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Recently, the study of the coherent noise model has led to a simple (binary) prediction algorithm for the forthcoming earthquake
magnitude in aftershock sequences.This algorithm is based on the concept of natural time and exploits the complexity exhibited by
the coherent noise model. Here, using the relocated catalogue from Southern California Seismic Network for 1981 to June 2011, we
evaluate the application of this algorithm for the aftershocks of strong earthquakes of magnitude𝑀 ≥ 6. The study is also extended
by using the Global Centroid Moment Tensor Project catalogue to the case of the six strongest earthquakes in the Earth during the
last almost forty years. The predictor time series exhibits the ubiquitous 1/𝑓 noise behavior.

1. Introduction

The prediction of the magnitudes and occurrence times of
aftershocks is of crucial importance for restricting the losses
caused by strong earthquakes (EQs, hereafter) because build-
ings already damaged by the mainshock may collapse upon
the occurrence of a strong aftershock. Recently, an algorithm
has been suggested [1] on the basis of the coherent noise
model [2–4] and natural time [5–7] that might be useful for
the determination of both magnitudes and occurrence times
of aftershocks. It is the main scope of the present paper to
investigate the applicability of such an algorithm to aftershock
time series in SouthernCalifornia.This area has been selected
in view of the publication [8] of an accurate waveform relo-
cated EQ catalogue for Southern California from 1981 to June
2011 [9] that exhibits tighter spatial clustering of seismicity
than the routinely generated catalogue does.

The coherent noise model [2–4] is a model that shows
reorganization events (avalanches) whose size distribution

follows a power law over many decades and displays after-
shock events. These events have been shown [3, 10, 11] to
exhibit a behavior similar to that of the Omori-Utsu law [12];
see also [13, 14], for real EQ aftershocks. Moreover, it has
been recently shown [15] that it is compatible with the unified
scaling law [16] of waiting times between EQs.

In a time series comprising𝑁 avalanches (or EQs), natu-
ral time 𝜒𝑘 = 𝑘/𝑁 serves as an index for the occurrence of the
𝑘th event [5–7]. Natural time focuses on the sequential order
of the events and the analysis is usuallymade by using the pair
(𝜒𝑘, 𝑄𝑘), where 𝑄𝑘 is a quantity proportional to the size (and
hence to the energy) of the 𝑘th event. Natural time analysis
has found useful applications in a variety of fields: Statistical
Physics (e.g., [17–23]), Cardiology (e.g., [24–27]), Geophysics
(e.g., [6, 28–32]), Atmospheric Sciences (e.g., [33, 34]),
Seismology (e.g., [35–40]), Physics of EQs (e.g., [41–45]), EQ
prediction (e.g., [5, 46–52]), and so on (for a recent review
see [7]). For the case of EQs [36], 𝑄𝑘 ∝ 10𝑐𝑀𝑘 , where 𝑀𝑘 is
the magnitude of the 𝑘th EQ and 𝑐 ≈ 1.5. The two quantities
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Table 1: All EQs with magnitude 𝑀 ≥ 6.0 during the period 1981 to June 2011 within the reporting area for local events of SCSN (see the
polygon in Figure 1 of Hauksson et al. [8]). The dimensions of the rectangular aftershock area, centered at each epicenter, used in this study
are also shown.

EQ name 𝑀 Origin time (UTC) Lat (∘) Lon (∘) Area considered
Landers 7.30 1992/06/28 11:57:33 34.202 −116.435 1.1∘ × 1.1∘

El Mayor-Cucapah 7.20 2010/04/04 22:40:42 32.264 −115.295 1.0∘ × 1.0∘

Hector Mine 7.10 1999/10/16 09:46:43 34.595 −116.271 0.9∘ × 0.9∘

Northridge 6.70 1994/01/17 12:30:54 34.206 −118.549 0.6∘ × 0.6∘

2nd Superstition Hills 6.60 1987/11/24 13:15:56 33.017 −115.843 0.5∘ × 0.5∘

Big Bear aftershock 6.30 1992/06/28 15:05:30 34.202 −116.828 0.3∘ × 0.3∘

1st Superstition Hills 6.20 1987/11/24 01:54:14 33.082 −115.779 0.3∘ × 0.3∘

Joshua Tree 6.10 1992/04/23 04:50:22 33.968 −116.313 0.3∘ × 0.3∘

𝑘(= 𝑁𝜒𝑘) and𝑀𝑘 form the basis of the aftershock magnitude
prediction algorithm, which is discussed in the next section.

2. Materials and Methods

2.1. Data Analyzed. As mentioned in the introduction, we
consider the waveform relocated catalogue [8] for Southern
California from 1981 to June 2011 [9]. In order to filter out
distant poorly constrained events, we use the geographic
polygon shown in Figure 1 of Hauksson et al. [8] that covers
the Southern California Seismic Network (SCSN) reporting
area for local events.The𝑀 ≥ 6.0 events that occurredwithin
this area are shown in Table 1. As seen in this table, there are
4 stronger EQs with 𝑀 ≥ 6.7 which are the 1992 Landers,
the 2010 El Mayor-Cucapah, the 1999 Hector Mine, and the
1994 Northridge EQs (see Figure 1), and 4 smaller EQs which
are the two Superstition Hills large events [53] in 1987 and
the 1992 Joshua Tree and Big Bear events (see Figure 2). The
latter two EQs are related [54, 55] to the Landers EQ which
is the strongest one in California for the last sixty years (e.g.,
see Table 1 of [56]).

Following Shcherbakov et al. [13], we consider as after-
shocks all reported events that occurred during a period 𝑇
within a region centered at the epicenter of the each strongEQ
(see the last column of Table 1). The linear dimension of each
region scales with 100.5𝑀𝑚 starting from the region of 1.1∘×
1.1∘ selected by Shcherbakov et al. [13] for Landers EQ (cf. the
scaling of the aftershock zonewithmainshockmagnitude𝑀𝑚
was firstly introduced by Utsu and Seki [57]).This scaling has
been employed since it allows the determination of the “after-
shock” spatial window upon the occurrence of themainshock
and does not make use of any a posteriori information
concerning the aftershocks. Hence, the spatial range of the
space-time window usually called Omori regime—which is
identified [58] by examining the best fits of the Omori-Utsu
law to the aftershock data—may differ from this window.The
period 𝑇 examined was one year for the four stronger main-
shocks while it varies for the four smaller EQs (see Results
and Discussion).

2.2. Coherent Noise Model and the Algorithm. The events,
to be called avalanches, in the coherent noise model result

from the following procedure [2, 3]. Consider a system of𝑁𝑎
agents; for example, the points of contact in a subterranean
fault, for each agent 𝑖 we associate a threshold 𝑥𝑖, 𝑖 =
1, 2, . . . , 𝑁𝑎 that represents the amount of stress that an agent
withstands before it breaks. Without loss of generality [3],
𝑥𝑖 may come from the uniform distribution in the interval
0 ≤ 𝑥 < 1. The dynamics of the model consists of two
steps, a “stress” step, which is more important and sufficient
to produce large avalanches, and an “aging” step. During the
“stress” step, we select a random number (or “stress” level)
𝜂 from some probability distribution function 𝑝stress(𝜂) and
replace all 𝑥𝑖 that are smaller than 𝜂with new values resulting
from the uniform distribution in the interval 0 ≤ 𝑥 < 1. The
number of agents whose thresholds are renewed is the size
𝑆 of the avalanche. During the “aging” step, a fixed fraction
𝑓 of agents is selected at random and their thresholds are
also replaced with new thresholds obtained again from the
uniform distribution in the interval 0 ≤ 𝑥 < 1. If we
assume that 𝑁𝑎 → ∞, the thresholds 𝑥𝑖 are represented
by a threshold distribution function 𝑝thres(𝑥) which initially
(𝑘 = 0) is considered uniform in the interval 0 ≤ 𝑥 < 1;
that is, 𝑝(0)thres(𝑥) = 1 (see Figure 3). The size 𝑆1 of the first
avalanche (𝑘 = 1) is just the probability Prob[𝑥 < 𝜂1] =
∫𝜂1
0

𝑝(0)thres(𝑥)𝑑𝑥 = 𝜂1 which represents the “mass” of the agents
that had thresholds smaller than 𝜂1. After the subsequent
“aging” step the threshold distribution becomes 𝑝(1)thres(𝑥).
Upon repeating the two steps for the second time using 𝜂2 we
can obtain the size 𝑆2 of the second avalanche and the new
threshold distribution 𝑝(2)thres(𝑥) and so on.

