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Adaptive Generative Models for Digital Wireless
Channels

Omar S. Salih,Member, IEEE, Cheng-Xiang Wang,Senior Member, IEEE, Yejun
He, Senior Member, IEEE, and Bo Ai, Senior Member, IEEE,

Abstract

Error models that can characterize the statistical behavior of bursty error sequences in digital wireless channels
are important for evaluating and designing error control strategies as well as high layer wireless protocols. Gen-
erative models have an immense impact on wireless communications industry as they can significantly reduce the
computational time of simulating wireless communication links. By using a few reference error sequences obtained
from a reference transmission system, adaptive generativemodels aim to generate many more error sequences,
corresponding to various conditions of physical channels.Compared with traditional general models, this adaptive
technique can further considerably reduce the computational load of generating new error sequences as there is
no need to simulate the whole transmission system again. In this paper, reference error sequences are obtained
by computer simulations of a long term evolution (LTE) system. Adaptive generative models are developed from
several widely used generative models, namely, the simplified Fritchman model (SFM), the Baum-Welch based
hidden Markov model (BWHMM), and the deterministic processbased generative model (DPBGM). We produce
new error sequences according to the developed adaptive generative models and compare their burst error statistics
for specific channel conditions with those obtained from reference error sequences. It is demonstrated that the
well-known burst error statistics of the new error sequences derived from adaptive generative models can closely
match those of reference error sequences.

Index Terms

Adaptive generative models, error models, burst error statistics, digital wireless channels, Markov models.

I. INTRODUCTION

A digital (time-discrete) channel generally represents the whole wireless transmission communication
chain including the transmitter, analog (or physical) channel, and receiver in the complex baseband. The
input and output of a digital channel are in the digitized form. Because of impairments in wireless channels,
errors frequently emerge in digital channels. Moreover, signal processing in many stages of the wireless
transmission system may add further errors [1]. It is perceived that these errors arising from digital wireless
channels with memory are not independent but appear in clusters or bursts. Bursty error traces can be
statistically investigated and represented by mathematical channel models called error models [2]. These
error models can be classified as descriptive [3] and generative [4] models. Descriptive models express
the error statistics of reference error sequences obtaineddirectly from experiments. Generative models are
mechanisms that utilize the statistical properties of the bursty error sequences to generate error sequences
having burst error statistics similar to those of referenceerror sequences. Generative models are very
efficient as they decrease the computation burden of real or simulation systems and subsequently they
significantly reduce the simulation time. The main application of error models is to assess the performance
and assist in the design of error control schemes and also thedesign of high layer wireless communication
protocols [5]–[9]. Error models can characterize erroneous bit or packet sequences [10], [11].
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In the literature there are five main classes of generative models. Markov models are the first class
of generative models. They consist of finite [12]–[17] or infinite states [4] in a chain. The Gilbert-Elliot
model [12], [13] was the first model in this category with two states for generating errors and error-free
bits. Many amendments appeared afterwards in order to enhance its performance, but these models still
produce error sequences with burst error statistics that diverge from the desirable ones. An increase in the
number of states has achieved better performance [11], [14], [15]. For example, Simplified Fritchman’s
models (SFMs) [14] replaced the error-free state of the two-state model with a group of error-free states
while keeping the only error state. SFMs had been applied to many systems with different types of physical
channels [18], [19]. Bipartite models [11] are more advanced models, but their complexity is very high
in order to acheive a satisfactory accuracy. The second class is hidden Markov Models (HMMs) [20]–
[23], which contain hidden parameters that can be calibrated through observations. The Baum-Welch
(BW) algorithm [24] was mostly used to attune the hidden parameters based on available observations.
We call HMMs that use Baum-Welch (BW) algorithm, Baum-Welchbased HMMs (BWHMMs). HMMs
are considerably complicated due to the huge number of states required to train the hidden parameters,
which greatly increases the computation speed. The third and fourth classes of generative models are
based on stochastic context-free grammars (SCFGs) [25] andchaos theory [26]–[29], respectively. SCFGs
consist of production rules and symbols; each symbol is assigned a probability that controls its behavior.
These models are limited to error bursts with bell-shaped error density distributions. Chaotic generative
models cannot describe the desired error correlation function with high accuracy [26]. The final class
of generative models is the deterministic process based generative models (DPBGMs) [30], [31], which
utilize the second order statistics of fading processes. The word ‘deterministic’ is used because all the
parameters of the deterministic process are held constant during the simulation. DPBGMs have proven
their superiority over other generated models, e.g., SFM [31]. However, DPBGMs do not construct new
error bursts in the process of generating error sequences. Instead, they retrieve error bursts directly from
the reference error sequences according to their lengths.

