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Random-cluster multi-histogram sampling for the q-state Potts model
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Using the random-cluster representation of the q-state Potts models we consider the pooling

of data from cluster-update Monte Carlo simulations for different thermal couplings K and
number of states per spin q. Proper combination of histograms allows for the evaluation of
thermal averages in a broad range of K and q values, including non-integer values of q. Due to
restrictions in the sampling process proper normalization of the combined histogram data is non-
trivial. We discuss the different possibilities and analyze their respective ranges of applicability.

PACS numbers: 05.10.Ln, 05.50.+q, 75.10.Hk

I. INTRODUCTION

During the last decade the question of how to make
most efficient use of the data sampled during a Monte
Carlo (MC) simulation has received an increasing amount
of attention. The idea of reweighting [1] of time-series
data from a single canonical simulation at a given fixed
value of a coupling parameter (i.e., most commonly tem-
perature or magnetic field) to nearby regions of the
coupling-parameter space, allows for the analysis of ther-
mal averages as continuous functions of external pa-
rameters and thus a much more precise determination
of extremal, pseudo-critical points. As an extension of
this, the combination of data from simulations at differ-

ent points in the coupling-parameter space, commonly
known as multi-histogram technique [2], in principle al-
lows to get accurate estimates for thermal averages over a
macroscopical region of couplings from a relatively small
number of simulation (that, however, generally has to be
increased with the size of the system).

The basic problem with collapsing data from different
simulations is that of finding the correct relative normal-
ization of the single histograms. Consider the sampled
energy histogram ĤKi

(E) of, e.g., an Ising model simu-
lation at the coupling Ki = Jβi, consisting of N energy-
measurements. The thermal average of an observable
A(E) at Ki is just given by the time-series average in the
importance-sampling scheme and thus insensitive to the
value of the partition function at that point. Combining
two histograms, however, amounts to the combination of
the temperature-independent expressions

ZKi
ĤKi

(E)/N eKiE (1)
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for different simulations i, where the partition function
ZKi

appears as a normalization constant. Thus, for cor-
rect relative normalization of the histograms to be com-
bined, one has to know the ratio of partition functions
ZKi1

/ZKi2
or, equivalently, differences in the free energy

densities fKi1
− fKi2

at the simulated couplings Ki. In
Ref. [2] this problem has been solved by an iterative so-
lution of self-consistency equations for the free energy
differences at adjacent simulation couplings Ki.

Since the combination given in Eq. (1) is nothing but
an estimator for the density of (energy) states Ω(E),
multi-histograming data analysis amounts to estimating
the density of states of the variable that is thermody-
namically conjugate to the considered coupling parame-
ter. Going to the random-cluster representation of the
Potts model, i.e., its interpretation as correlated perco-
lation model [3, 4, 5], the relevant density of states is
given by the number g(b, n) of bond configurations with
b bonds and n clusters on the lattice. Apart from gaining
control over two parameters, the thermal coupling K and
the number of states q, this language suggests the use of
cluster estimators for thermal averages like correlation
functions, which are known to yield a variance-reduction
in certain situations [6]. One of us [7, 8] has proposed
a multi-histogram technique for the q-state Potts model
and simulations at different temperatures making use of
the sampling of cluster decompositions of the lattice as
they occur in the Swendsen-Wang cluster-update algo-
rithm [9]. There, the relative normalization of the in-
dividual histograms at couplings Ki is accomplished by
making use of the known absolute number of configura-
tions with b active bonds on the lattice, which is just
given by the binomial

(

E
b

)

, E being the total number of
bonds of the lattice. While this method appears advan-
tageous at first sight and gives nice results from the cases
of percolation (q → 1) [10] and the Ising model (q = 2)
[8], we find that this procedure is not the best choice
of normalization for simulations of Potts models with q

http://arxiv.org/abs/cond-mat/0107201v1
mailto:weigel@itp.uni-leipzig.de
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mailto:huck@phys.sinica.edu.tw
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larger than 2 or 3 and propose a different approach for
normalization to circumvent this problem.

The outline of the paper is as follows. In Section II
we restate the multi-histogram approach of Ref. [8] in
the random-cluster representation (“RC histograming”),
which was originally formulated for simulations at fixed q
only, and generalize it to simulations of multiple q values.
Applying it to the q = 10 Potts model in two dimensions
we find large deviations from the expected results. As
an alternative, in Section III we propose an adaptively
normalized RC multi-histograming ansatz. We discuss
details of its implementation and present a comparative
reweighting analysis for the q = 10 case. For energy-
related observables we also compare histograming in the
random-cluster language to the sampling of the energy
density of states in the well-known framework of his-
tograming in the energy/magnetization language (“EM
histograming”) [2]. Comparing both methods, in Sec-
tion IV we track down the observed deviations with the
first ansatz to be a result of the application of the above
mentioned normalization condition. This problem can
thus be resolved by the second ansatz. Finally, Section
V contains our conclusions.