In the case of the coherent noise model for 𝑁𝑎 → ∞,
the threshold distribution 𝑝(𝑘)thres(𝑥) after the 𝑘th avalanche is
a piecewise constant function having [1] the following general
form:

𝑝(𝑘)thres (𝑥) =
𝑛𝑘

∑
𝑛=0

𝑑(𝑘)𝑛 Θ(𝑥 − 𝑏(𝑘)𝑛 ) , (1)

where 𝑛𝑘 is the number of steps present in the threshold dis-
tribution function after the 𝑘th avalanche (e.g., see Figure 3),
𝑏(𝑘)0 = 0, 𝑏(𝑘)𝑛 , and 𝑑(𝑘)𝑛 are positive real parameters, and Θ(𝑥)
is the Heaviside (unit) step function; that is,Θ(𝑥) = 0 if 𝑥 < 0
and Θ(𝑥) = 1 if 𝑥 ≥ 0. The analysis of numerical results has
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Figure 1: Map of the aftershocks considered (see Table 1) in the case of (a) Landers, (b) El Mayor-Cucapah, (c) Hector Mine, and (d)
Northridge EQs whose epicenters are depicted by the largest (black) stars, respectively.

shown (e.g., see Figure 5 of [1]) that the integer number 𝑛𝑘
may serve as a predictor for the size 𝑆𝑘+1 of the next avalanche.
It has been also found [1] that 𝑛𝑘 as a function of 𝑘 (and hence
versus natural time) exhibits the ubiquitous 1/𝑓 noise [59–
63] (together with a logarithmic trend, e.g., see Eqs. (31) and
(32) of [1]).

The number of steps 𝑛𝑘 changes when a “stress” level 𝜂
is applied: (a) eliminating at least two smaller “stress” levels
previously applied (cf. the case 𝑘 = 3 in Figure 3) or (b) being
smaller than the smaller nonzero 𝑏(𝑘)𝑛 (cf. the case 𝑘 = 2 in
Figure 3). When all 𝜂𝑘 < 1, 𝑛𝑘 coincides with the cardinality
|𝐸𝑘| of the sets 𝐸𝑘 of successive extrema formed when
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Figure 2: Map of the aftershocks considered (see Table 1) in the case of (a) 2nd Superstition Hills, (b) Big Bear aftershock, (c) 1st Superstition
Hills, and (d) Joshua Tree EQs whose epicenters are depicted by the largest (black) stars, respectively.

studying the time series of the random stresses 𝜂𝑘.The sets𝐸𝑘
of successive extrema are defined [25] as follows: 𝐸0 equals the
empty set 0. Each subsequent 𝐸𝑘 is obtained by the procedure
described below for 𝑘 times: select a random number 𝜂𝑘 from
a given probability density function𝑓(𝜂) and compare it with

all the members of 𝐸𝑘−1. In order to construct the set 𝐸𝑘, we
discard from the set𝐸𝑘−1 all its members that are smaller than
𝜂𝑘 and furthermore include 𝜂𝑘. Thus, 𝐸𝑘 ̸= 0 for all 𝑘 > 0 and
𝐸𝑘 is a finite set of real numbers whose members are always
larger than or equal to 𝜂𝑘. Moreover, max[𝐸𝑘] ≥ max[𝐸𝑘−1].
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Figure 3: Schematic diagram of the threshold distribution function
𝑝(𝑘)thres(𝑥) after the 𝑘th avalanche in the coherent noise model with
𝑁𝑎 → ∞: for 𝑘 = 0 (solid red), 𝑘 = 1 (dashed green) exhibiting a
single step at 𝑥 = 0.2, 𝑘 = 2 (dashed blue) with two steps at 𝑥 = 0.1,
0.2, and 𝑘 = 3 (dotted magenta) with a single step at 𝑥 = 0.3. The
stress levels 𝜂1 = 0.2, 𝜂2 = 0.1, and 𝜂3 = 0.3 have been applied during
the first, second, and third “stress” step, respectively. The value of
𝑓 = 0.1 has been used.

The increase of the cardinality |𝐸𝑘| of these sets is at the most
1, but its decrease may be as large as |𝐸𝑘| − 1, thus exhibiting
a characteristic asymmetry as 𝑘 increases.

The aforementioned predictability of the coherent noise
model on the basis of 𝑛𝑘 could be also seen as follows: when a
relatively large random stress 𝜂𝑘 is applied, the coherent noise
model almost “forgets” the effect of previously applied smaller
stresses acquiring relatively high threshold density for a rela-
tively wide threshold range starting from 𝑥 = 0 (cf. the case
𝑘 = 3 for 𝑥 < 0.3 in Figure 3). Since the archetypal physical
system of the coherent noise model assumed (e.g., see the last
few lines of the first page of [2]) that the agents correspond
to the points of contact in a subterranean fault, it has been
suggested [1] that the coherent noise model predictability can
be exploited in the case of EQ aftershocks. In the latter case,
one studies the successive extrema formed in the time series
of the aftershock magnitudes𝑀𝑘 (𝑀𝑘 ≥ 𝑀thres, where𝑀thres
is a threshold magnitude) as a function of their order of
occurrence 𝑘, that is, natural time, by assuming 𝜂𝑘 = 𝑀𝑘/10.
Setting 𝑘 = 0 at the occurrence time of the mainshock, as
shown in the upper left rectangular box of Figure 4, the corre-
sponding setsM𝑘 of the successive extrema (as defined above)
in the aftershock magnitude time series are constructed and
the cardinality 𝑒𝑘 ≡ |M𝑘| (e.g., see Figure 4) plays a role
similar to that of 𝑛𝑘 in the case of the coherent noise model.
A simple computer program that calculates 𝑒𝑘 is presented in
Appendix.

Figure 5(a) depicts the aftershock magnitude time series
of the Landers EQ (see Table 1) versus conventional time
together with the time series of 𝑒𝑘. The argument of the latter
time series has been intentionally shifted by unity in order to

e0 = 0 e1 = 1 e2 = 2 e3 = 3 e4 = 4 e5 = 5

e6 = 4 e7 = 5 e8 = 4 e9 = 3 e10 = 4 e11 = 5

7.30 7.30 7.30 7.30 7.30 7.30
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5.00 5.00 5.00

7.30 7.30

5.77 5.77 5.77 5.77 5.77

5.775.77 5.77 5.77 5.77 5.77

5.70 5.70 5.70 5.70

5.705.705.70 5.70 5.70 5.70

5.00 5.00 5.00

5.00 5.00

4.00 4.00
2.20

4.20
5.49 5.49 5.49

5.41 5.41
4.44

5.00

3.50 3.50
3.00

3.50 3.50 3.50 3.50 3.50 3.50
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Figure 4: How the sets M𝑘 of the successive extrema of aftershocks
are formed in the case of the Landers EQ. In each rectangular box the
aftershocks with 𝑀𝑘 ≥ 𝑀thres are arranged vertically according to
their order of occurrence. Each time a new aftershock𝑀𝑘 (shown in
italics) takes place, the members ofM𝑘 (shown in bold) are obtained
by discarding all the previous members, that is, those of M𝑘−1, that
are smaller than𝑀𝑘.The number of elements ofM𝑘 is the cardinality
|M𝑘| denoted by 𝑒𝑘.