All the aforementioned traditional generative models [12]– [31] were developed and studied for error
sequences of one digital channel with fixed parameters and channel conditions. However, recent applica-
tions need a high number of error patterns or sequences for different digital channels in order to efficiently
evaluate the performance of error control schemes and high layer protocols. In other words, for appropriate
testing of error control schemes and protocols, many error sequences of many digital channels need to be
fed in the testing part in order to get performance results atvarious channel conditions. Obtaining many
error sequences corresponding to different channel conditions, e.g., signal-to-noise-ratio (SNR) values, is
very time consuming. Therefore, adaptive generative models that can utilize the available error sequences
in order to attain newly required error sequences for different purposes are highly desirable.

In this paper, we investigate the useful parameters of some widely known generative models i.e., SFM,
BWHMM, and DPBGM, in order to adjust them for the purpose of generating new error sequences from
at least two reference error sequences obtained from a long term evolution (LTE) system. Two or more
generated error sequences using the reference ones can be utilized in order to generate many more error
sequences corresponding to several SNRs. Therefore, thereis no need to simulate again the wireless
communication system.

We summarize the contributions of this paper as:
1) Adaptive generative models are developed from three well-known generative models(SFM, BWHMM,

and DPBGM).
2) The adaptively uncoded generated error sequences are fedin LTE digital channels in order to check

the resulting error rate.
This paper is organized as follows. Section II defines some terms related to binary error sequences and

describes some important burst error statistics as performance metrics. The novel adaptive procedures for
three widely used generative models, namely SFM, BWHMM, andDPBGM, are proposed in Section III.
Section IV illustrates an LTE simulator which is used as a descriptive model to derive reference bit
error sequences at certain values of SNR. The burst error statistics are also compared between different
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generative models and descriptive models in this section. Finally, conclusions are drawn in Section V.

II. BURST ERROR STATISTICS

An error sequence of a digital wireless channel can be obtained by comparing the digital output sequence
with the input error sequence. We will consider the bit errorsequence here as a sequence of “0”s and
“1”s. That means if the output bit is the same as the input bit,then this bit is represented by “0” in the
error sequence. However, if the received output bit is different from the input bit, then this bit is received
incorrectly and is represented by “1” in the error sequence.

We can breakdown the error sequence into smaller parts in order to study its nature and calculate the
burst error statistic. In relation to this approach, a number of terms are now defined. Agap is defined as
a sequence of consecutive zeros between two ones, having a length equal to the number of zeros [18],
[32]. An error cluster is a series of errors that occur consecutively. It has a length equal to the number
of ones [14]. Anerror-free burst is defined as an all-zero sequence with a length of at leastη bits, where
η is a positive integer [11], [21]. Compared to a gap, an error-free burst has the minimum length ofη
and is not necessarily located between two errors. Anerror burst is a series of ones and zeros restricted
by “1”s at the edges, and separated from neighboring error bursts by error-free bursts [11], [21]. Clearly,
the minimum length of an error burst is one and the number of consecutive error-free bits within an error
burst is less thanη. Hence, the local error density inside an error burst is greater than1/η.

In what follows, we list widely used burst error statistics that are available in the literature for
characterizing bit error sequences:
1) G(mg): the gap distribution (GD), which is defined as the cumulative distribution function (CDF) of

gap lengthsmg. This statistic gives some indication of the randomness of the channel [32].
2) P (0m0|1): the error-free run distribution (EFRD), which is the probability that an error bit is followed

by at leastm0 error-free bits [14]. The EFRD can be calculated from the GD [32]. Clearly,P (0m0 |1)
is a monotonically decreasing function ofm0 such thatP (00|1) = 1 andP (0m0|1) → 0 asm0 → ∞.
This statistic is very useful to determine the minimum error-free burst lengthη.

3) P (1mc|0): the error cluster distribution (ECD), which is the probability that a correct bit is followed
by mc or more successive bits in error [14]. This statistic distinguishes between the bursty channels
and random channels as well, i.e., bursty channels have longerror clusters (e.g., 15-20), whereas
random channels have short error clusters (e.g., 1-3).