II. RC HISTOGRAMS AND ABSOLUTE

NORMALIZATION

Consider the Hamiltonian of the q-state Potts model
in zero magnetic field,

H = −J
∑

〈i,j〉

δ(σi, σj), σi = 1, . . . , q, (2)

on a general graph G with N sites and E bonds. Trans-
forming to the random-cluster representation [3], the par-
tition function becomes

Z ≡
∑

{σi}

eK
∑

〈i,j〉 δ(σi,σj) =
∑

G′⊆G

(eK − 1)b(G′) qn(G′), (3)

where the sum runs over all bond configurations G′ on
the graph (subgraphs), and K = βJ denotes the thermal
coupling. Notice that the formulation (3) in contrast to
that of Eq. (2) allows for a natural continuation of the
model to non-integer values of the parameter q. Using
the subgraph expansion of the q-state Potts in external
field, one of us [5] has shown that the q-state Potts model
can be considered as a bond-correlated percolation model
(BCPM) with bond occupation probability p = 1− e−K .
Eq. (3) can be rewritten as:

Zp,q(G) = eKE
∑

G′⊆G

pb(G′)(1 − p)E−b(G′) qn(G′)

= eKE
E
∑

b=0

N
∑

n=1

g(b, n) pb (1 − p)E−b qn, (4)

where g(b, n) denotes the number of subgraphs of G with b
activated bonds and n clusters resulting therefrom. This

purely combinatorial quantity corresponds to the density
of states of the BCPM.

The Swendsen-Wang cluster-update algorithm gener-
ates bond configurations drawn from the equilibrium
canonical distribution of this model. Thus, the proba-
bility for the occurrence of a subgraph with b bonds and
n clusters is given by

Pp,q(b, n) = W−1
p,q (G) g(b, n) pb (1 − p)E−b qn, (5)

which in turn is the expectation value of the normal-
ized sampled histogram of bond configurations, i.e.,
Pp,q(b, n) = 〈Ĥp,q(b, n)/N〉, where N denotes the length
of the time series of measurements. Here, we separated
the common factor exp(KE) from the partition function:

Zp,q(G) = eKE Wp,q(G). (6)

An estimator for the density of states g(b, n) is therefore
given by

ĝ(b, n) = Wp,q(G)
Ĥp,q(b, n)

pb (1 − p)E−b qn N
. (7)

Since the reduced partition function Wp,q(G) is a priori
unknown, the correct normalization of this estimator is
not known at the beginning. Probably the most obvious
way of fixing the normalization would be to estimate the
reduced partition function Wp,q(G) directly from Eq. (7).
One can do better than that, however, by considering
the accumulated density g(b), which is obviously just a
binomial [7],

g(b) =
∑

n

g(b, n) =

(E
b

)

. (8)

Imposing this restriction on the estimate ĝ(b, n) also, one
arrives at

Ĉp,q(b) ≡
Ŵp,q(G)

pb (1 − p)E−bN
=

(

E
b

)

∑

n Ĥp,q(b, n) q−n
, (9)

so that the absolute values of ĝ(b, n) are now fixed by E
independent normalization conditions, one for each num-
ber of active bonds b. Thus we have the following esti-
mate for the density of states [8]:

ĝ(b, n) = Ĉp,q(b) Ĥp,q(b, n) q−n. (10)

Now, we want to combine the estimates ĝ(i)(b, n) from
several simulations at different parameters (pi, qi), i.e.,
we want to do multi-histograming in both parameters, p
and q. Then, we have

ĝ(b, n) =
∑

i

αi(b, n) ĝ(i)(b, n),
∑

i

αi(b, n) = 1. (11)

Since we want to minimize the variance σ̂2[ĝ] of the final
estimate and the different simulations are statistically in-
dependent, the correct choice of the weights αi obviously
is given by

αi(b, n) =
1/σ̂2[ĝ(i)(b, n)]
∑

i 1/σ̂2[ĝ(i)(b, n)]
. (12)
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From Eq. (10) we have

σ̂2[ĝ(i)(b, n)] = Ĉ2
pi,qi

(b) q−2n
i σ̂2[Ĥpi,qi

(b, n)]

≈ Ĉ2
pi,qi

(b) q−2n
i Ĥpi,qi

(b, n), (13)

such that the variance-optimized estimate for g(b, n) be-
comes

ĝ(b, n) =

(

E
b

)
∑

i

∑

µ Ĥpi,qi
(b, µ) q−µ

i qn
i

∑

j [
∑

ν Ĥpj ,qj
(b, ν) q−ν

j ]
2
q2n
j [Ĥpj ,qj

(b, n)]−1
.