compare the value of 𝑒𝑘−1, that is, the number of successive
extrema before the occurrence of the 𝑘th aftershock, with the
magnitude𝑀𝑘 of the 𝑘th aftershock. We observe a character-
istic pattern which reflects the alreadymentioned asymmetry
when 𝑒𝑘 is considered as time series with respect to the
natural number 𝑘, but no clear correlation between 𝑀𝑘 and
𝑒𝑘−1 can be seen. For this reason, we plot in Figure 5(b) the
excerpt corresponding to the first three and a half hours after
the mainshock occurrence. During this period, the strongest
aftershock of Landers EQ (see the sixth line of Table 1), the Big
Bear aftershock [54], took place. We may observe that most
of the time strong aftershocks occur when 𝑒𝑘−1 is below 5. In
order to further clarify what happens, it ismost appropriate to
depict the results in natural time. This is done in Figure 5(c)
where we observe that the Big Bear aftershock occurs when
𝑒𝑘−1 was equal to 4.Thus, we observe that for Landers EQ the
suggestion that 𝑒𝑘−1might be a useful predictor could be con-
sidered plausible.The subject of the next section is to examine
statistically whether 𝑒𝑘−1 can be used for the prediction of
the magnitude of the forthcoming aftershock, in the sense
that this magnitude exceeds a threshold. Here, we note that
the coherent noise model method might be able to predict
the magnitude of the next aftershock; however it cannot say
when it will occur. This makes impossible the use of other
verification methods as the Molchan diagram [64–66].
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Figure 5: (a) The magnitude time series (right scale) of the Landers EQ (open circle) and its aftershocks (red vertical bars) together with the
time series of 𝑒𝑘−1 (blue broken line, left scale). (b) is an excerpt of (a) for the first three and a half hours after the mainshock. (c) The results
of (b) depicted in natural time. The green arrows in (b) and (c) indicate the Big Bear aftershock.

3. Results and Discussion

We first examine whether 𝑒𝑘 as it results from the aftershock
time series exhibits 1/𝑓 noise. To this end, we use the
Detrended Fluctuation Analysis (DFA) [67–69] which is a
standard robust method suitable for detecting long-range
power-law correlations and has been applied to diverse fields
where scale-invariant behavior emerges, for example, from
DNA [70–72] and heart dynamics [68, 73] to meteorology
[74, 75], atmospheric physics [76, 77], geophysics [28, 40, 78,
79], and economics [80–85]. The major advantage of DFA is
the systematic elimination of polynomial trends of different
order [86–89] (and hence of themuch slower aforementioned
logarithmic trend in 𝑛𝑘). In DFA, a fluctuation measure
𝐹DFA(𝑙) is constructed, based on the residuals of a piecewise
polynomial fitting to the profile time series, and studied
versus the scale 𝑙 used for the polynomial detrending (e.g.,
for more details see Section 1.4.3 of [7]). If 𝐹DFA(𝑙) ∝ 𝑙𝛼

the time series exhibits power-law correlations and the power
spectrum 𝑆(𝑓)(∝ 1/𝑓𝛽) exponent𝛽 is related [70] to theDFA
exponent 𝛼 through 𝛽 = 2𝛼 − 1. Figure 6 depicts the results
of the DFA for the 𝑒𝑘 time series deduced from the aftershock
magnitude time series of the four stronger EQs of Table 1. We
observe that the resulting DFA exponents 𝛼 are very close to
unity, thus showing that 𝑒𝑘 indeed exhibits 1/𝑓 noise.

We now turn to the prediction algorithm based on 𝑒𝑘
discussed in the previous section. This is applied in natural
time. Thus, the time increased probability (TIP) [90, 91] is
turned on after the occurrence of the (𝑘 − 1)th aftershock
when 𝑒𝑘−1 is equal to or below some threshold 𝑒𝑡 and lasts
until the occurrence of the (next) 𝑘th aftershock with 𝑀𝑘 ≥
𝑀thres. Based on Figure 1 of Shcherbakov et al. [13], we
set 𝑀thres = 2.0. Under these assumptions, the aftershock
magnitude prediction reduces to a binary prediction. We can
therefore use the Receiver Operating Characteristics (ROC)
graph [92] to depict the prediction quality.This is a plot of the
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straight lines in each case are also shown together with the corresponding DFA exponent 𝛼.

hit rate (or True Positive rate, TPr) versus the false alarm rate
(or False Positive rate, FPr), as a function of the total rate of
alarms, which is tuned by the threshold 𝑒𝑡. The hit rate is the
ratio of the cases for which TIP was on and𝑀𝑘 ≥ 𝑀target over
the total number of cases that 𝑀𝑘 ≥ 𝑀target. The false alarm
rate is the ratio of the cases for which TIP was on and 𝑀𝑘 <
𝑀target over the total number of cases for which𝑀𝑘 < 𝑀target.
Random predictions generate equal hit and false alarm rate,
and hence they lead to the diagonal in ROC plot. Thus, only
when the points lie above this diagonal a predictor is useful.

Of course, random predictions lead to ROC curves
that exhibit fluctuations which depend on the positive 𝑃
cases (when 𝑀𝑘 ≥ 𝑀target) and the negative 𝑄 cases (when
𝑀𝑘 < 𝑀target) to be predicted. The statistical significance of
an ROC curve depends [93] on the area 𝐴 under the curve
in the ROC plane (cf. this area is also usually termed AUC).
Mason and Graham [93] have shown that

𝐴 = 1 − 𝑈
(𝑃𝑄)

, (2)

where 𝑈 follows the Mann–Whitney 𝑈-statistics [94].
Recently, a visualization scheme for the statistical significance
of ROC curves has been proposed [95]. It is based on 𝑘-
ellipses which are the envelopes of the confidence ellipses
(cf. a point lies outside a confidence ellipse with probability
exp(−𝑘/2)) obtained when using a random predictor and
vary the prediction threshold. These 𝑘-ellipses cover the
whole ROC plane and using their 𝐴 we can have a measure
[95] of the probability 𝑝 to obtain by chance (i.e., using a
random predictor) an ROC curve passing through each point
on the ROC plane. In the present case, the 𝑝 values that
will be reported below correspond to the whole ROC curve
and are calculated on the basis of its AUC using Eq. (2) by
means of the computer program VISROC.f available in Sarlis
and Christopoulos [95]. This 𝑝 value gives the probability of

obtaining by chance a prediction scheme that leads to an AUC
equal to the observed one for given values of 𝑃 and 𝑄. It is
worthwhile to mention that in the standardmethod, by using
the Gutenberg-Richter law which is a skewed distribution for
which ROC graphs are [92] especially useful, the magnitudes
are assumed to be independent, thus unpredictable, and this
remains so even if we consider the so-called [96] short-
term aftershock incompleteness (STAI) which mainly arises
because directly after a large EQ the overlapping arrivals of
waves from different events can bemasked [97–99] thus tem-
porarily increasing the completeness threshold of the EQ cat-
alogue (see also the discussion below). On the other hand, the
presentmethod tries to predict large aftershocks from the cor-
relation between magnitudes. Below in this paper, we focus
on evaluating the statistical significance of thismethod.Other
methods may be also needed to evaluate its practical utility.