4) PEB(me): the error burst distribution (EBD), which is the CDF of error burst lengthsme. This statistic
helps in designing the error bursts correcting codes [32].

5) PEFB(mē): the error-free burst distribution (EFBD), which is the CDFof error-free burst lengths
mē. This statistic, together with the error burst distribution, provides the basis for determining the
optimum degree of interleaving with respect to a specific code [32].

6) P (m,n): the block error probability distribution (BEPD), which isthe probability that at leastm out
of n bit are in error. This statistic is important for determining the performance of Hybrid Automatic
Repeat Request (HARQ) protocols [18].

7) ρ(∆k): the bit error correlation function (BECF), which is the conditional probability that the∆kth
bit following a bit in error is also in error. The BECF is also important because it represents the
burstiness of the channel [3], [4].

Burst Error statistics are useful statistical means to demonstrate the natural structural behavior of error
sequences obtained from wireless channels with memory. Consequently, they could help in the design and
evaluation of error control schemes and higher layer protocols, especially those very important burst error
statistics, namelyP (m,n) andρ(∆k). Furthermore, burst error statistics are metrics to judge the relative
merits of different generative models by comparing them with the descriptive model. We will use some
of these statistics in Section III to develop the new adaptive generative models and we will illustrate all
of them in Section IV in order to validate our proposed generative models.
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III. A DAPTIVE GENERATIVE MODELS

Adaptive generative models are very convenient for evaluating error control schemes and high layer
protocols as they can generate many new error sequences fromat least two reference error sequences.
This ability has a huge impact in reducing the simulation time of the original system as well as the
simulation time for evaluating error control schemes. In the following subsections, we propose methods
for producing new error sequences from two reference error sequences. The adopted generative models,
namely the SFM, HMM, and DPBGM, are widely known in the literature and have been applied to many
wireless systems.

A. Adaptive SFM (ASFM)

A SFM consists ofN-states, one error state andN − 1 error-free states. This division is designated
in relation to very important statistics for performance evaluation, which are the error cluster distribution
and error free run distribution.

When a SFM is transiting into the error state, it generates “1” (error bit). When a transition to an
error-free state occurs, the SFM generates “0” (correct bit). While the SFM is circulating within an error-
free state, “0”s are generated until a transition to the error state occurs. In this case, the SFM generates
“1”s again. Transitions between the error-free states in a SFM are forbidden. The reason for having many
states generating “0”s is to generate different lengths of gaps. All the transitions take place according to
assigned probabilities. The probability transition matrix for an N-state SFM is [14]

T =













P11 0 0 0 P1N

0 P22 0 0 P2N

0 0
. . . 0

...
0 0 0 PN−1N−1 PN−1N

PN1 PN2 · · · PNN−1 PNN













(1)

wherePij is the the probability of transiting from Statei to Statej (i, j = 1, ..., N). Note that states
1, ..., N − 1 are error-free states, whileN is the error state. As the transitions between error-free states
are not allowedPij = 0 for i, j = 1, ..., N − 1 and i 6= j. The probabilitiesPij can be determined from
the EFRD of the reference error sequence, which is written as[14]

P (0m0 |1) =
N−1
∑

i=1

PNi

Pii

Pm0

ii , m0 > 0. (2)

The EFRD can also be approximated by the weighted sum ofN − 1 exponentials given by [14]

P (0m0|1) ≈ A1e
a1m0 + · · ·+ AN−1e

aN−1m0 . (3)

The parametersAM and aM (M = 1, 2, · · · , N − 1) can be found by using an optimization method
or curve fitting technique to match (3) with the EFRD obtainedfrom the reference error sequence.
Consequently, the values ofPij in (1) are obtained by the following [14]

PMM = eaM , (4)

PNM = AM × PMM , (5)

PMN = 1− PMM , (6)

PNN = 1−
N−1
∑

M=1

PNM . (7)

In order to generate a new error sequence, which we called it the adaptive error sequence, from reference
error sequences, we have to consider the most important burst error statistic in SFM, which is the EFRD.
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Once we know the new EFRD from the surrounding reference EFRDs, we can then follow the normal
procedure of generating error sequences.

