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Abstract 15 

Bearing vibration signal separation is essential for fault detection of gearboxes, 16 

especially where the vibration is nonstationary, susceptible to background noise, and 17 

subjected to an arduous transmission path from the source to the receiver. This paper 18 

presents a methodology for improving fault detection via a series of vibration signal 19 

processing techniques, including signal separation, synchronous averaging (SA), 20 

spectral kurtosis (SK), and envelope analysis. These techniques have been tested on 21 

experimentally obtained vibration data acquired from the transmission system of a CS-22 

29 Category A helicopter gearbox operating under different bearing damage 23 

conditions. Results showed successful enhancement of bearing fault detection on the 24 

second planetary stage of the gearbox 25 

 26 
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1 Introduction 27 

Many diagnosis techniques have been employed for gearbox diagnostics, however, 28 

vibration analysis emerged as one of the best diagnosis techniques (Cotrell 2002, 29 

McFadden 1987, Samuel, Pines 2005, McFadden, Toozhy 2000, Wang 2001, 30 

Sawalhi, Randall et al. 2014). Bearing fault detection within transmission system is 31 

one of difficult diagnosis tasks, resulting from the influence of bearing signal 32 

transmission from the source to the accelerometer fixed to the external casing. As 33 

consequence, the bearing signal will be dominated by other strong components of the 34 

vibration signal such as gear meshing. (McFadden 1987, McFadden, Toozhy 2000, 35 

McFadden, Smith 1984). 36 

 37 

Early attempts utilised time domain averaging to separate the gear components from 38 

the measured vibration signal in order to reduce the signal-to-noise ratio (SNR). This 39 

involves combining a delayed version of the measured vibration signal with the original 40 

signal thereby reinforcing certain frequency components, whilst eliminating others. 41 

However, the signal to noise ratio (SNR) enhancement with this technique is not 42 

always sufficient to aid detection of bearing faults and hence this technique has not 43 

proved successful in identifying bearing defects within planetary gearboxes 44 

(McFadden 1987). Time Synchronous Averaging (TSA) has also been applied to 45 

separate the bearing vibration components from the measured gearbox signature 46 

(McFadden, Toozhy 2000, Yang, Tavner et al. 2009, Wenxian Yang, Tavner et al. 47 

2010, Randall, Sawalhi et al. 2011, Randall, Antoni 2011). This minimises the 48 

influence of speed variation by re-sampling the signal in the angular domain 49 

(McFadden, Toozhy 2000). The process of re-sampling the signal requires a 50 

tachometer or phase marker and is not commonly applied for the sole purpose of 51 

separating the bearing vibration signature (Randall, Sawalhi et al. 2011).  52 

 53 

Methods such as linear prediction, signal noise cancellation and autoregressive have 54 

been used to achieve signal separation. However, such methods are adequate for the 55 

stationary signal.(Randall, Sawalhi et al. 2011, Antoni, Randall 2001, Randall 2004, 56 

Ho, Randall 2000). Many alternative techniques have been suggested to separate 57 
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signals under non-stationary condition (Randall, Sawalhi et al. 2011, Antoni 2005, Li, 58 

Yan et al. 2013, Barszcz 2009). Which present most of  the vibration signals acquired 59 

from gearboxes (Randall 2011, Wang 2008). The performance of these techniques 60 

varies depend on the signal history length. The shorter signal history results in   a poor 61 

prediction, and as consequence, the separated signal will be dominated by strong 62 

signal component. However, this will lead to short processing time(Makhoul 1975, 63 

Satorius, Zeidler et al. 1979). 64 

 65 

To overcome the problem of separation of non-stationary vibrations, adaptive filters 66 

were proposed. This concept is based on the Wold Theorem, in which the signal can 67 

be decomposed into deterministic and non-deterministic parts. It has been applied to 68 

signal processing in telecommunication (Satorius, Zeidler et al. 1979) and 69 

Electrocardiography ECG signal processing (Thakor, Zhu 1991). The separation is 70 

based on the fact that the deterministic part has a longer correlation than the random 71 

part and therefore the autocorrelation is used to distinguish the deterministic part from 72 

the random part. However, a reference signal is required to perform the separation. 73 

The application of this theory in condition monitoring was established by Chaturvedi 74 

et al. (Chaturved, Thomas 1981) where the Adaptive Noise Cancellation (ANC) 75 

algorithm was applied to separate bearing vibrations corrupted by engine noise, with 76 

the bearing vibration signature used as a reference signal for the separation process. 77 