3.1. The Case of the Four Stronger EQs (𝑀 ≥ 6.7) in
Southern California. These are the cases of the 1992 Landers,
the 2010 El Mayor-Cucapah, the 1999 Hector Mine, and the
1994 Northridge EQ. As mentioned the analysis is made
by considering the areas shown in Table 1 centered at the
epicenter of each mainshock and for a period 𝑇 equal to
one year. The aftershocks thus obtained (see Figure 1) have
been sorted according to their origin time and the time series
𝑀𝑘 versus the order of occurrence 𝑘 has been constructed.
Figure 5 shows an example of the time series 𝑒𝑘 obtained
from the successive extrema of the aftershock magnitude
time series 𝑀𝑘 of the 1992 Landers EQ. We then apply the
prediction algorithm as described in the previous section for
various target magnitudes 𝑀target: when 𝑒𝑘−1 is smaller than
or equal to 𝑒𝑡 the TIP turns on: if the magnitude of the (next)
aftershock is 𝑀𝑘 ≥ 𝑀target we have a true positive successful
prediction and if𝑀𝑘 < 𝑀target we have a false positive unsuc-
cessful prediction. When TIP is off, that is, 𝑒𝑘−1 > 𝑒𝑡, and
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Figure 7: Receiver Operating Characteristics (red squares) when using 𝑒𝑘 as a predictor for𝑀target = 𝑀𝑚 − 2 for the aftershock time series of
Landers, El Mayor-Cucapah, Hector Mine, and Northridge EQs (see Table 1). In each case, the colored contours present the 𝑝 value to obtain
by chance an ROC curve based on 𝑘-ellipses [95]; the 𝑘-ellipses with 𝑝 = 10%, 5%, and 1% are also shown.

𝑀𝑘 < 𝑀target we have a true negative successful prediction; if
𝑀𝑘 ≥ 𝑀targetwehave false negative unsuccessful prediction, a
miss.This way we can obtain ROC curves for various𝑀target.

We first focus on a high 𝑀target, selected on the first dec-
imal digit, that is determined by the formula 𝑀target = 𝑀𝑚 −
2, where 𝑀𝑚 is—as mentioned—the mainshock magnitude.
The results for these 𝑀target’s for the four strong EQs under
discussion are shown in Figure 7.The corresponding 𝑝 values
to obtain such ROC curves by chance is 0.012%, 0.036%,
0.81%, and 0.24% for the Landers, El Mayor-Cucapah, Hector

Mine, and Northridge EQ, respectively. Figure 8 depicts
the ROC curves obtained when selecting a lower target
magnitude 𝑀target = 4.0. We observe that in this case also
we obtain ROC curves of high statistical significance. Finally,
in Figures 9(a) and 9(b), we present the results obtained for
AUC and the corresponding 𝑝 values when considering a
wide range of𝑀target’s from 4.0 to 5.5.

3.2. The Case of the Four Smaller EQs (6.6 ≥ 𝑀 ≥ 6.0). As
already mentioned, this is the case of the two Superstition
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Figure 8: Receiver Operating Characteristics (red squares) when using 𝑒𝑘 as a predictor for 𝑀target = 4.0 for the aftershock time series of
Landers, El Mayor-Cucapah, Hector Mine, and Northridge EQs, respectively. In each case, the colored contours present the 𝑝 value to obtain
by chance an ROC curve based on 𝑘-ellipses [95]; the 𝑘-ellipses with 𝑝 = 10%, 5%, and 1% are also shown.

Hills large events [53] in 1987 and the 1992 JoshuaTree andBig
Bear events which are related [54, 55] to the Landers EQ.The
areas used for the selection of the aftershock magnitude time
series𝑀𝑘 are shown in the last column of Table 1, but now the
period 𝑇 for the study of aftershocks may vary from one year
since these EQs cannot be considered as clearly independent
mainshocks. Specifically, in the case of the first Superstition
Hills 𝑀6.2 EQ, we considered as 𝑇 the period until the
occurrence of the second Superstition Hills𝑀6.6 EQ, that is,
roughly 11 hours and 23minutes. Moreover, since Joshua Tree
EQ is clearly related [54, 55] to the Landers EQ,we considered
as 𝑇 the period until the occurrence time of the Landers EQ,

that is, roughly 66 days and 7 hours. In the remaining two
cases treated here, a period 𝑇 of one year has been used. The
aftershocks considered in each case are shown in Figure 2.

Following the procedure used in the previous subsection,
we sorted the aftershocks according to their occurrence time
and constructed the 𝑀𝑘 time series, and from the latter we
obtained the predictor time series 𝑒𝑘. This time series has
been used for the prediction of the aftershockmagnitude time
series𝑀𝑘 and the ROC curves obtained are shown in Figures
10 and 11 for𝑀target = 𝑀𝑚 − 2 and𝑀target = 3.5, respectively,
for each EQ. On the latter figure, we clearly observe that the
predictions made on the basis of the proposed algorithm are
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Figure 9: Results obtained from the analysis of the four stronger ((a), (b)) and the four smaller ((c), (d)) EQs in Southern California by ROC
diagrams. Panels (a) and (c) depict AUC versus𝑀target while (b) and (d) depict the corresponding 𝑝 values.

far beyond chance (cf. for the ROC related to the Joshua
Tree EQ in Figure 11 we have 𝑝 = 0.7%). If we focus our
attention on the high 𝑀thres’s (see Figure 10), larger 𝑝 values
are obtainedwhich are 5%, 0.1%, 0.9%, and 11% for the second
Superstition Hills, Big Bear, first Superstition Hills, and
Joshua Tree EQs, respectively. These 𝑝 values are also larger
than those obtained in the previous subsectionwhen studying
the stronger EQs in Southern California. In Figures 9(c) and
9(d), we present the results obtained for AUC and the corre-
sponding 𝑝 values when considering a wide range of𝑀target’s
from 3.5 to 5.0. Figure 9(d) shows that in the vast majority (45
out) of the 59 examined cases the obtained 𝑝 values are below
5% pointing to the statistical significance of the method.

At this point we have to comment on the values of 𝑒𝑘
obtained after the last aftershock considered in the case of
the first Superstition Hills and the 1992 Joshua Tree EQs. As

mentioned our study above was terminated just before the
occurrence of the second Superstition Hills and the Landers
EQ, respectively, in each case. Hence, these values coincide
with the 𝑒𝑘−1 values just before the occurrence of the latter
two EQs and are 11 and 7, respectively. The operating points
on theROCdiagram corresponding to 𝑒𝑡 equal to these values
are shown with the red arrows in Figure 10. An inspection
of this figure shows that depending of the selection of the
operating point of the proposed algorithm an alarm could
have been probably on almost 23 hours before the occurrence
of the Landers EQ (actually after 12:38:20 UTC on June 27,
1992, when an𝑀 = 2.36 EQ occurred at 34.046 N 116.287 W,
i.e., 22 km away from the Landers EQ epicenter) whereas this
is rather improbable for the case of the second Superstition
Hills EQ since the corresponding to 𝑒𝑡 = 11 ROC point leads
to an extremely high false alarm rate. Hence, the selection
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Figure 10: Receiver Operating Characteristics (red squares) when using 𝑒𝑘 as a predictor for 𝑀target= 𝑀𝑚 − 2 for the aftershock time series
of the second Superstition Hills, the Big Bear aftershock, the first Superstition Hills, and the Joshua Tree EQs (see Table 1). In each case, the
colored contours present the 𝑝 value to obtain by chance an ROC curve based on 𝑘-ellipses [95]; the 𝑘-ellipses with 𝑝 = 10%, 5%, and 1% are
also shown. The red arrows indicate the points on the ROC diagram that correspond to 𝑒𝑡 = 11 and 𝑒𝑡 = 7 that coincide with the values of
𝑒𝑘−1 just before the occurrence of the second Superstition Hills and the Landers EQ obtained from the analysis of the aftershocks of the first
Superstition Hills and Joshua Tree EQs, respectively.

of 𝑒𝑡 is also very important. The latter point together with
its implications for a practical application of the proposed
algorithm will be discussed in the next subsection.