The procedure is simply to firstly obtain two EFRDs corresponding to two different SNRs from two
reference error sequences. Subsequently, from the obtained EFRDs, we produce many new EFRDs suitable
for generating many error sequences corresponding to various SNRs. Suppose we have two reference error
sequences with two different SNRs in dB, e.g.,X and Y , then their EFRDs at the two levels of SNR
are (PX(0

m0 |1) andPY (0
m0 |1)). In order to find the newPZ(0

m0 |1), which is the EFRD of the new and
required error sequence, we apply (see Fig. 1)

PZ(0
m0 |1) = ⌊P α

X(0
m0 |1)× P β

Y (0
m0 |1)⌋ (8)

wherePX andPY are weighted by

α =

∣

∣

∣

∣

SNRZ − SNRY

SNRX − SNRY

∣

∣

∣

∣

(9)

and

β =

∣

∣

∣

∣

SNRZ − SNRX

SNRX − SNRY

∣

∣

∣

∣

, (10)

respectively, Here,⌊P ⌋ is the floor function ofP . After obtainingPZ(0
m0 |1), we can simply fit it with (3)

in order to find the optimized parametersAM andaM and consequently the transition matrixT. Finally,
the required new error sequence is ready for generation.

B. Adaptive Baum-Welch based HMM (ABWHMM)

HMMs [21], [23] employ the idea of Markov models, but use two stochastic processes. One stochastic
process is not observable but can only be estimated by the other stochastic process which produces a
sequence of observations. The authors of [21] implement HMMs using Baum-Welch (BW) algorithm
[20], [24]. The procedure of [21] is explained as follows. The error bursts of the reference error sequence
are extracted and numbered. Each error burst is then dividedinto blocks ofL bits length. Each block
is represented by the number of error bits it contains. For example, whenL = 4, the error burst
110011110001 has 3 blocks. Hence, that error burst is represented by 3 digits as 241. In this way,
the error bursts are converted into a compact format and theythen form a matrix,NEL, such that
NEL = {NEL1, NEL2, · · · , NELm}

′

, wherem is the number of error bursts in the reference error
sequence. The largest number inNELi(i = 1, ..., m) is called the peak number of errors (PNE), e.g., 4 in
the previous example. The next step is to classify the error bursts intoN disjoint classes (submodels or
bursty states) according toζ(N−1)+1 ≤ PNE ≤ ζN , whereζ is a positive integer number. Afterwards,
the compacted blocks of each state shall be used to train hidden Markov submodels using BW algorithm
[24]. Each submodel contains one class of error bursts. BWHMMs have the following parameters:
1) S = {s1, s2, ..., sN}: the set of states of the model, whereN is the number of states.
2) V = {v1, v2, ..., vD}: the set of observable values, whereD is the cardinality of the observable values.
3) A = [aij ]: the state transition probabilities matrix, whereaij is the probability of transition from

statesi to sj.
4) B = [bjk]: the observations probabilities matrix, wherebjk is the probability of emittingvk from state

sj.
5) Π = [πi]: the initial state probability.
To build the BWHMM submodels, the parametersN , D, and the setλ = {A,B,Π} must be specified.

The value ofN can be decided according to the guidelines in [21]. Given a set of observation sequences
representing the compacted error burstO

k =
{

Ok
1 , O

k
2 , · · · , Ok

Dk

}

, k = 1, · · · , K (K is the number of
error bursts in each class), the BW algorithm is utilized to maximize the probabilityΓ =

∏K

k=1 P (λ|Ok).
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Once the optimized transition probabilities are found out,error bursts can be generated from the
submodels. To complete the generation of new error sequences, the error-free bursts concatenation to
the hidden Markov submodels should be executed. The error-free bursts are represented by one state only.
The transitions from the error-free state to the other states generate error bursts with variable structures
according to the submodel. However, the transitions from the burst states to the error-free state generate
error-free bursts with different lengths. Both error-freebursts and error bursts are combined at the end.

In order to generate many new error sequences from two reference error sequences, we should find out
the most important feature of the BWHMM. It is theNEL matrix. In fact, error models aim to identify
the error events and distribution in error bursts. This is recognized by theNEL matrix. FromNEL we
can know the number of errors in each block for each error burst. Therefore, from knowing twoNEL

matrices, i.e.,NELX andNELY corresponding to two different SNRs of two reference error sequences
X andY , we can obtain a newNEL matrix, e.g.,NELZ of SNR corresponding to the new error sequence
Z. The SNR ofZ is between the other two SNRs ofX andY error sequences. From the newNEL matrix
we can then generate the new required error sequence withoutthe need for a reference error sequence for
the wanted SNR. Once theNELZ matrix is calculated, the set of steps described before to construct the
submodels are applicable in the process toward generating the required error sequence.