However, for practical diagnostics, the reference signal is not always readily available. 78 

As an alternative, a delayed version of the signal has been proposed as a reference 79 

signal and this method is known as self-adaptive noise cancellation (SANC) (Ho, 80 

Randall 2000) which is based on delaying the signal until the noise correlation is 81 

diminished and only the deterministic part is correlated (Antoni, Randall 2001). 82 

Many recursive algorithms have been developed specifically for adaptive filters 83 

(Antoni, Randall 2004, Widrow, Glover et al. 1975). Each algorithm offers its own 84 

features and therefore the algorithm to be employed should be selected carefully 85 

depending on the signal under consideration. Selection of the appropriate algorithm is 86 

determined by many factors, including convergence, type of signal (stationary or non-87 

stationary) and accuracy (Simon 1991). 88 
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The Spectral Kurtosis technique has been introduced recently for bearing signal 89 

separation (Ruiz-Cárcel, Hernani-Ros et al. 2014, Antoni, Randall 2006). In which the 90 

kurtosis of decomposed signals is estimated and the signal with higher kurtosis 91 

present the impacts due to the bearing fault. Such method depends on the 92 

decomposition method.(Antoni 2007), therefore Antoni et al has suggested a 93 

methodology known as Fast Kurtogram, and it is based on calculating the kurtosis for 94 

all possible frequency bands (Antoni 2007). Dwyer et al have developed the Spectral 95 

Kurtosis (SK) (Dwyer 1983) to detect the frequency band of the random component of 96 

a signal. Therefore this method employed to extract the transient in the bearing signal 97 

and perform the demodulation analysis (Antoni, Randall 2006). 98 

  99 

 100 

Most of the recent research has focused most on developing a single method to 101 

separate bearing signal, therefore this paper proposes improving signal separation 102 

through a combination of synchronous averaging and adaptive filters.  For this purpose 103 

vibration data collected from a CS-29 category ‘A’ was used for detect bearing fault in 104 

the epicyclic module. Vibration signals have been collected under different bearing 105 

fault severity, the vibration signals have processed with a set of signal processing 106 

techniques such as adaptive filter, time synchronous and envelope analysis. 107 

 108 

1. Signal Separation algorithms 109 

In order to compare the effect of employing TSA for improving signal separation, 110 

vibration signals acquired were processed using two different paths. For the first path, 111 

Deterministic vibration signal has been determined by the means of adaptive filter.  112 

Then the SK algorithm has been employed to determine the optimum filter used for 113 

demodulation. Finally, Fast Fourier Transform FFT has been used to obtain  the 114 

demodulated signal spectrum, the signal processing procedures are summarised in 115 

figure 1. Synchronous averaging (SA) has been performed by resampling the vibration 116 

data in the angular domain (to remove the speed fluctuation) followed by adaptive 117 

filtering to separate the random component of the data (bearing signal).The signal 118 

separation was performed with an adaptive filter using fast block algorithm least mean 119 

square algorithm FBLMS described by Elasha et. al (Elasha, Ruiz-Carcel et al. 2014). 120 
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The Fast Block LMS (FBLMS) algorithm was proposed to reduce the processing time 121 

(Dentino, McCool et al. 1978) and as such is more suitable for online diagnostics 122 

where an instantaneous response is required. This algorithm is based on the 123 

transforming the time signal to the frequency domain and the filter coefficient is 124 

updated on the frequency domain; details of the procedure have been summarised 125 

(Ferrara 1980). 126 

 127 

 128 

Figure 1 Schematic Signal Processing procedures 129 

1.1 Synchronous Averaging 130 

Synchronous Averaging (SA) technique is proven for analysis of machine vibration 131 

(McFadden, Toozhy 2000). The technique used to separate the noise or random parts 132 

from the signal. SA is performed using a signal phased-locked with the angular 133 

position of a shaft within the system, which can be the pulses from the shaft 134 

tachometer (such as a Hall sensor or optical encoder, where the time at which the 135 

tachometer signal crosses from low to high is called the zero crossing). The 136 

tachometer signal is used to divide the signal into segments. The number of points in 137 

each segment should be equal; therefore, interpolation is performed to extend the 138 

number of points in the segment. Then the segments are averaged (McFadden 1987, 139 

McFadden, Toozhy 2000, Bechhoefer, Kingsley 2009). 140 

1.2 Adaptive filter 141 

Adaptive filters are used to relate two vibration signals and produce a mathematical 142 

model for this correlation. The standard form of  the adaptive filters is based on Wold 143 