3.3. Further Analysis of the Results. We first focus on the fact
that the prediction algorithm presented here is statistically
significant. This statistical significance is very high when
considering a relatively small 𝑀target (e.g., see Figures 8 and

11), which also pertains when focusing on 𝑀target = 𝑀𝑚 − 2
(e.g., see Figures 7 and 10). A comparison of Figures 9(b)
and 9(d) shows that this statistical significance may decrease
when we consider the smallest in magnitude EQ, that is, the
JoshuaTree EQ. Even in this case, however, we obtain𝑝 values
which exclude the possibility of a random result.

In order to evaluate the statistical significance of the
proposed algorithm out of sample and for EQs in regions
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Figure 11: Receiver Operating Characteristics (red squares) when using 𝑒𝑘 as a predictor for𝑀target = 3.5 for the aftershock time series of the
second Superstition Hills, the Big Bear aftershock, the first Superstition Hills, and the Joshua Tree EQs, respectively. In each case, the colored
contours present the 𝑝 value to obtain by chance an ROC curve based on 𝑘-ellipses [95]; the 𝑘-ellipses with 𝑝 = 10%, 5%, and 1% are also
shown.

different from California, we proceeded, by employing the
same procedure as that described in Materials and Methods,
to the analysis of all 𝑀 ≥ 8.5 EQs in the Earth since 1976
(see Table 2). For this study the data analyzed come from the
Global Centroid Moment Tensor (CMT) Project [100, 101]
that covers global seismicity since 1 January 1976 and we con-
sidered 𝑀thres = 5.0, as in Sarlis et al. [51]. For EQs that took
place before 2011, the 1976 to 2010 CMT catalogue was used,
whereas for EQs since 1 January 2011 to 1 July 2015 themonthly
CMT catalogues have been employed (all these catalogues are

publicly available from http://www.globalcmt.org/CMTfiles
.html). For reasons of brevity, we will refer to these data
as the GCMT catalogue. The AUC and 𝑝 values obtained
for the wide range of 𝑀target from 6.0 to 7.5 are depicted
in Figure 12 in a fashion similar to that of Figure 9. From
the six cases studied, only the results obtained for the 2005
Sumatra-Nias EQ do not appear statistically significant. This
fact has been also verified by producing 102 randomly shuffled
copies of the original time series and comparing whether the
AUCs obtained for a shuffled copy time series were higher
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Figure 12: Results obtained for all𝑀 ≥ 8.5 EQs according to the GCMT catalogue (see Table 2) by ROC diagrams. Panels (a) and (b) depict
the AUC and the corresponding 𝑝 values, respectively.

than those depicted in the majority of cases presented in
Figure 12(a) for each EQ: For the 2005 Sumatra-Nias EQ in
54% of the cases the AUCs for the shuffled copies were higher
than those depicted in Figure 12(a), while this percentage falls
to 9% and 8% for the Sumatra-Andaman and Chile cases. For
the other three cases studied the obtained percentages were
smaller than 2%. We note, however, that the 2005 Sumatra-
Nias EQ occurred almost three months after the Sumatra-
Andaman EQ and is included within the rectangular region
of the latter EQ (see Table 2). The corresponding 𝑒𝑘−1 value
(almost three and a half days) before the 2005 Sumatra-Nias
EQ was 4, which is the same as that before the Big Bear
aftershock; see Figure 5(c).

An inspection of Figure 12(b) also shows that the 𝑝 values
are much larger than those of Figure 9. This is related to the
fact that𝑀thres used for GCMT is much larger than that used
in SouthernCalifornia where an accurate waveform relocated
regional catalogue [8, 9] has been employed. Using a higher
𝑀thres does not allow 𝑒𝑘 to vary significantly since there are no
small EQs to increase 𝑒𝑘. For example, the maximum value of
𝑒𝑘 is 10, 9, 10, 11, 17, and 6 for the six EQs of GCMT presented
in the first columnof Table 2, respectively, compared to 22, 22,
22, 24, 15, 19, 14, and 15 for the EQs presented in the first col-
umn of Table 1 in Southern California. Hence, the threshold
𝑒𝑡 has to be modified accordingly. Figure 13 depicts two selec-
tions of operating points, corresponding to fixed 𝑒𝑡 for each
catalogue, for the totality of the 14 EQs studied when focusing
on the prediction of aftershocks with𝑀 ≥ 𝑀𝑚 − 2 and could
be seen as a summary evaluation for various regions and two
different catalogues (we will return to this point later).

Let us now return to the cases in Southern California and
discuss the effect of STAI on the statistical significance of

the method. In order to correct from this effect, we followed
Helmstetter et al. [102, 103], considered for each EQ of Table 1
a time varying𝑀thres given by

𝑀thres (𝑀𝑚, 𝑡) = max [𝑀𝑚 − 4.5 − 0.75 log10 (𝑡) , 2.0] , (3)

where 𝑡 is the elapsed time measured in days from the
mainshock, that is, Eq. (15) of Helmstetter et al. [103], and
repeated the calculations focusing only on the aftershocks
during the first 24 hours after each mainshock where STAI
is stronger. The results are shown in Figure 14 and show that
out of the 115 obtained 𝑝 values only 6 exceed 7%whereas the
vast majority, that is, 107 cases, are below 5%.

As an additional check, we examined whether the
validity of the proposed method originates from STAI by
the following test: each time the magnitude𝑀𝑘 of a reported
aftershock satisfied 𝑀𝑘 ≥ 𝑀thres(𝑀𝑚, 𝑡), 𝑀𝑘 was considered
as the new element of a time series labeled 𝑀orig

𝑙
(original).

At the same time, a magnitude 𝑀𝑘󸀠[≥ 𝑀thres(𝑀𝑚, 𝑡)] has
been randomly selected from the original distribution of 𝑀𝑘
and considered as the new element of a time series labeled
𝑀synth
𝑙

(synthetic).The two time series𝑀orig
𝑙

and𝑀synth
𝑙

have
been analyzed by ROC using the prediction algorithm and
the corresponding AUCs have been compared 104 times. The
results showed that the percentage of cases forwhich theAUC
of a synthetic time series was larger in the majority of cases
presented in Figure 9 than that of the original one is 4.2%,
8.2%, 0.6%, 9.9%, 59%, 0.005%, 7.2%, and 9.5% for the 8 EQs
presented in the first column of Table 1, respectively. These
results (apart from those concerning the second Superstition
Hills𝑀6.6 EQ that will be discussed below) indicate that the
observed predictability cannot be fully accounted for by STAI
(cf. if that was the case, only up to two of the above 8 numbers
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Table 2: All EQs with magnitude𝑀 ≥ 8.5 during the period 1 January 1976 to 1 July 2015 reported in the GCMT catalogue. The dimensions
of the rectangular aftershock area, centered at each epicenter, used here are also shown.