In order to find theNELZ we firstly need to sort each row in bothNELX andNELY in descending
manner so that the PNE is the leading element. Secondly, the rows should be sorted so that the PNE
column is in descending order as well. TheNELZ can then simply be found by

NELZ = ⌊α ·NELX + β ·NELY⌋. (11)

The values ofα and β can be calculated from (9) and (10), respectively. Afterwards, we apply the
classification rule, training procedure, and finally the concatenation method to generate the required error
sequence. However, to apply the concatenation, we need to construct the error-free state. Generating new
error-free bursts is discussed in the next subsection (Section IIIC).

The BWHMMs utilize the Baum-Welch algorithm because it is robust and always converges. However,
the convergence point is not guaranteed to be a global maximum. Hence, its final parameters may not
necessarily be the optimal ones. Another drawback is that the BWHMMs consist of a large number of
states, which increases the complexity of the model.

C. Adaptive DPBGM (ADPBGM)

The idea of the DPBGM is derived from the second order statistics of fading processes [31]. Specifically,
some statistics of bursty errors can be approximated from the second order statistics of fading envelope
processes. Accordingly, fading processes can be used to generate error sequences. Deterministic fading
processes are based on the rule of sum of sinusoids [33].

To build a DPBGM, an underlying reference transmission system is replaced by a properly parameterized
and sampled deterministic process followed by a threshold detector and two parallel mappers. Mappers
can fit the obtained length distributions of the error and error-free bursts to the desired statistics of the
descriptive models.

The complex deterministic process can be represented by [31]

ζ̃(t) = |µ̃1(t) + jµ̃2(t)| (12)

where

µ̃i(t) =

Ni
∑

n=1

ci,n cos(2πfi,nt+ θi,n) , i = 1, 2 . (13)

Here Ni is the number of sinusoids,ci,n are gains,θi,n are phases for the realizations of the random
generators, andfi,n are the discrete frequencies. Some second order statisticsof the sampled deterministic
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process, such as the level crossing rate (LCR), the average duration of fades (ADF), the average duration
of the inter-fades (AIDF), can be described using the vectorΨ = (N1, N2, rth, σ0, fmax, TA), whererth is
the threshold,σ0 =

rth√
2 ln(1+RB)

is the square root of the mean power ofµi(t), fmax = NEB(1+RB)

Tt

√
2π ln(1+RB)

is

the maximum Doppler frequency, andTA ≈
4σ0[exp(

r
2

th

2σ2
0

)−1]
√
5πrthfmax

√

−1 +
√

1 + 10qs/3 is the sampling interval.
The value ofRB is the ratio of the mean value of error burst lengths to the mean value of error-free burst
lengths. The parametersNEB andTt are the total number of error bursts and the total transmission time
of the communications system, respectively. The quantityqs is the maximum measurement error of the
LCR.

When the simulation is run, the deterministic process varies in a way that it crosses the threshold with
positive and negative slopes. When the level of the deterministic process is above that threshold (inter-
fade intervals) an error-free burst is generated. On the contrary, when the deterministic level is below
the threshold (fading intervals) an error burst is generated. The lengths of the error-free bursts and error
bursts equal the number of samples counted in inter-fading and fading intervals, respectively. Subsequently,
error burst and error-free burst generators are produced. After that, mapping [31] is employed to adjust
the generated error and error-free bursts lengths to those of the original error sequence. Subsequently, we
collate an error burst recordEBrec and error-free burst recordEFBrec as vectors. Finally, error sequences
can be obtained by combining the consecutively generated error bursts with error-free bursts.
Let us denote the minimum value inEBrec asmB1 and the maximum value asmB2. Subsequently, the
lengthsme of error bursts satisfymB1 ≤ me ≤ mB2. By analogy, the minimum value and the maximum
value in EFBrec are denoted asmB̄1 and mB̄2, respectively, and the lengthsmē of error-free bursts
satisfymB̄1 ≤ mē ≤ mB̄1. For the convenience of developing the ADPBGMs, the following quantities
are defined:
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1) NEB is the total number of error bursts, which equals the number of entries inEBrec.
2) NEFB is the total number of error-free bursts, which equals the number of entries inEFBrec.
3) NEB(me) is the number of error bursts of lengthme in EBrec. Thus,

∑mB2

me=mB1
NEB(me) = NEB holds.