(14)
In writing this expression we allow for several approxima-
tions: first, we treat Ĉpi,qi

(b) as a parameter in Eq. (13)
instead of taking its own variance into account; this is jus-
tified by the clear suppression of variance of this quantity
as a sum as compared to the the variance of its summands
Ĥpi,qi

(b, n). Secondly, we take σ̂2[Ĥ(b, n)] = Ĥ(b, n),
i.e., we treat the individual bins (b, n) as independently
distributed according to an uncorrelated 1/N statistics,
which will in general not be exactly fulfilled. Since those
assumptions only affect the variance of the final esti-
mate, however, and do not introduce a bias, we con-
sider them justified. Finally, we do not take autocor-
relations between successive measurements (b, n) into ac-
count, i.e., we assume here and in the following that mea-
surements in the sampling process are taken with a fre-
quency around 1/τint, where τint denotes the integrated
autocorrelation time, resulting in an effectively uncorre-
lated time series.

From the partition function Eq. (4) we infer the follow-
ing cluster-language estimators for the free energy den-
sity f = F/N , the per-site internal energy u = U/N and
specific heat cv = Cv/N ,

f̂ = − 1

KN ln Ẑp,q(G),

û = − 1

pN 〈b〉ĝ,

ĉv =
K2

p2N
[

〈(b − 〈b〉ĝ)2〉ĝ − (1 − p)〈b〉ĝ
]

, (15)

cf. Appendix A. Here, the estimated expectation value of
an observable O(b, n) is defined as

〈O(b, n)〉ĝ ≡ Ẑ−1
p,q (G) eKE

E
∑

b=0

N
∑

n=1

ĝ(b, n)

× pb (1 − p)E−b qn O(b, n). (16)

For the evaluation of magnetic observables one has to
distinguish percolating clusters, denoted by indices π,
from non-percolating, finite clusters, denoted by indices
φ. Let {c(G′)} be the set of clusters of a subgraph G′

of the lattice and nc(G
′) the number of sites in cluster c

of G′. Then, consider the following microcanonical aver-
ages:

mπ
1 (b, n) ≡ 1

N g(b, n)

∑

G′⊆G,b(G′)=b,

n(G′)=n

∑

{cπ(G′)}

nπ
c (G′), (17)
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FIG. 1: Results from the EM and RC multi-histogram anal-
yses of time series from 9 cluster update simulations of the
two-dimensional q = 2 Potts model on a N = 162 lattice. (a)
Free energy density (left scale) and specific heat (right scale)
as a function of the coupling K = βJ as compared to the ex-
act solution of Ref. [11]. (b) Relative deviation of the results
for the specific heat from the exact solution for both methods.
(c) Relative deviation for the free energy. All results shown
are re-scaled from the q = 2 Potts model to the Ising model
formulation to fit the results from Ref. [11].

i.e., the average number of sites in percolating clusters
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FIG. 2: Ratio of standard deviations for estimates of (a) the

internal energy U and (b) the spontaneous magnetization M̃
of the q = 2 Potts model on a N = 162 lattice and RC and EM
histogram analyses as a function of the coupling K = βJ . The
variances are estimated by a “jackknife” time series analysis
[12]. The solid line of (a) shows the exact result of Eq. (24)
and Ref. [11], the dashed line that for N → ∞ from Ref. [13].
In (b) we use the definition (A9) for K < 0.8 and (A8) for
K ≥ 0.8.

for subgraphs with b active bonds and n clusters,

mπ
2 (b, n) ≡ 1

N 2g(b, n)

∑

G′⊆G,b(G′)=b,

n(G′)=n





∑

{cπ(G′)}

nπ
c (G′)





2

,

(18)
i.e., the mean square number of sites in non-percolating
clusters for those subgraphs, and

mφ
3 (b, n) ≡ 1

N g(b, n)

∑

G′⊆G,b(G′)=b,

n(G′)=n

∑

{cφ(G′)}

[nφ
c (G′)]2, (19)

i.e., the mean squared sum of the size of non-
percolating clusters. These microcanonical averages ob-
viously can be estimated by adding

∑

{cπ(G′)} nπ
c (G′)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

βJ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-U
/N

EM histograms
RC histograms

FIG. 3: Internal energy of the two-dimensional q = 10 Potts
model on a N = 162 square lattice with periodic boundary
conditions as given by the random-cluster (RC) and energy
representation (EM) multi-histogram analyses from simula-
tions for different thermal couplings K. The transition point
of the infinite system is given by Kt = ln(1 +

√
10) ≈ 1.426

[14].

