (Barnes, 2000). The results in Table 5 show that all the models 

perform better than a naïve model based on random assignments
18

.    

 

5. Concluding remarks and future directions  

                                                   
17

 A direct comparison with the results of previous studies is not appropriate because of differences in the 
datasets (Kocagil et al., 2002; Gupton and Stein, 2003), the industry under investigation, the methods used 

to validate the models, and so on. Nevertheless, a tentative comparison indicates that the range of accuracy 

in our study is comparable to other studies in acquisitions prediction that employed re-sampling techniques. 

Bartley and Boardman (1986) achieved a classification accuracy equal to 64% while in a later study 

(Bartley and Boardman, 1990) they obtained classification accuracies between 69.9% and 79.9%. 

Similarly, the classification accuracy in the study of Kira and Morin (1993) was equal to 66.17%.  
18

 In a sample with equal number of acquired and non-acquired banks like the one used in the present study, 

such a naïve approach would achieve an overall classification accuracy of 50%. 
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In this study we developed MCDA classification models for the identification of 

acquisition targets of commercial banks operating in the EU. The sample consisted of 336 

banks operating in the EU, of which 168 were acquired between 1998 and 2002.  

Eight variables most of which originate from the CAMEL model (and 

representing seven potential motives for banks acquisitions) were selected for inclusion 

in the models. Since the sample was drawn from 15 EU countries, the individual banks’ 

ratios were transformed to industry-relative ratios (by dividing the values of the variables 

of the individual banks with the corresponding average values of the commercial banking 

industry in the country where the banks operated).  

The models were developed using three multicriteria decision aid techniques, 

namely MHDIS, PAIRCLAS and UTADIS. A 10-fold cross validation approach that 

allows the maximum use of the available data while it ensures the proper evaluation of 

the models, was used to develop and validate the models. The ability of the models was 

assessed by comparing their classification accuracies, in terms of the percentage of banks 

correctly classified in each group. 

Such models can prove useful to managers who are interested in a decision tool 

that could allow them to identify potential candidates among a large set of banks and 

proceed to a more detailed examination of the ones that are closer to the typical profile of 

an acquisition target. Furthermore, as Curry (1981) mentions, bank regulators might be 

interested in the development of such models, which could be useful in forecasting the 

degree of competition in the market. Obviously, the efficiency of the model depends not 

only on the specifications and flexibility of the classification technique, but also on 

whether acquired banks have unique characteristics that distinguish them from non-

acquired banks.  

Our results indicate that the characteristics that can be useful in identifying the 

acquisition targets may differ across the techniques used to develop the models. 

However, this is not surprising and has been the case in past studies as well. One possible 

explanation is that, although all methods are using the same information (i.e. in terms of 

the data set and variables employed) and they have the same objective (i.e. correct 

classification), each one of them processes the information differently, due to differences 

in the procedures for solving the problem. For example, while UTADIS and PAIRCLAS 
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develop only one utility function characterizing all banks, MHDIS develops two 

functions, each describing one of the two groups. Furthermore, UTADIS solves one 

linear programming while MHDIS solves three mathematical programming formulations 

(i.e. two linear and one mixed-integer). Finally, PAIRCLAS operates on the basis of 

pairwise comparisons rather than the preference disaggregation approach. On the basis of 

the contribution of the criteria (in terms of weights) in the three models and the univariate 

results we could conclude that after adjusting for the country where banks operate, non-

acquired banks were better capitalized. We also found evidence to support the inefficient 

management hypothesis, as acquired banks were characterized by lower profitability and 

less efficiency in expenses management. Liquidity and loan activity also appeared to be 

important in characterizing acquired banks in the MHDIS model, while GROWTH was 

more important in PAIRCLAS.   

Turning to the classification ability of the models, the average results over the 10 

replications in the validation set showed that all models performed better than a naïve 

model based on random assignment to outcomes based on prior probabilities (i.e. 50% in 

an equal sample).  Nevertheless, there is fair amount of misclassification, which is hard to 

avoid given the nature of the problem. The highest overall classification accuracy was 

obtained by MHDIS (65.7%), followed by PAIRCLAS (63.8%), and UTADIS (61.6%). 

However, it should be noted that the superiority of any classification procedure may be 

context or sample specific (Espahbodi and Espahbodi, 2003). Nevertheless, the non-

parametric MCDA approaches have certain advantages over the parametric approaches, 

in that they do not require any assumptions and can easily incorporate qualitative 

variables, which leads us to conclude that they can be considered as a reliable alternative 

to the traditional statistical techniques. 