4) NEFB(mē) is the number of error-free bursts of lengthmē in EFBrec. Similarly,
∑m

B̄2

mē=m
B̄1

NEFB(mē) = NEFB holds.
In order to design the ADPBGM, we focus onEBrec andEFBrec since the most important features

of this model are the lengths of error bursts and error-free bursts. The first step is to calculate the two
EBrec and twoEFBrec for the two different SNRs corresponding toX andY generated error sequences,
respectively. Our aim is to calculate theEBrec andEFBrec that are related to the adaptive error sequence
Z. Hence, the second step is to find the CDFsPEB andPEFB for both EBrec andEFBrec related to
error sequencesX andY . A very important property ofPEB andPEFB is that they are monotonically
increasing. This property simplifies finding accurate values (new curves) between twoPEB curves (see
Fig. 2) or between twoPEFB curves. The third step is to findPEBZ

, which is related to the adaptive
error sequence, from thePEBX

andPEBY
, which are related toX andY error sequences having different

SNRs, by simply applying

PEBZ
= ⌊α · PEBX

+ β · PEBY
⌋ (14)

wherePEB = 1
NEB

∑x=me

mB1
NEB(x). By analogy

PEFBZ
= ⌊α · PEFBX

+ β · PEFBY
⌋, (15)

wherePEFB(mē) = 1
NEFB

∑x=mē

m
B̄1

NEFB(x). The values ofα and β are obtained from (9) and (10),
respectively. The fourth step is to constructEBrec andEFBrec from PEBZ

andPEFBZ
, respectively. In

order to do so, we have to know the total numbers of error bursts NEBZ
and error-free burstsNEFBZ

of
theEBrec andEFBrec related toZ. The numberNEBZ

is obtained by interpolating between theNEBX

andNEBY
. Moreover, the numberNEFBZ

is obtained by interpolating between theNEFBX
andNEFBY

given thatX and Y have the same length. Multiplying the obtained numbers withthe extractedPEBZ

andPEFBZ
, respectively, with some manipulations related to the CDF gives us the requiredEBrec and

EFBrec with me andmē values equivalent to those of the reference records. The fifth step is to generate
error bursts and error-free bursts according to the lengthsin the obtainedEBrec andEFBrec. Generating
error-free bursts is simple because the lengths ofEFBrec can easily converted to series of zeros, unlike
error bursts which contain zeros and ones. Generating errorbursts involves retrieving their structures from
the error bursts ofX andY , which have the sameme as in the obtainedEBrec of Z. Finally, the error
bursts and error-free bursts are combined to construct the required adaptive generated error sequence
Z. It is worth mentioning that the DPBGM is a recent and promising class of error models. It yields
on satisfactory match to the important burst error statistics compared with those of the original error
sequences. Furthermore, the DPBGM parameters can easily bedetermined, its process can effectively
be implemented using the computer, and the statistical properties can be varied over a wide range. The
DPBGM has a drawback in the stage of generating error sequences, because it always needs to retrieve
error bursts from reference error sequences rather than to construct them by itself. In contrast, the other
methods, especially those based on Markov models constructthe error bursts intuitively within the error
sequence generation.

IV. SIMULATION RESULTS AND DISCUSSIONS

To validate our proposed adaptive generative models, we first need to generate some error sequences
based on their reference error sequences. These reference error sequences are essential to initialize various
parameters for the generative models. We use an LTE system toobtain the required reference error
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sequences. The performance criteria are evaluated by calculating the burst error statistics that are defined
in Section II. Our model is optimal if the obtained burst error statistics from the generative models match
the descriptive model, especially the most important statistics such as the BEPD which is useful for
designing and evaluating some digital components in the wireless communication chain.

The LTE system [34] consists of a turbo encoder, a burst interleaver, a rate matcher, and adaptive
modulation and coding (AMC), a viterbi equalizer, a burst deinterleaver, a turbo decoder, as well as a
cyclic redundancy check (CRC) for error detection at the receiver side. The utilized propagation channel
can be expressed as NAMEx, where x represents the vehicle speed in km/h. NAME here represents the
name of the underlying channel, e.g., a rural area (RA) channel, a typical urban (TU) channel, or a
pedestrian B (PedB) channel. We use the following channels:RA275, TU3, TU50, PedB5, and PedB10.
The data were transmitted as uncoded bits of length12× 106 with a transmission rate ofFs = 3450 kb/s.
Target error sequences were produced at SNRs between 1 dB to 7dB with unit step increment.