EQ name 𝑀 Origin time (UTC) Lat (∘) Lon (∘) Area considered
Sumatra-Andaman 9.0 2004/12/26 00:58:50 3.30 95.78 7.8∘× 7.8∘

Sumatra-Nias 8.6 2005/03/28 16:09:36 2.09 97.11 4.9∘× 4.9∘

Sumatra, Indonesia 8.5 2007/09/12 11:10:26 −4.44 101.37 4.4∘× 4.4∘

Chile 8.8 2010/02/27 06:34:15 −35.85 −72.71 6.2∘× 6.2∘

Tohoku, Japan 9.1 2011/03/11 05:46:23 38.32 142.37 8.7∘× 8.7∘

Indian Ocean 8.6 2012/04/11 08:38:36 2.33 93.06 4.9∘× 4.9∘
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Figure 13: Operating points on the ROC diagram when using 𝑒𝑘 as a predictor for 𝑀target = 𝑀𝑚 − 2 for all mainshocks studied (see Tables 1
and 2) (a) when adopting for Southern California (SC) 𝑒𝑡SC = 5 and for GCMT 𝑒𝑡GCMT = 3. Panel (b) corresponds to the selection 𝑒𝑡SC = 7
and 𝑒𝑡GCMT = 4.

should have been below 10% with probability 96.2% (≈ 0.98 +
8⋅0.1 ⋅0.97+4⋅7 ⋅0.12 ⋅0.96) due to the binomial distribution).

One might also argue that the present results could be
alternatively reproduced by syntheticmodels generated using
the Epidemic Type Aftershock Sequence (ETAS)model [105],
coupling the main statistical laws describing the occurrence
of earthquakes in time, space in magnitude, that is, the
Gutenberg-Richter magnitude distribution and the Omori-
Utsu law as well as the increase of the number of aftershocks
as about 10𝑀𝑚 with the mainshock magnitude 𝑀𝑚 (or Bath
law). Following Zhuang and Touati [106], we used the code
etasim.f of SASeis2006 [104]; see also [105, 107, 108], for

ETAS. By simulating magnitude by Gutenberg-Richter law
for b = 1 with cutoff magnitude 2.0, we compared the results
thus obtained (blue asterisks in Figure 15) with those of
the test data provided in SASeis2006 (http://www.ism.ac.jp/
∼ogata/Ssg/softwares.html). These test data come [104] from
the JapanMeteorogical Agency (JMA) EQ catalogue and con-
cern the aftershock data for almost 18 days of the 26 July 2003
EQ of 𝑀JMA = 6.2 at the northern Miyagi-Ken, northern
Japan, and the aftershock data for almost 6 days of the 16
August 2005 EQ of𝑀JMA = 7.2 offshore of western Fukuoka-
Ken, Kyushu, Japan. Both the real test data and the simulating
𝑏 = 1 time series have been considered with𝑀thres = 2.0 and
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Figure 14: Results obtained when focusing on the first 24 hours after the mainshock with time variable threshold 𝑀thres(𝑀𝑚, 𝑡) from the
analysis of the four stronger ((a), (b)) and the four smaller ((c), (d)) EQs by ROC diagrams. Panels (a) and (c) depict AUC versus𝑀target while
(b) and (d) depict the corresponding 𝑝 values.

the algorithmhas been applied by using the code presented in
Appendix. Figure 15 depicts the AUCs and the corresponding
𝑝 values. An inspection of this figure shows that the results
obtained for the real data clearly outperform the simulated
ones since in only 3 cases (out of 48) the AUC of the ETAS
simulated data exceeded that of the real data.Thus, the exper-
imentally observed predictability cannot be reproduced.
These results also show that the present algorithm conveys
additional information and for this reason it may be used
together with standard and well-accepted methods [109, 110]
inwhich the forecasting of aftershocks in time andmagnitude
domain is carried out by employing the modified Omori law
and the Gutenberg-Richter law.

The models discussed in the previous paragraphs do not
impose any direct correlation between successivemagnitudes
apart from those inherited from the combination of the

Gutenberg-Richter law and Omori law, the fact that the
rate of triggered events increases with the magnitude of the
triggering event, that is, the ETASmodel and STAI. It is a fact,
however, that magnitude correlations exist in both regional
[17, 36, 40, 111] and global [38, 39] seismic catalogues. Thus,
one should also investigate whether such correlations are
responsible for the predictability observed in Figure 9. Partic-
ularly, for California these correlations have been extensively
studied by Davidsen and Green [96] and Lippiello et al. [112].
Davidsen and Green [96] showed that they cannot be fully
accounted for by STAI as was also found in Lippiello et al.
[112] (e.g., see their Figure 2). In both of these studies, based
on the investigation of the magnitude correlations firstly
introduced by Lippiello et al. [113], the common method of
investigating such correlations was the construction of the
difference 𝛿𝑃(𝑚0) = 𝑃(Δ𝑚 < 𝑚0) − 𝑃(Δ𝑚∗ < 𝑚0) between
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Figure 15: Comparison of (a) AUC and (b) 𝑝 values obtained when using 𝑒𝑘 as a predictor for various𝑀target for the real aftershockmagnitude
time series of Fukuoka and Miyagi EQs and an ETAS simulation with 𝑏 = 1 produced by etasim.f of SASeis2006 [104]. In all cases,
𝑀thres = 2.0 has been used.

the cumulative distributions of the observed differences
between successive EQsΔ𝑚 ≡ 𝑀𝑘+1−𝑀𝑘 and those obtained
Δ𝑚∗ ≡ 𝑀∗𝑘+1−𝑀

∗
𝑘 from randomly shuffled copies {𝑀∗𝑘 } of

the original catalogue. Since such correlations are expected
[112] to be stronger for EQs which are closer in time and
increases with themagnitude threshold of the catalogue used,
we focused our attention on the first 24 hours after the main-
shock, applied a time-dependent threshold 𝑀thres(𝑀𝑚, 𝑡),
and investigated the presence of such correlations. The
cumulative distributions 𝑃(Δ𝑚 < 𝑚0) and 𝑃(Δ𝑚∗ < 𝑚0)
are depicted by the red (solid) and the green (dashed) curves,
respectively, in Figure 16 and they actually differ as it is also
shown by the 𝛿𝑃(𝑚0) (red solid) curve in Figure 17. Hence,
it is of crucial importance to confirm that the predictability
of large aftershocks presented in Figure 14 (for the same
time period and the same𝑀thres(𝑀𝑚, 𝑡)) is not caused by the
phenomenon observed in Figures 16 and 17. For this reason,
we employed themethod of surrogates proposed by Schreiber
and Schmitz [114] as implemented in the TISEAN package
[115] and applied it to the magnitude time series. Such a
method creates surrogate data with the same Fourier ampli-
tudes and the same distribution of values. This procedure
reproduces the behavior found in Figures 16 and 17 (see the
blue dashed curve in Figure 16 and the green, blue, and thick
black curves in Figure 17). We generated 103 such surrogate
magnitude time series, analyzed them by the prediction
algorithm, and compared their AUCs with the AUCs of the
observed magnitude time series that led to Figure 14. The
percentage the AUCs of a surrogate time series was greater
than the AUC of the observed magnitude time series in the
majority of cases shown in Figure 14 are 9.0%, 0.2%, 0.6%,
43%, 0.1%, 0.1%, 0.7%, and 54% for the cases of the Landers, El
Mayor-Cucapah, Hector Mine, Northridge, 2nd Superstition
Hills, Big Bear, 1st Superstition Hills, and Joshua Tree EQs,

respectively. Such percentages (cf. if we repeat the procedure
for the whole study period the percentages for Northridge
and Joshua Tree EQs become 14% and 32%, resp.) show
that the behavior found in Figures 16 and 17 which is, as
mentioned, related to the magnitude correlations found by
Davidsen and Green [96] and Lippiello et al. [112] cannot
fully account for the observed predictability. Moreover, these
results show that the predictability of the aftershock time
series is a nonlinear property [116] of the magnitude time
series of aftershocks. The latter fact is compatible with the
high nonlinearity exhibited by the coherent noise model.