One potential shortcoming of the study, as is the case in many classification 

problems in finance (e.g. bankruptcy, credit risk), is that the usefulness of the model 

might be limited to the countries for which it was developed
19

 (i.e. EU-15). In our case, 

the problem might be even more serious since, as previously mentioned, the nature of 

acquisition activity and the dominant motivations for acquisitions may differ across 

                                                   
19

 We would like to thank an anonymous reviewer for a relevant comment that motivated us to include this 

paragraph in the revised version of the paper.  
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countries. However, it should be emphasized that the overall framework (i.e. variables 

selection process, selection of classification techniques, development and evaluation 

process) can be easily adopted while using data from other countries (e.g. US, Asia) by 

re-estimating the criteria weights in our models.   

Future research could extend the present study towards various directions such as 

the inclusion of additional non-financial variables (i.e. ownership type, manager’s 

experience or technological capacity), the testing of the usefulness of the models for other 

countries, the employment of and comparison with alternative techniques (i.e. 

multidimensional scaling, neural networks, etc), and the combination of MCDA and other 

techniques into integrated models.   
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Table 1 – Acquired and non-acquired banks in sample by year and country 

  1998 1999 2000 2001 2002 

  Acq NAcq Acq NAcq Acq NAcq Acq NAcq Acq NAcq 

Austria 2 1 0 1 0 3 1 2 1 1 

Belgium 3 3 0 1 3 1 0 1 3 2 
Denmark 0 0 2 3 2 8 3 1 3 2 

Finland 0 0 0 0 1 0 1 0 0 0 
France 10 4 9 9 7 15 3 8 6 7 
Germany 3 3 3 2 4 12 5 3 1 4 

Greece 0 0 3 0 4 0 0 0 1 0 
Ireland 0 1 1 1 0 0 0 1 0 1 

Italy 1 0 5 4 14 4 3 2 9 3 
Luxembourg 1 3 1 2 7 6 7 4 2 1 
Netherlands 0 4 1 0 1 1 0 0 0 4 

Portugal 0 1 0 0 4 0 2 0 0 3 
Spain 3 2 3 2 6 4 1 1 4 2 

Sweden 0 0 0 0 0 0 1 0 0 0 
UK 1 2 1 4 3 2 1 4 1 2 

Total 24 24 29 29 56 56 28 28 31 31 

 

 

Table 2 – List of independent variables 

 

Category Definition Calculation 

Capital Strength  EQAS Equity divided by total assets  

Inefficient Management ROAA Return on average assets   

 COST Cost  to income ratio  

Loan activity LOANS Total loans divided by total assets  

Liquidity LIQ Liquid assets divided by customer 

& short term funding  

Growth GROWTH Total assets annual change  

Size SIZE Total assets 

Market Power MSHARE Deposits market share 

 

 

Table 3 – Descriptive statistics and Kruskal Wallis test 
  Acquired Non-acquired Kruskal 

Wallis test 

  Mean Median Stdv Mean Median Stdv Chi-square 

EQAS  1.856 1.319 2.441 2.329 1.578 2.727 5.968* 

ROAA  -0.205 0.772 10.284 2.166 1.219 3.749 15.945** 

COST  1.175 1.112 0.533 0.946 0.977 0.430 25.907** 

LOANS  1.023 1.000 0.585 1.044 1.060 0.572 0.263 

LIQ  1.297 1.035 1.796 1.517 1.166 2.324 2.142 

GROWTH  3.321 0.213 74.897 0.810 0.361 20.533 2.351 

SIZE 0.887 0.091 2.472 1.208 0.128 4.773 0.647 

MSHARE 1.366 0.110 3.599 1.444 0.130 5.488 0.066 

Notes: *Significant at the 5% level, ** Significant at the 1% level; Variables are defined in Table 2 
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Table 4 - Average weights of the variables (in %) over the 10 replications 

 
  UTADIS PAIRCLAS MHDIS 

    U1 U-1 

EQAS 42.8% 3.5% 26.5% 19.5% 

ROAA   36.5% 27.1% 6.8% 7.0% 

COST  8.3% 25.8% 12.6% 10.8% 

LOANS  1.1% 3.4% 16.0% 20.0% 

LIQ  2.2% 8.6% 16.6% 19.2% 

GROWTH  2.1% 25.3% 4.6% 7.1% 

SIZE 2.3% 3.1% 13.9% 10.8% 

MSHARE 4.8% 3.2% 3.1% 5.7% 

Note: Variables are defined in Table 2 

 

 

Table 5 – Correct Classifications  

(Average results over 10 replications) 

 

 Acquired Non-acquired Overall 

 

Panel A: Training Sample 

MHDIS 70.6% 72.2% 71.4% 

PAIRCLAS 54.4% 73.3% 63.9% 

UTADIS 56.9% 75.0% 66.0% 

Panel B: Validation Sample 

MHDIS 68.0% 63.3% 65.7% 

PAIRCLAS 55.4% 72.3% 63.8% 

UTADIS 53.7% 69.5% 61.6% 
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