By comparing the transmitted error sequence with the received one, we workout the bit error sequences.
We use the three discussed generative models, namely, the SFM, BWHMM, and DPBGM in order to
generate new error sequences of length15×106 bits based on the obtained error sequences from the LTE
system. In this paper, we show only the results of the TU50 channel having SNRs of 2, 3, 4, and 5 dB.
In order to examine the adaptivity of our procedure we produce an error sequence of 4 dB from those
already generated at 3 dB and 5 dB SNRs (First scenario, Figs.3–7). We also produce an error sequence
of 4 dB from error sequences of 2 dB and 5 dB SNRs (Second scenario, Figs. 8–11). We compare the
burst error statistics of the former and latter produced error sequences with those statistics obtained from
the reference error sequence of the LTE simulator having SNRof 4 dB. In terms of parameterization, the
value ofη can be found from Fig. 1 when the curve is tending to turn. The value ofη is chosen to be 20
for all our shown results.

For SFM, the fitting ofP (0m0 |1) is achieved by using five exponentials and therefore,N = 6 holds. In
our experiments, no better performance can be accomplishedfor SFMs with more than six states. After
we fit Eq. (3) withP (0m0|1) of SNRs of 2 dB, 3 dB, and 5 dB, we can obtain the transition matrices from
which we can generate new error sequences. Afterwards, we apply Eqs. (9), (10), and (8) to calculate the
adaptiveP (0m0|1) having SNR of 4 dB. This means thatα = β = 0.5 for the first scenario andα = 1/3
and β = 2/3 for the second scenario. Once we know the adaptiveP (0m0|1), Eqs. (3) and (1) can be
applied to generate the new error sequences.

For BWHMM, we first extract the error bursts from the error sequences of 3 dB and 5 dB SNRs. Then,
we divide each error burst into blocks withL = 20 bits. Then, we can obtain theNEL matrices. We apply
Eq. (11) afterwards to obtain theNEL matrix between the other matrices. A Baum-Welch training process
will then be applied to the newly obtainedNEL matrix after classifying it into a satisfactory number of
states. The number of classes (states), in our example is 7. The number of substates is considerably large.
Finally, the generated error burst will be concatenated with the generated error-free bursts in order to
produce the full required error sequence. The generated error-free burst are obtained through calculating
Eq. (14).

In order to proceed with the DPBGM, we need to find the vector,Ψ, which is the set of parameters
to generate the error sequences. The value ofqs is chosen to be 0.01. For the error sequences with
SNRs of 2 dB, 3 dB, and 5 dB, the values ofNEB = 428418, 69706, 122474 andRB = 8.43, 5.24, 2.09,
in sequence. Consequently,Ψ2 = (9, 10, 0.09, 0.0425, 34.9 kHz, 8.33µs), Ψ3 = (9, 10, 0.09, 0.0470,
36.8 kHz, 5.43µs), andΨ5 = (9, 10, 0.09, 0.0599, 40.9 kHz, 4.97µs). Once we generate error sequences
for the above SNRs, we can use their error burst lengths and error-free burst lengths. By calculating their
PEB andPEFB and applying Eqs. (13) and (14), the new error burst and error-free burst lengths for SNR
of 4 dB can be easily obtained. Eventually, the error bursts and error-free bursts are combined together
to construct the entailed error sequences. The structure ofbits in error bursts is also retrieved from the
other two surrounding error sequences based on the error burst lengths.