Raw vibration 
signal

SA
Adaptive filter -
random  signal

Envelope 
analysis +SK

Spectrum 
Signature

Adaptive filter -
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theory (Widrow, Glover et al. 1975) where the desired output estimated by multiplying 144 

the vibration signal by the filter coefficients, the filter coefficient are estimated 145 

iteratively based on the correlation between the vibration signal and reference signal. 146 

(Douglas 1999). Adaptive filters decompose the vibration into two signals based on 147 

equation 1(Douglas, Rupp 1999). 148 

𝑥(𝑛) = 𝑃(𝑛) + 𝑟 (𝑛) 
(1) 

In which P(n) is the gear signal 149 

                r(n) is the bearing signal 150 

                x(n) is the vibration signal 151 

Prediction of the gear signal depends on the estimation of  the filter coefficient . Many 152 

recursive algorithms have been suggested for filter coefficient optimisation. Among 153 

these algorithms, Least Mean Square LMS algorithm emerged as a good candidate. 154 

LMS compare the desired output to the reference signal and modify the filter coefficient 155 

accordingly. Such method requires the existence of  reference signal and known as 156 

adaptive noise cancellation. Due to difficulty associate with obtaining a reference 157 

signal for bearing signal, the reference signal has been replaced by delayed version 158 

of the same signal (Widrow, Glover et al. 1975, Widrow, McCool et al. 1975). 159 

LMS algorithm determines and update the coefficients for each filter step. Such 160 

process requires longer processing time, therefore Fast block Least Mean Square 161 

FBLMS has been suggested to overcome h the limitation of LMS (Dentino, McCool et 162 

al. 1978). In FBLMS the filter coefficient estimated for the signal spectrum and updated 163 

for each segment, details of application of FBLMS is summarised in (Ferrara 1980) 164 

 165 

Spectral Kurtosis and envelope analysis 166 

Kurtosis has been used as bearing health condition indicator for years. It is defined as 167 

the fourth standardised moment of the vibration signal, which present how peak or flat 168 

the distribution is. It is known that KU is a measure of the peakedness of a signal and 169 

on the basis that a signal will contain impulsive transient events during the onset of 170 

degradation. kurtosis value close to 3 indicates a Gaussian signal. Kurtosis greater 171 

than 3 indicates a sharp peak signal. As Short-Time-Frequency-Transform (STFT) 172 
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based (Randall 2011), SK measures impulsiveness of the signal in the different 173 

frequency band, thus the most impulsive frequency components which might contain 174 

fault signatures could be identified and extracted. SK has been extensively used in 175 

fault detection and condition monitoring. A very thorough definition and application of 176 

SK has been demonstrated by Antoni (Antoni 2007). 177 

 178 

Spectral Kurtosis has been introduced to select the optimum frequency band for 179 

envelope analysis. In order to enhance efficiency in determining appropriate frequency 180 

resolution, Kurtogram is developed, which display SK as a function of both frequency 181 

and frequency resolution. In this way, an optimal band pass filter could be designed to 182 

extract signals with maximum impulsiveness in certain frequency bands and centre 183 

frequencies. Antoni has also suggested a fast kurtogram algorithm lessen the 184 

complicated computational work of kurtogram exploring the entire plane of frequency/ 185 

resolution (Antoni 2007).  186 

 187 

Envelope analysis has been established as benchmark method for dealing with 188 

bearing fault diagnosis. The procedure of envelope analysis is described in (Elasha, 189 

Mba et al. 2014). It comprises of filtering the signal using frequency band obtained by 190 

SK, to form envelope signal, and then searching for desired frequency features.  191 

 192 

One problem when applying envelope analysis is that selecting frequency bands for 193 

filtering might be challenging. Impacts due to defects could excite resonance at higher 194 

frequencies. With the aid of Kurtogram, it is possible to identify these structural 195 

resonance frequencies and filter them out subsequently. 196 

 197 

The basic principle of this method is to calculate the Kurtosis at different frequency 198 

bands in order to identify non-stationarities in the signal and determine where they are 199 

located in the frequency domain. Obviously, the results obtained strongly depend on 200 

the width of the frequency bands Δf  (Antoni 2007). 201 
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The Kurtogram (Randall 2011) is basically a representation of the calculated values of 202 

the SK as a function of f and Δf. However, the exploration of the whole plane (f, Δf) is 203 

a complicated computation task though Antoni (Antoni 2007) suggested a 204 

methodology for the fast computation of the SK. 205 

On identification of the frequency band in which the SK is maximised, this information 206 