to M̂π
1,p,q(b, n) for each bond configuration G′ with

{b(G′) = b, n(G′) = n}, where nπ
c (G′) should

be taken 0 for non-percolating bond configurations,
adding [

∑

{cπ(G′)} nπ
c (G′)]2 to M̂π

2,p,q(b, n), and adding
∑

{cφ(G′)}[n
φ
c (G′)]2 to M̂φ

3,p,q(b, n) for each such observed

configuration. Then, if we define

Ĥ(b, n) =
∑

pi,qi
Ĥpi,qi

(b, n),

M̂π
1 (b, n) =

∑

pi,qi
M̂π

1,pi,qi
(b, n),

M̂π
2 (b, n) =

∑

pi,qi
M̂π

2,pi,qi
(b, n),

M̂φ
3 (b, n) =

∑

pi,qi
M̂φ

3,pi,qi
(b, n),

(20)

we have the following estimates for mπ
1 (b, n), mπ

2 (b, n),

and mφ
3 (b, n),

m̂
π/φ
1/2/3(b, n) =

M̂
π/φ
1/2/3(b, n)

N Ĥ(b, n)
, (21)

which, finally, result in the following expressions for the
(zero-field) magnetization m̃ and the magnetic suscepti-
bility χ̃,

ˆ̃m =
q − 1

q
〈m̂π

1 (b, n)〉ĝ +
1

q
,

ˆ̃χ = N
(

q − 1

q

)2
[

〈mπ
2 〉ĝ − 〈mπ

1 〉2ĝ
]

+
q − 1

q2

〈

mφ
3

〉

ĝ
, (22)

cf. Appendix A. Note, that we simply add up histograms
from different simulations in Eqs. (20) and (21) without
using any reweighting factors in p and q. This is cor-
rect since the conditional probability of the occurrence
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of, say, a given number of sites in percolating clusters in
a subgraph with b active bonds and n clusters does no
longer depend on p and q. The order parameter m of the
Potts model is given by [14]

m =
qm̃ − 1

q − 1
, (23)

and the corresponding, rescaled susceptibility is χ = [(q−
1)/q]2χ̃.

As a first comparative test for the method we per-
formed a Swendsen-Wang cluster MC simulation for the
Ising model case (q = 2) on a small, simple-cubic N =
162 lattice with periodic boundary conditions. We gath-
ered histograms from 9 different simulations at the cou-
plings Ki = 0.1, 0.2, . . . , 0.8 and K = Kc = 1

2 ln(1 +
√

2),
where the couplings are given in the language of the
Ising model in this case, i.e., are half of the couplings
of the corresponding q = 2 Potts model. Each run
sampled 217 = 131 072 bond configurations resulting
in corresponding time series of (b, n) and of the en-
ergy/magnetization pairs (E, M) for comparison with the
EM histograming method. Thus, any differences in the
results must be solely due to the method of data anal-
ysis, the underlying simulation data being exactly iden-
tical. For the EM histograms throughout this paper we
use a multi-histogram analysis according to Ref. [2] very
similar to that presented for the RC histograms in Sec.
III. Figure 1 shows the results in comparison to the ex-
act expression for F and Cv on square lattices as given
by Kaufman [15] and analysed by Ferdinand and Fisher
[11]. Statistical errors for both analysis schemes were
evaluated using the “jackknife” error estimation tech-
nique [12]. The relative deviations (Ĉv−Cv)/Cv from the
exact result are noticeably larger for the RC histogram
analysis, however in agreement with statistical errors in
both cases, cp. Fig. 1(b). The same holds true for the
internal energy U given by the different estimates, which
is not shown in Fig. 1. Note that for the energy related
observables from Eq. (15) only the limiting distribution
Pp,q(b) is needed, which, in general, has a different width
than the distribution of energies Pp,q(E), thus leading to
different variances.

In fact, by inspection of the random-cluster expression
for the specific heat Eq. (15) and comparison with its def-
inition in the energy language as Cv = K2(〈E2〉 − 〈E〉2)
we can infer the following relation between the variances
of energy estimates in the RC and EM schemes:

σ2
RC(U)

σ2
EM (U)

= 1 − K2 1 − p

p

U

Cv
≥ 1. (24)

Thus, energy estimates from RC histograms are always
less precise than those from EM histograms, regardless of
the temperature. Figure 2(a) shows the ratio of jackknife-
estimated variances of the two different estimates of in-
ternal energy, compared to the result from Eq. (24) with
the exact expressions for U and Cv for the q = 2 case in-
serted [11]. Note, that from Fig. 2(a) this quantity seems

to have extremely small finite-size corrections. As a re-
minder, this shows clearly that cluster estimators are not
always improved estimators [16], but sometimes “deteri-
orated estimators”. Note, however, that this effect will
decrease with increasing number of states q, at least in
the transition region, since the singularity in Cv sharpens
in this limit, whereas the energies U always stay in the
range 0 ≤ U/N ≤ 2. For the q = 10 model is has been
observed that at the transition point Pp,q(b) is almost in-
distinguishable from Pp,q(E), when suitably rescaled [17].
The minimum of the exact curve of Fig. 2 at the critical
point is somewhat in contrast to the usual notion that
cluster estimators work best off criticality [6]; this result,
however, applies to the spin-spin correlation function at
medium and long distances and to magnetic observables
like the susceptibility, which is the integral of the correla-
tion function, whereas the internal energy U constitutes
the extreme short distance limit of this quantity. For the
magnetic observables m and χ the situation is reversed,
the variance of the RC estimators being strongly reduced
as compared to the EM estimators, cp. Fig. 2(b). Note
that in contrast to the EM case, the RC estimators pro-
vide a single consistent definition of m and χ for both,
the broken and unbroken phases, cf. Appendix A.