Moreover, as a more direct analysis to avoid the effect
of data incompleteness, we excluded the first one day period
after the mainshock from the target period of the forecasting,
employed time varying threshold 𝑀thres(𝑀𝑚, 𝑡), and exam-
ined the predictability in the [1 day, 1 month] time-interval.
The correspondingAUCs and𝑝 values are shown in Figure 18.
These values (apart from those concerning the second Super-
stition Hills𝑀6.6 EQ) certainly point to the statistical signif-
icance of the present method (86 cases out of the 129 lead to 𝑝
values smaller than 10% with 79 of them below 5%), although
they are higher than the 𝑝 values corresponding to Figure 9.
This effect is not incompatible with the behavior exhibited by
the coherent noise model. It has been recently shown [21, 22]
that the expected avalanche size of the 𝑘th avalanche of the
coherent noise model in a statistical ensemble of initially
identical systems relaxes to the steady state value by following
a power-law decay, described by the Tsallis 𝑞-exponential
[117], almost inversely proportional to 𝑘. When we started
our study in the second day after the mainshock, we
excluded almost 10% of the first month aftershocks. These
events, however, express the most important part of the off-
equilibrium behavior which can be best described by the
present algorithm as shown in Figure 14. As the order 𝑘 of the
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Figure 16: Continued.
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Figure 16: The cumulative distributions of the event increments Δ𝑚 ≡ 𝑀𝑘+1 − 𝑀𝑘 for the real aftershocks magnitude time series (solid
red) together with those corresponding to randomly shuffled magnitude time series (dashed green) and for surrogate magnitude time series
(dashed blue).

avalanche increases, the system deviates less from the steady
state and hence it is plausible to assume that its predictability
decreases. The fact that the predictability decreases when we
exclude the first 10% of the avalanches produced and focus
on the latter 90% has been also verified by simulations of the
coherent noise model.

Thus, in summary, we have shown that the observed pre-
dictability of the present algorithm cannot be attributed solely
to STAI nor is a result included in up to date ETASmodelling
nor is a direct consequence of the magnitude correlations
studied by Davidsen and Green [96] and Lippiello et al. [112]
in Southern California. The present method tries to predict
large aftershocks from the correlation between magnitudes
which appear to mimic the behavior of the coherent noise
model. According to our view, this is the reason behind the
predictability observed in Figure 9 that corresponds to a large
time period of study as well as in Figure 14 that corresponds
to the first day.

If we focus on the strongest aftershock (which may be the
most destructive one), the value of the predictor 𝑒𝑘−1 before
its occurrence for all the 14 EQs studied is 4, 3, 4, 0, 2, 6,
1, and 7 for the Landers, El Mayor-Cucapah, Hector Mine,
Northridge, second SuperstitionHills, Big Bear, first Supersti-
tion Hills, and Joshua Tree EQs in California, whereas it is
4, 3, 0, 0, 0, and 0 for the Sumatra-Andaman, Sumatra-Nias,
Sumatra Indonesia, Chile, Tohoku Japan, and Indian Ocean
EQs in GCMT.Thus, when selecting for Southern California
the threshold 𝑒𝑡SC = 7 and 𝑒𝑡GCMT = 4 for GCMT, as in Fig-
ure 13(b), one could have successfully predicted the strongest
aftershock for all the 14 EQs studied with the corresponding
operating points above the diagonal in the ROC diagram.
Moreover, in 12 out of the 14 cases studied, that is, if we discard
the cases of Sumatra-Nias (which, as mentioned, could have
been predicted based on the analysis of Sumatra-Andaman)

and Indian Ocean EQ, these operating points lie in the left
uppermost quadrant of the ROC diagram with an average
hit rate 76% and an average false alarm rate 28% (cf. the
corresponding average values for all 14 EQs are 77% and 34%,
resp.). Similarly, when selecting 𝑒𝑡SC = 5 and 𝑒𝑡GCMT = 3 the
12 out the 14 operating points lie in the region FPr < 0.3 and
TPr > 0.3; see Figure 13(a). The 14 operating points in this
case lead to an average hit rate 61% and an average false alarm
rate 16%.

Returning now to the results for Southern California, we
have to note that the probability to observe 𝑒𝑘 ≤ 4 in the
examined predictor time series is 0.8%, 0.4%, 1.2%, and 2.0%
for the four stronger EQs, respectively, thus leading to a num-
ber of alarms smaller than 2% of the observed aftershocks
(with 𝑀𝑘 ≥ 2.0) in each case (cf. the corresponding total
alarm duration in conventional time, which is depicted in
Figure 19(a), varies from four hours and forty minutes for
the Landers EQ to one hour for the El Mayor-Cucapah EQ).
Moreover, when considering the five stronger aftershocks in
each case (see Table 3), we observe that by setting 𝑒𝑡 = 8
we can successfully predict (more than) 80% of these strong
aftershocks (cf. only the cases labeled L4, E4, H3b, and N4
exhibit 𝑒𝑘−1 > 8). As an example, we also plot in Figures 19(b)
and 19(c) the total alarm duration in conventional time as
a function of the time elapsed from the mainshock for the
predictor thresholds 𝑒𝑡 = 6 and 8. We observe that, during
the first month from themainshock, which is themost highly
prone period to strong aftershocks, this quantity varies from
9–30 hours (𝑒𝑡 = 6) to 3-4 days (𝑒𝑡 = 8).

4. Conclusions

In conclusion, in the present study we presented a simple
algorithm for predicting aftershock magnitudes based on
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Figure 17: Continued.
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Figure 17: The quantity 𝛿𝑃(𝑚0) for the observed aftershocks magnitude time series (solid red) together with the corresponding quantity
resulting from two example surrogate time series (dashed green and dashed blue) and the average 𝛿𝑃(𝑚0) resulting of the whole ensemble of
the surrogate time series (thick black curve).
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Figure 18: Results obtained when considering as target period the [1 day, 1 month] time-interval after the mainshock and time varying
threshold𝑀thres(𝑀𝑚, 𝑡) from the analysis by ROC diagrams. Panel (a) depicts AUC versus𝑀target while (b) the corresponding 𝑝 values.

the analysis of the coherent noise model and examined
its performance in Southern California, where a waveform
relocated catalogue [8] from 1981 to June 2011 [9] is available.
This study has been extended, for comparison purposes, to
the six strongest EQs in the Earth during almost the last forty
years according to the GCMT catalogue [100, 101]. The main
conclusions are the following:

(1) The predictor time series exhibits the ubiquitous 1/𝑓
noise.

(2) The algorithm leads to statistically significant results
for 13 out of the 14 EQs studied. Only the case of
Sumatra-Nias EQ could be considered by chance, but
this EQmight have been anticipated (three and a half
days before its occurrence) by the similar analysis for
Sumatra-Andaman EQ.

(3) When focusing on predicting aftershocks with 𝑀 ≥
𝑀𝑚−2 for all the 14 cases studied, an average behavior
with a hit rate 61% and a false alarm rate of 16% can
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Figure 19: Total alarm duration in conventional time as a function
of the time elapsed from the occurrence of the mainshock for
the Landers (solid red), El Mayor-Cucapah (dashed green), Hector
Mine (dashed blue), and Northridge (dotted magenta) EQs when
considering as predictor threshold the value 𝑒𝑡 = 4 (a), 𝑒𝑡 = 6 (b),
and 𝑒𝑡 = 8 (c).

Table 3: The 5 stronger aftershocks as determined by truncating
magnitude to the first decimal digit for the four stronger EQs (𝑀 ≥
6.7) in Southern California studied (see also Table 1) together with
the corresponding values of the predictor 𝑒𝑘−1.