Figs. 3–11 depict the performance of adaptive generative models. The figures also illustrate the dis-
crepancy between different generative models, namely the SFM, BWHMM, and DPBGM. Various burst
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error statistics such as the EBDs, EFBDs, EFRDs, GDs, ECDs, BEPDs, and BCFs are investigated (some
are shown and some are not shown due to the available space). Figs. 3-7 are related to the generated error
sequence of 4 dB from the neighboring error sequences of 3 and5 dB. Those figures omit the comparison
between the DPBGM and ADPBGM since the DPBGM gives approximate results to the descriptive one
[31], and also for the sake of clarity. Here, as mentioned before, we use three error sequences with different
SNRs, namely, 3 dB, 4 dB, and 5 dB depicting different digitalchannels. We compare the burst error
statistics of the error sequence obtained by the adaptive generative models with those of an error sequence
having the same SNR but obtained directly from the LTE system. Generally, the ADPBGM shows the
best fit to the descriptive model which represents a real reference error sequence. This is clear for all the
burst error statistics except a small mismatch at the end of the curve for ECD and BEPD. The second best
generative model is the ABWHMM. However, the shown burst error statistics are not comparable with
ADPBGM. The ABWHMM results are slightly worse than those obtained using the normal BWHMM
procedure. It is not worth comparing the ASFM with the descriptive model as the mismatch is huge.
However, the ASFM and SFM comparison demonstrates a perfectin the burst error statistics.

The ADPBGM and ASFM burst error statistics match those of theDPBGM and SFM, respectively,
because their main characteristics, i.e., EBD and EFRD, respectively, which are used to design our
procedure, have a certain known form following a monotonically increasing or decreasing function.
However, the ABWHMM main characteristic is a matrix from which it is difficult to derive a new accurate
matrix using the interpolation methods. In general, the adaptive generative models are very efficient in
terms of accuracy in addition to saving the simulation time as there is no need to start the generation
process from the beginning each time we need new error sequences. Obtaining a reference error sequence
with length of 20 million bits takes hours. However, generating an error sequence takes a few minutes,
whereas using adaptive generative models takes a few seconds.

We also examine the ADPBGM by producing error sequences of 4 dB from other error sequences of
2 and 5 dB as shown in Figs. 8–11. It is found that, distancing the SNRs that are required to produce the
new error sequence, deteriorates the performance. Fig . 8 also illustrates the production of 4dB BEPD by
the ASFM using 2 and 5 dB error sequences. It is apparent that the ASFM is not affected by distancing
the reference SNRs. This is because the required EFRD to parametrize the ASFM can be obtained by any
pair of other EFRDs of different SNRs. Fig. 12 shows the codedBER curves after feeding the generated
error sequences obtained from neighboring error sequencessuch thatα = β = 0.5. It is apparent that the
ADPBGM outperforms the other models.

V. CONCLUSIONS

In this paper, we have proposed general methods for extracting adaptive generative error sequences
without the need of their reference error sequences given that a few surrounding reference error sequences
are available. Adaptive generative models are important because the designer does not need to refer to
the original system in order to derive new error sequences when the channel conditions are changing.
Therefore, these methods can significantly reduce the computation time when there is a need for huge
number of error sequences for the purpose of evaluating the performance of digital components in
communication links. At least two reference error sequences in different channel conditions should be
sufficient for the method presented in this work.

To validate our proposed method, we have used uncoded LTE system to obtain a few samples of
reference error sequences at various SNRs. It has been illustrated through simulations that the ADPBGM
can approximately fit the descriptive model. Other adaptivegenerative models like the ABWHMM and
ASFM give poor burst error statistics compared to the descriptive model. However, the ABWHMM is
superior to the ASFM in terms of certain burst error statistics. In other words, the ABWHMM performance
is closer to the descriptive model than the ASFM one. It is also found that the burst error statistics of
the ASFM match those of the SFM. However, the burst error statistics of the ABWHMM do not have a
satisfactory match to those of the BWHMM.
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A drawback of ADPBGM is that it retrieves the error bursts’ structure from the neighboring error
sequences. In contrary, the ABWHMM and ASFM can create the error bursts and error-free bursts
automatically once the required parameters are calculated.
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Fig. 1. The EFRDs of the descriptive model for several SNRs and interpolated EFRDs.
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Fig. 2. The EBDs of the descriptive model for several SNRs.
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Fig. 3. The ECDs of the descriptive model, generative models, and three adaptive generative models (SNR=4 dB).
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Fig. 4. The BEPDs of the descriptive model, generative models, and three adaptive generative models (SNR=4 dB,n = 50).
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Fig. 5. The BCFs of the descriptive model, generative models, and three adaptive generative models (SNR=4 dB).
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Fig. 7. The GDs of the descriptive model, generative models,and three adaptive generative models (SNR=4 dB).
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Fig. 9. The BCFs of the descriptive model, generative models, and three adaptive generative models.
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Fig. 11. The BCFs of the descriptive model and ADPBGMs.
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