For the free energy, on the other hand, deviations for
the RC method are by far smaller than those of the EM
method, cp. Fig. 1(c). Moreover, deviations are not cov-
ered by statistical errors in the latter case, a fact we will
comment on later in the next Section. In the EM case F
is being fixed by making contact with the non-interacting
limit K = 0 resp. p = 0, where

Zp=0,q(G) =
∑

E

Ω(E) = qN , (25)

so that −KF (p = 0)/N = ln q. This equation corre-
sponds to the normalization condition Eq. (8). It is obvi-
ous that having a normalization condition for each num-
ber b of active bonds and therefore, implicitly, for each
(microcanonical) temperature in the RC case allows for
accurate estimation of the free energy even far away from
K = 0, whereas for EM histograms the results deterio-
rate with the distance from the only normalization point
K = 0. Thus, for sampling free energies the RC multi-
histogram technique normalized by Eq. (8) seems to be
a good choice.

As a slightly less trivial example we performed simu-
lations for the q = 10 Potts model on the same lattice,
which exhibits a strongly first-order phase transition. It
is well known that cluster algorithms are not efficient to
reduce the “super-critical” (exponentially strong) slowing
down of the local MC dynamics at first-order transitions.
For the small lattice under consideration, however, auto-
correlation times are still quite moderate, so that one gets
reliable results without having to resort to more sophis-
ticated methods like multi-canonical simulations [17, 18].
We gathered data from 11 single-histogram simulations
at couplings Ki = 0.8, 0.9, . . . , 1.8 with 220 = 1 048 576
measurements each. Figure 3 shows the quite astonish-
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FIG. 4: Internal energy of the q = 10 Potts model on a
N = 162 square lattice, reweighted from the q = 2 model
simulations shown in Fig. 1 using multiple RC histograms
according to Eq. (14). The q = 10 results from the EM multi-
histogram analysis are shown for comparison.

ing results for the internal energy from this simulation
data using the analyses in the RC and EM languages,
respectively. Naturally, we do not have exact results to
compare with in this case; nevertheless, the results from
the EM analysis are completely in agreement with our
expectations and also well compatible with results from
previous simulations [19]. So, obviously, the results from
the RC histogram analysis are strikingly wrong — and
in a way that is clearly not covered by the present statis-
tical errors. Obviously, the results for the specific heat,
which are not shown, look even worse, with a pronounced,
unphysical double-peak resulting from the deviations in
internal energy shown in Fig. 3.

Since as one of its major strengths in the RC approach
we have the possibility of reweighting in the parameter
q also, as a first clue to the reason for this conspicuous
failure we show the outcome of using the q = 2 simula-
tion data from above for determining the internal energy
of the q = 10 case, cp. Fig. 4. The agreement with the
direct EM analysis of the q = 10 simulations is remark-
ably good considering the large distance in q between the
simulation and analysis points. Comparing Figs. 3 and
4 it is quite natural to suspect that the application of
the normalization condition (8) is not a proper choice for
simulation data from larger q models.

III. RC HISTOGRAMS AND ADAPTIVE

NORMALIZATION

To understand this normalization problem let us
shortly go back to the sampling of the energy density
of states Ω(E) for the case of the two-dimensional q = 2
(Ising) model. Here, exact results are not only available
for thermal averages, but for Ω(E) itself [20]. Using the

256 320 384 448 512

-E

0

50

100

150

200

ln
 Ω

(E
)

βJ=0.4
βJ=0.8
βJ=1.2
exact

FIG. 5: Density of states for the q = 2 Potts model in two di-
mensions on a N = 162 lattice from single-histogram cluster-
update simulations at coupling K = 0.4, 0.8 and 1.2 using the
estimator Eq. (26). The solid line shows the exact result of
Ref. [20].

K = 0 normalization condition (25), a single-histogram
estimator for the density of states in the energy language
would be given by

Ω̂(E) = 2N
ĤK(E) eKE

∑

E ĤK(E) eKE
. (26)

This works quite well in the high-temperature phase
and for small lattices. For lower temperatures, however
the histogram loses contact with the normalization point
K = 0, resulting in large deviations from the correct nor-
malization, cp. Fig. 5. Clearly, each simulation samples
only a rather small window of energy space; from the ex-
ponential in the denominator of Eq. (26), however, con-
figurations near the maximal energy E = −N receive the
largest weight in the sum, so that missing those configu-
rations, which is the case for large K, results in an expo-
nentially wrong normalization factor (linear in ln Ω(E)).
In other words, the absolute normalization condition (25)
reweights the histogram data to the point K = 0, which
will have no reliable outcome if the overlap between the
histograms at the simulation coupling and at K = 0 is
too small or even vanishes. Note also, that the statistical
error bars given in Fig. 5 do not reflect this fundamental
failure, although it is statistical in nature. This is due to
the fact that the usual implementation of error estima-
tion schemes for histograms take the error of histogram
bins without entries to be zero, whereas according to 1/N
statistics it should in some sense be considered infinitely
large.