EQ name 𝑀 𝑒𝑘−1 Origin time (UTC)
Landers 7.30 1992/06/28 11:57:33
L1 6.30 4 1992/06/28 15:05:30
L2 5.77 0 1992/06/28 12:00:44
L3 5.70 1 1992/06/28 12:01:15
L4 5.69 9 1992/06/29 14:08:37
L5 5.53 8 1992/06/28 14:43:21
El Mayor-Cucapah 7.20 2010/04/04 22:40:42
E1 5.70 3 2010/04/04 22:50:17
E2 5.43 3 2010/04/04 23:15:13
E3 5.38 6 2010/04/04 23:25:06
E4 5.29 11 2010/04/08 16:44:25
E5 5.26 0 2010/04/04 22:43:01
Hector Mine 7.10 1999/10/16 09:46:43
H1 5.77 4 1999/10/16 09:59:34
H2 5.37 4 1999/10/16 12:57:20
H3a 4.99 8 1999/10/21 01:54:06
H3b 4.99 11 1999/10/22 16:08:47
H5a 4.98 4 1999/10/21 01:54:33
H5b 4.98 3 1999/10/21 01:54:28
H5c 4.98 2 1999/10/16 09:52:53
Northridge 6.70 1994/01/17 12:30:54
N1 5.89 0 1994/01/17 12:31:56
N2 5.58 8 1994/01/17 23:33:30
N3 5.24 4 1994/01/18 00:43:08
N4 5.24 15 1994/03/20 21:20:12
N5 5.20 3 1994/01/17 12:40:34

be achieved since the corresponding percentages may
fluctuate for each particular case; see Figure 13(a).

(4) The strongest aftershock of each EQ in Southern Cal-
ifornia with 𝑀𝑚 ≥ 6.7 could have been successfully
predicted with a number of alarms amounting only
2% of the total number of aftershocks (with𝑀 ≥ 2.0)
and a total alarm duration of less than five hours in
each case.

The 3 cases when a stronger EQ occurs within or close to the
rectangular area studied during the study period of another
EQhave revealed the following.The second SuperstitionHills
EQ would have been missed, whereas Landers and Sumatra-
Nias EQs might have been anticipated. The corresponding
selection of operating points on the ROCdiagram can be seen
in Figure 13(b) and leads to an average behavior with a hit rate
77% and a false alarm rate of 34%.
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Appendix

A FORTRAN Code Implementing
the Algorithm

The following simple FORTRAN code (Findek.f) calculates
the value of 𝑒𝑘 based on the sequence of EQ magnitudes

given in the file input.cat. The user has to provide the
number (nmax) of EQs in the catalogue file.Theoutput is then
exported to the ASCII file out.dat that contains in each row
the aftershockmagnitude𝑀𝑘 and the value of 𝑒𝑘−1, that is, the
value of 𝑒𝑘 before its occurrence.

program Findek

double precision rmw(100000),b(1000),nb(1000)

integer nmax,i,ii,m,kact,nkact,nll,ll

write(*,*) 󸀠How many EQs do they exist in input.cat?󸀠

read(*,*) nmax

open(1,file=󸀠input.cat󸀠)

do i=1,nmax

read(1,*) rmw(i)

end do

close(1)
open(1,file=󸀠out.dat󸀠)

c Initialize b vector and its dimension (kact), kact=n k+1,

c where n k is that of Eq.(1) of the main text

kact=1

b(1)=rmw(1)
c Study each new EQ in the magnitude timeseries

c and construct the new b vector (nb) and its

c new dimension (nkact)

do i=2,nmax

ll=0

nll=0

10 ll=ll+1

if (rmw(i).gt.b(ll)) nll=ll

if (ll.lt.kact) goto 10

nkact=0

nkact=nkact+1

nb(nkact)=rmw(i)

do m=nll+1,kact

nkact=nkact+1

nb(nkact)=b(m)

end do

c Export the current EQ magnitude and the previous e k,

c that is the previous dimension (kact) of the b vector

c minus unity

write(1,15) rmw(i),kact-1

c Replace the b vector by its new value (nb) and

c dimension (nkact)

do ii=1,nkact

b(ii)=nb(ii)

end do

kact=nkact

end do

close(1)
15 format(f6.2,i8)

end
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As an example input.cat we provide below the data
concerning the Landers EQ that led to the results presented
in Figure 5(c) consisting of (nmax=)67 EQs:

7.30 34.202 −116.435 19920628115733

5.77 34.126 −116.402 19920628120044

5.70 34.123 −116.253 19920628120115

5.00 34.048 −116.456 19920628120216

3.50 34.523 −116.612 19920628121748

3.00 34.175 −116.782 19920628121850

4.00 34.581 −116.633 19920628122044

2.20 34.181 −116.442 19920628122641

4.20 34.477 −116.623 19920628122736

5.49 34.166 −116.420 19920628123639

5.41 34.355 −116.524 19920628124052

4.44 34.120 −116.420 19920628124358

4.29 34.483 −116.527 19920628125609

4.00 34.319 −116.499 19920628130640

4.30 33.910 −116.327 19920628130647

3.50 34.326 −116.474 19920628130815

4.87 34.438 −116.456 19920628131049

3.80 34.321 −116.369 19920628131336

4.11 34.155 −116.423 19920628131747

4.50 34.068 −116.434 19920628131815

3.22 34.128 −116.402 19920628131924

3.36 34.125 −116.417 19920628132309

3.68 34.222 −116.436 19920628132344

4.88 34.175 −116.411 19920628132604

3.00 34.001 −116.543 19920628133537

3.00 34.430 −116.492 19920628133559

4.17 34.190 −116.424 19920628134054

3.00 34.524 −116.582 19920628134649

4.22 34.100 −116.377 19920628135016

4.95 34.143 −116.403 19920628135044

4.00 34.157 −116.469 19920628135142

3.50 34.141 −116.432 19920628135244

4.14 34.118 −116.640 19920628140928

3.01 34.361 −116.471 19920628141026

2.50 34.615 −116.629 19920628141106

4.03 34.609 −116.632 19920628142901

2.80 34.161 −116.468 19920628142945

3.00 34.430 −116.456 19920628143027

2.70 34.155 −116.418 19920628143045

3.54 34.636 −116.514 19920628143207

3.40 34.596 −116.652 19920628143230

3.32 34.279 −116.440 19920628143533

4.35 34.099 −116.429 19920628143906

3.00 34.610 −116.631 19920628144049

3.00 34.164 −116.435 19920628144309

5.53 34.169 −116.853 19920628144321

3.37 34.198 −116.861 19920628145913

2.80 34.089 −116.436 19920628150000

4.54 34.167 −116.821 19920628150450

6.30 34.202 −116.828 19920628150530

3.00 34.199 −116.798 19920628150803

2.50 34.203 −116.801 19920628150841

2.50 34.221 −116.847 19920628150956

3.00 34.198 −116.776 19920628151025

2.80 34.138 −116.856 19920628151102

3.00 34.167 −116.839 19920628151137

2.50 34.252 −116.723 19920628151216

2.50 34.288 −116.716 19920628151337

3.00 34.157 −116.870 19920628151532

2.80 34.144 −116.843 19920628151659

4.00 34.164 −116.851 19920628151709

4.66 34.134 −116.851 19920628151712

4.58 34.214 −116.749 19920628151832

4.00 34.051 −116.399 19920628152016

4.76 34.219 −116.762 19920628152428

4.27 34.223 −116.803 19920628152519

3.50 34.217 −116.751 19920628152653

Only the first column is used by Findek.f, whereas the other
three columns correspond to the latitude, longitude, and time
of occurrence UTC (with format: YYYYMMDDhhmmss, where
YYYY, MM, DD, hh, mm, and ss stand for the year, month, day,
hour,minute, and seconds, resp.) of each EQ—within the area
studied; see the first row of Table 1 and Figure 1—according to
the waveform relocated catalogue [8] for Southern California
from 1981 to June 2011 [9] and have been included here as test
data.
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