can be used to design a filter which extracts the part of the signal with the highest level 207 

of impulsiveness. Antoni et al. (Antoni, Randall 2006) demonstrated how the optimum 208 

filter which maximises the signal to noise ratio is a narrowband filter at the maximum 209 

value of SK. Therefore the optimal central frequency fc and bandwidth Bf of the band-210 

pass filter are found as the values of f and Δf which maximise the Kurtogram. The 211 

filtrated signal can be finally used to perform an envelope analysis, which is a widely 212 

used technique for identification of modulating frequencies related to bearing faults. In 213 

this investigation, the SK computation and the subsequent signal filtration and 214 

envelope analysis were performed using the original Matlab code programmed by 215 

Jérôme Antoni (Antoni, Randall 2006). 216 

 217 

2 Experimental Setup 218 

 219 

Experimental data was obtained from tests performed on CS-29 Category ‘A’ 220 

helicopter gearbox which was seeded with defects in one of the planetary gears 221 

bearing of the second epicyclic stage. The test rig was of back-to-back configuration 222 

and powered by two motors simulating dual power input.  223 

CS-29 ‘Category A’ helicopter main gearbox  224 

The transmission system of a CS-29 ‘Category A’ helicopter gearbox is connected to 225 

two shafts, one from each of the two free turbines engines, which drive the main and 226 

tail rotors through the MGB. The input speed to the MGB is typically in the order of 227 

23,000 rpm which is reduced to the nominal main rotor speed of 265 rpm [38]. 228 

 229 

The main rotor gearbox consists of two sections, the main module, which reduces the 230 

input shaft speed from 23,000 rpm to 2,400 rpm. This section includes two parallel 231 

gear stages. This combined drive provides power to the tail rotor drive shaft and the 232 
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bevel gear. The bevel gear reduces the rotational speed of the input drive to 2,405 233 

rpm and changes the direction of the transmission to drive the epicyclic reduction 234 

gearbox module. The second section is the epicyclic reduction gearbox module which 235 

is located on top of the main module.  This reduces the rotational speed to 265 rpm 236 

which drives the main rotor. This module consists of two epicyclic gears stage, the first 237 

stage contains 8 planets gears and second stage with 9 planets gears, see figure 2. 238 

The details of the gears are summarised in table 1. 239 

 240 

Figure 2 Second stage epicyclic gears 241 

 242 

Table 1 number of teeth for the gearbox gears 243 

First parallel 
stage 

Pinion teeth Wheel teeth 

23 66 

Second  parallel 
stage 

Pinion teeth Wheel teeth 

35 57 

Bevel stage 
Pinion teeth Bevel teeth 

22 45 

1st epicyclic stage 
Sun gear 

Planets gear – 8 
gears 

Ring gear 

62 34 130 

2nd epicyclic stage 
Sun gear 

Planets gear – 9 
gears 

Ring gear 

68 31 130 

 244 

The epicyclic module planet gears are designed as a complete gear and bearing 245 

assembly. The outer race of the bearing and the gear wheel are a single component, 246 
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with the bearing rollers running directly on the inner circumference of the gear. Each 247 

planet gear is ‘self-aligning’ by the use of spherical inner and outer races and barrel 248 

shaped bearing rollers (see Figure 2).  249 

 250 

Experimental conditions and setup 251 

This investigation involved performing the tests for fault-free condition, minor bearing 252 

damage and major bearing damage. The bearing faults were seeded on one of the 253 

planet gears of the second epicyclic stage. Minor damage was simulated by machining 254 

a rectangular section of fixed depth and width across the bearing outer race (10mm 255 

wide and 0.3mm deep), see figure 3, and the major damage simulated as a 256 

combination of both a damaged inner race (natural spalling around half of the 257 

circumference) and an outer race (about 30mm wide, 0.3mm deep), see figure 4. The 258 

load condition of 100%  of maximum continuous power; the power, speed and torque 259 

characteristics of this load conditions are summarised in table 2. 260 

 261 

Figure 3   Slot across the bearing outer race 262 

 263 
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 264 

Figure 4  Inner race natural spalling 265 

Table 2 Test Load conditions characteristics 266 

Load Condition  Power 

(Kw) 

Rotor speed 

(RPM) 

Right input 

torque (Nm) 

Left input 

torque Nm) 

100% Max continuous power 
1300 265 272 272 

Vibration fault frequencies 267 

To aid diagnosis all characteristic vibration frequencies were determined, see table 3. 268 