Expecting a similar sampling-related normalization
failure for the RC histograms normalized by the condi-
tion (8) let us relax this absolute normalization and ap-
ply an adaptive normalization scheme as in the original
EM multi-histograming formulation of Ref. [2]. Consider
single-histogram estimates of the partition function from
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FIG. 6: Internal energy and free energy of the q = 10 Potts
model on a N = 162 square lattice as computed by the adap-
tively normalized RC multi-histograming scheme according to
Eqs. (29) and (30). The results from the EM multi-histogram
analysis of the same data are shown for comparison.

simulations at (pi, qi) and define reduced free energies Fi

as

Fi = − 1

Ki
lnZpi,qi

(G) = −E − Fi

Ki
. (27)

From Eq. (7) estimates of the density g(b, n) from the

single histograms Ĥpi,qi
(b, n) ≡ Ĥ(i)(b, n) are given by:

ĝ(i)(b, n) = eFi
Ĥ(i)(b, n)

pb
i (1 − pi)E−b qn

i Ni
. (28)

Once again combining these estimates in a variance-
optimized way as above in Section II, treating the Fi as
parameters with zero variance, we arrive at the following
expression

ĝ(b, n) =

∑

i Ni e−Fi pb
i (1 − pi)

E−b qn
i

∑

j N2
j e−2Fj p2b

j (1 − pj)2(E−b) q2n
j [Ĥ(i)(b, n)]−1

.

(29)
Now, from this estimate one has the following a posteriori
relation for computation of the parameters Fi:

eFi =

E
∑

b=0

N
∑

n=1

ĝ(b, n) pb
i (1 − pi)

E−b qn
i . (30)

Eqs. (29) and (30) form a pair of equations to be solved
self-consistently for the determination of the parameters
Fi, which can be straightforwardly iterated by plugging
in the results for Fi from Eq. (29) into Eq. (30) and
vice versa. One can improve on that by applying more
sophisticated iteration schemes like, e.g., the Newton-
Raphson iteration [21]. We find, however, that the radius
of convergence of this method is quite small; therefore,
we adaptively revert to the simple iteration if the proce-
dure leaves the Newton-Raphson convergence region. It

is obvious that for the iteration to converge, one needs
some overlap between the Ĥ(b, n) histograms between
“adjacent” simulations, i.e., at least pairwise overlap.
Apart from this restriction, however, we find this iter-
ative scheme to be very well-behaved, converging rapidly
in every case that fulfils the overlap-condition.

To get started, we use first-guess values of the Fi from
thermodynamic integration. Assume that the simulation
points (i) = (Pi, qi) are ordered such that the histograms
of (i) and (i + 1) have reasonable overlap; then

eFi =

E
∑

b=0

N
∑

n=1

Ĥ(i−1)(b, n)

Ni−1

pb
i (1 − pi)

E−b qn
i

pb
i−1 (1 − pi−1)E−b qn

i−1

eFi−1

(31)
is a good starting point for the described iteration
scheme. F1 can be chosen arbitrarily, since the given
pair of equations is obviously invariant under a global
shift Fi → Fi −F1. Thus, we have determined the final
estimate ĝ(b, n) only up to a global factor. To fix this
last normalization we propose two different possibilities;
on the one hand, we can use the free model limit, i.e.,
evaluate Fp=0,q from Eq. (30) and use Eq. (25) for any
q:

Fp=0,q = lnZp=0,q(G) − KE = N ln q. (32)

On the other hand, also the q = 1 partition function is
trivial,

Fp,q=1 = ln

[

E
∑

b=0

(E
b

)

pb (1 − p)E−b

]

= 0, (33)

and can serve as normalization point for arbitrary p. In
practice the best choice depends on the set of simulated
couplings (pi, qi): for large-q simulations one might want
to resort to Eq. (32), while otherwise Eq. (33) should be
the better choice.

Now, we can re-consider the internal energy of the
q = 10 case from above with the new, adaptively nor-
malized RC multi-histograming scheme. Figure 6 shows
internal energy and free energy from this analysis as com-
pared to the EM multi-histogram approach. As far as the
error estimates are concerned, we apply the jackknife pro-
cess to the whole iteration run, i.e., the iteration scheme
for fixing the weights Fi is done for each jackknife block
of data separately, taking full account of statistical errors.
Clearly, now the results from both approaches perfectly
agree, the deviations of Fig. 4 have vanished. As antici-
pated in Sec. II, also the cluster estimator for the internal
energy performs noticeably better than in the q = 2 case,
such that — at least in the critical region — it is quite
comparable in precision to the EM estimator, cp. Fig. 7.

For the free energy it is obvious that with the adap-
tive normalization scheme of RC histograms we lose the
especially high precision throughout the whole K region
obtained by the application of the sum rule (8) in Fig. 1
for the Ising model. To amend this, having fixed the rel-
ative normalization of the single histograms adaptively,
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FIG. 7: Ratio of standard deviations for estimates of the in-
ternal energy U of the two-dimensional q = 10 Potts model
on a N = 162 lattice and RC and EM multi-histogram anal-
yses as a function of the coupling K = βJ . The variances are
estimated by a “jackknife” time-series analysis [12]. The RC
histograms are normalized according to Eqs. (29) and (30).

one might consider applying the sum rule (8) to the final
result ĝ(b, n) instead of using the normalizations Eq. (33)
or Eq. (32). This, however, gives results looking almost
identical to those shown above in Fig. 3, i.e., the large
deviations reappear, which clearly reveals the source they
are resulting from.

IV. COMPARISON OF THE METHODS

The effect of this normalization problem should also be
clearly seen in the final estimates for the density of states
g(b, n) from the two RC histograming methods. In Fig. 8
we show a density plot of the relative differences of the
estimated density of states ĝ(b, n) from the absolutely
normalized histograming scheme of Eq. (14), ĝ(abs)(b, n),
and of the adaptively normalized scheme of Eqs. (29) and
(30), ĝ(rel)(b, n), i.e., the quantity

∆̂(b, n) ≡ ĝ(abs)(b, n) − ĝ(rel)(b, n)

ĝ(rel)(b, n)
. (34)

Note that the range of possible value pairs (b, n) is re-
stricted by two simple bounds in the (b, n) plane. First,
starting from the point (b = 0, n = N ) each added bond
can at most reduce the number of clusters by one, namely
by connecting two previously unconnected clusters, i.e.,
one has

n ≥ N − b. (35)

On the other hand, starting from the “opposite” point
(b = E , n = 1) one has bN/E bonds per site, so that for
producing a new cluster one must at least remove N/E

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

b

n

I II III 

FIG. 8: Density plot of the relative differences [ĝ(abs) −
ĝ(rel)]/ĝ(rel) of the density of states as sampled from the q = 10
Potts model on a N = 162 lattice by the absolutely nor-
malized RC histograming scheme of Eq. (14) (ĝ(abs)) and the

adaptively normalized scheme of Eq. (29) (ĝ(rel)), respectively.

Dark shading indicates that ĝ(abs)(b, n) > ĝ(rel)(b, n) and vice
versa.

bonds,

n − 1 ≤ N
E (E − b), (36)

or, for the square lattice,

n ≤ N − b

2
+ 1. (37)

Apart from single points near those bounds, all configu-
rations within this triangle can actually appear in a Potts
model simulation with non-vanishing probability.

Now, from Fig. 8 it is obvious, given that the estimate
ĝ(rel)(b, n) is correct up to an overall factor, that the abso-
lutely normalized histograming estimate ĝ(abs)(b, n) gives
too large estimates for b values near the centre b = N
as compared to the other regions of b (dark shading in
Fig. 8). Then, considering again the deviation in in-
ternal energy shown in Fig. 3, its origin becomes clear:
the histogram Ĥp,q(b, n) for a simulation somewhat be-
low the transition point will be centred around the line
b = bI in Fig. 8; then, using the density of states estimate
ĝ(abs)(b, n) for evaluating U , the parts of the histogram
lying to the right of b = bI will have too large weight as
compared to the values b < bI, thus by Eq. (15) resulting
in a too large estimate for the internal energy U . On
the other hand, for couplings above the transition point
the histogram will be centred around b = bIII with too
large weights for b < bIII, leading to estimates for U that
are too low. Directly in the vicinity of the transition
point, deviations in normalization are symmetric with
respect to the histogram, which will be centred around
b = bII, thus leading to an unbiased estimate for U . This
is exactly the behavior found in Fig. 3. Finally, contem-
plating on the reason for the deviations in normalization
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FIG. 9: Ratio of standard deviations of estimates of the
free energy from the adaptively normalized RC histogram-
ing scheme of Eq. (29) with (σRC,norm) and without (σRC)
a final application of the sum rule Eq. (8) to the density of
states after determining the weights. The used time series
data includes both, the q = 2 and the q = 10 simulations
reported above.

shown in Fig. 8 in the first place, it becomes obvious
that they have the same origin as those shown in Fig. 5.
The exponential factor q−n from the sum rule Eq. (9) at-
taches large weight to the configurations with small num-
ber of clusters n; if, however, histograms miss entries for
small n, as is the case for histograms in the transition
region b ≈ N of Fig. 8, the sum

∑

n Ĥp,q(b, n) q−n will
become too small, resulting in too large normalization
factors Ĉp,q(b).