These included gears mesh frequencies of the different stages and the bearing defect 269 

frequencies for planet bearing. 270 

 271 

Table 3      Gearbox characteristic frequencies 272 

Frequency components Frequency HZ 

Gears Meshes 

First parallel GMF Hz 8751 

Second parallel GMF 4641 

Bevel stage GMF (Hz) 1791 

1st epicyclic stage GMF 1671 

2nd  epicyclic stage GMF 573 

Faulty planet bearing 

Ball spin 45 

Outer race 97 

Inner race 144 

Cage 7.4 

 273 
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Data acquisition and instrumentation 274 

 275 

Vibration data was acquired with a triaxial accelerometer (type PCB Piezotronics 276 

356A03) at a sampling frequency of the 51.2 kHz. The accelerometer had an operating 277 

frequency range of 2 Hz to 8 kHz and was bonded to the case of the gearbox, see 278 

figure 5.  The acquisition system employed was a National Instruments (NI) NI cDAQ-279 

9188XT CompactDAQ Chassis. A 60 second sample was recorded for each fault case. 280 

The Y-axis of the tri-axial accelerometer arrangement was oriented parallel to the 281 

radial direction of gearbox, the X-axis to the tangential axis, and the Z-axis is the 282 

vertical axis parallel to the rotor axis, see figure 5. In addition, the angular position has 283 

been measured using a 60 segment encoder fitted to rotor (upper planet carrier), and 284 

sampled at 25.6 KHz. 285 

 286 

 287 

Figure 5       MGB installed on the test bench 288 

 289 

  290 

Z 

X 

Y 
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3 Vibration analysis prior to TSA 291 

 292 

The results of spectrum analysis show no evidence of bearing fault frequency for the 293 

faulty condition (Fig. 6). The spectrum showed the existence of gear mesh frequencies 294 

and their harmonic. In addition, observations of a closer inspection of the frequency 295 

spectrum (zoom in Fig. 7) showed no existence of the bearing fault frequency. When 296 

comparing all three test conditions, it was noted that the overall vibration amplitude 297 

decreased for the major fault scenario and this was due to the increased bearing 298 

clearance due the fault; a similar fault condition has been reported by Elasha et al. 299 

(2014b). 300 

 

Figure 6      Power spectrum of original vibration signal for the major defect condition 
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 303 

 304 

 305 

Figure 7 Zoom-in power spectrum of original vibration signal for a) Fault-free (b) Major 306 

(c) Minor damage 307 

 308 

Spectral Kurtosis analysis was undertaken on the non-deterministic part of data sets 309 

collected from the gearbox for the different fault cases and this yielded the frequency 310 

bands and center frequencies which were then used to undertake envelope analysis. 311 

As discussed earlier the signal separation was undertaken with adaptive filter FBLMS 312 

algorithm.   Spectral plots of enveloped vibration signals following filtration, whose 313 

characteristics were determined with the aid of Spectral Kurtosis, are show in figures 314 

8, 9 and 10. 315 

 316 
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 317 

Table 4 Filter characteristics estimated based on combination indicator for all three 318 

vibration axes at 100%  maximum take-off power 319 

Case Center frequency 

Fc (Hz)  

Band Width 

Bw (Hz) 

Kurtosis 

Fault-free condition X direction  5200 266 0.1 

Fault-free condition Y direction  5200 266 0.1 

Fault-free  condition Z direction  5200 266 0.11 

Minor damage  condition X direction  6000 266 0.11 

Minor damage condition Y direction  6000 266 0.1 

Minor damage condition Z direction  6000 266 0.12 

Major damage  condition X direction  20266 2133 0.5 

Major damage condition Y direction  20266 2133 0.45 

Major damage condition Z direction  20266 2133 0.6 

 320 

 321 

Observation from the spectra of the enveloped signal in the all directions at 100% 322 

maximum continuous power, see figures 8, 9 and 10 respectively, showed no 323 

presence of fault frequencies associated with the defective planetary bearing in the 324 

spectrum, except for the Z direction, see Figure 10, where the cage defect frequency 325 

(7.5 Hz) were detected. It is apparent that the signal separation had not completely 326 

removed the gear mesh and shaft frequencies, particularly the sun gears frequencies 327 

and its harmonics for first and second epicyclic stages (38.8 and 13.2 Hz respectively), 328 

which were detected by envelope analysis, see figures 8, 9 and 10 respectively. 329 

Existence of these frequencies is due to fact that the vibration signal used in this 330 

analysis wasn’t synchronised to any particular shaft. Observations at 110% of take-off 331 

power and 80% of maximum continuous power showed similar observation at 100% 332 

of maximum continuous power in all directions; therefore, only observation at 100% of 333 

maximum continuous power was presented here. 334 

 335 
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 336 

 337 

Figure 8 Enveloped Spectra of non-deterministic signal for a) Fault-free (b) Major (c) 338 

Minor damage (100% maximum continuous power, X direction).  339 
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 340 

Figure 9  Enveloped Spectra of non-deterministic signal for a) Fault-free (b) Major 341 

(c) Minor damage (100% of maximum continuous power, Y direction). 342 

(c) 

(b) 

(a) 

1st stage sun gear & harmonics 
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 343 

 344 

 345 

Figure 10 Enveloped Spectra of non-deterministic signal for a) Fault-free (b) Minor (c) 346 

Major damage (100% of maximum continuous power, Z direction) 347 

4 Vibration analysis after SA 348 

The vibration and tachometer signals acquired were processed to build the 349 

synchronous averaging signals, and then the non-deterministic part of TSA signal has 350 

been obtained using adaptive signal separation as descried earlier. Spectrum analysis 351 

of the separated signal showed no indication of the bearing failure, therefore, the 352 

signal processed further using envelope analysis, and the frequency bands required 353 

(c) 

(b) 

(a) 
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for envelope analysis have been obtained using spectral kurtosis analysis. In order to 354 

detect the faults all related frequencies have been estimated as orders of rotor speed 355 

(265 RPM), see Table 5. 356 

 357 

Table 5: Frequencies in orders of rotor rotation   358 

Frequency components Order (of rotor speed 265 RPM) 

Gears Meshes 

First parallel GMF Hz 1982.7 

Second parallel GMF 1050 

Bevel stage GMF (Hz) 405 

1st epicyclic stage GMF 378.33 

2nd  epicyclic stage GMF 129.73 

Faulty planet bearing 

Ball spin 10.25 

Outer race 21.9 

Inner race 32.6 

Cage 1.7 

 359 

Observation from the spectra of the enveloped signal in the X direction at 100% 360 

maximum take-off power, see Figure 11, showed existence of outer race defect 361 

frequency (21.9 orders) for both minor and major faults.  In addition, inner race defect 362 

has been detected for the major fault condition at 32.6 orders. Also, second harmonic 363 

of outer race (43.8 orders) has been detected for the minor fault.   364 

Observations from envelope spectra in the Y and Z direction at 100% maximum take-365 

off power, see Figure 12 and Figure 13, showed existence outer race defect frequency 366 

for major fault condition. Furthermore, outer race defect has been identified for the 367 

minor fault detection in Y direction, however, observations of Z direction showed no 368 

fault existence, see Figure 13. 369 
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 370 

 371 

Figure 11 Enveloped Spectra of TSA non-deterministic signal for a) Fault-free (b) 372 

Major (c) Minor damage (100% maximum continuous power, X direction). 373 
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 375 

Figure 12 Enveloped Spectra of TSA non-deterministic signal for a) Fault-free (b) 376 

Major (c) Minor damage (100% maximum continuous power, Y direction). 377 
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 378 

Figure 13 direction Enveloped Spectra of TSA non-deterministic signal for a) Fault-379 

free (b) Major (c) Minor damage (100% maximum continuous power, Z direction). 380 

5 Discussion and Conclusion 381 

Comparisons of the vibration results prior to and after application of TSA showed the 382 

superiority of TSA in improving the signal separation performance, leading to detection 383 

of the bearing faults for both minor and major fault conditions. The results prior to 384 

application of the TSA technique showed no fault existence. Though the results after 385 

TSA showed sensitivity to measurement direction and load condition, the result of 386 

measurement taken under minor 387 

fault for the z-direction showed the existence of no faults for all loading conditions, 388 

where the measurements taken in the x- and y-directions showed the existence of the 389 

minor fault. 390 
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The applied signal processing techniques were able to aid identification of the 391 

planetary module bearing fault using signal separation and SK to optimize envelope 392 

analysis. 393 

In summary, this research recommends employing of series of signal processing 394 

techniques to detect the bearing fault within helicopter gearboxes using vibration 395 

analysis. Application of these techniques results in bearing fault identification for 396 

different defect sizes and under different loading condition. Finally, application of TSA 397 

prior to vibration signal separation offered a clearer indication of damage than vibration 398 

signal separation without employing 399 

of TSA. 400 
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