Thus, for the application of the sum rule (8) to the final
result from the adaptively normalized RC histograming
scheme to work reliably, one always has to include his-
tograms from small-q simulations, like percolation (q →
1) or the Ising model (q = 2), that produce configura-
tions with relatively small numbers of clusters n. To
illustrate this, we combined the data from the q = 2 and
q = 10 simulations reported above, used the histogram-
ing scheme Eqs. (29) and (30) to get results for q = 10
and applied the sum rule Eq. (8) afterwards, i.e., the nor-
malization of the single histograms was found adaptively,
whereas the total histogram was normalized by the sum
rule (8); this yields results for the internal and free en-
ergies indistinguishable from those of the pure q = 10
results of Fig. 6. For the free energy, however, the size
of statistical errors is largely affected by the final nor-
malization, cf. Fig. 9. For most of the couplings shown,
the estimate from the finally sum-rule-normalized den-
sity of states is up to about 10 times more accurate in
terms of the statistical errors. The presence and size of
such a gain for a given coupling is not mainly physically
motivated, but rather depends on the relation of the sim-
ulation points (qi, pi) to the points of data analysis.

V. CONCLUSIONS

We have considered multi-histogram data analyses of
time series from cluster-update Monte Carlo simulations
of the q-state Potts model in the random-cluster lan-
guage. Generalizing the original formulation of Ref. [8]
to the case of simulations of different number of states
q, we found the original ansatz of absolutely normaliz-
ing the individual histograms with a geometrical sum
rule for finite-length time series to produce large devia-
tions from the expected behavior when applied to cases q
larger then about 3 or 4 in two dimensions. We track this
error down to a mismatch between exponential suppres-
sion of a part of the state space (b, n) and a simultaneous
exponential enhancement of this region in the sum rule
Eq. (9). To circumvent this problem, we propose a differ-
ent ansatz, normalizing the histograms adaptively via a
set of self-consistency equations aiming at the minimiza-
tion of the variance of the final estimate of the density
of states g(b, n). Absolute normalization over the whole
temperature region can still be maintained by making
contact with the trivial partition function of the perco-
lation limit q → 1 or by combining large- and small-q
data and applying the sum rule (8) after the adaptive
normalization. This new approach does not exhibit the
limitations of the absolutely normalized ansatz to small-q
simulations.

Comparing the newly introduced, adaptively normal-
ized random-cluster “RC” multi-histogram technique
with multi-histograming in the energy/magnetization
“EM” language, we can make the following state-
ments: (a) The cluster variables (b, n) form the natu-
ral state space for the analysis of the Potts model. Us-
ing the Swendsen-Wang cluster-update algorithm, these
numbers are automatically known as a by-product of
the update-steps; no additional measurement steps are
needed. (b) The RC representation allows for reweight-
ing in both parameters, the thermal coupling p resp. K,
and the number of states q, without systematical errors
as in the partial transformation of Ref. [22]. Especially,
the model can be considered for the case of non-integer
q. It is easy to combine data from different-q simulations
to enhance the accuracy for large q. (c) Cluster estima-
tors occur naturally in the RC language. Although we
found that short-distance observables like the internal
energy and specific heat are sampled systematically less
acurate by cluster estimators, this situation is reversed
for observables sensitive to long-range order like the mag-
netization, susceptibility and correlation functions. Also,
even short-range cluster estimators perform comparable
to EM language estimators for larger q values, at least in
the transition region. In the RC language, the magnetic
observables can be defined consistently throughout the
broken and unbroken phases, cf. Appendix A.

Apart from that, the combination of data from small
and large q models can serve as a new method to cope
with the super-critical slowing down at the first-order
transitions for large q: for sufficiently large lattices sim-
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ulation runs will entirely stay in one of the pure phases
depending on the initial configuration and boundary con-
ditions due to ergodicity breaking at the transition point.
However, combining such data with smaller-q simulations
from the second-order or weak first-order regime allows
the adaptive normalization scheme to still find the cor-
rect normalization of the pure-phase histograms without
real tunneling events. This approach is similar in spirit
to the simulated tempering technique [23, 24].

One might also think of applying the multi-canonical
[18] resp. multi-bondic [17] simulation approach or one
of the related techniques to the sampling of the den-
sity of states g(b, n). Especially, application of the ab-
solute normalization Eq. (8) to this case might be of in-
terest. This approach is currently under investigation.
However, sampling the complete range of possible val-
ues in the (b, n) plane with sufficient accuracy is found
to be a computationally very demanding problem. In
contrast, in the current approach, we still stick to the
physically sensible approach of importance-sampling, i.e.,
sampling the phase-space according to the local canonical
weights. Furthermore, we are able to take full advantage
of the computational gain of cluster algorithms, whereas
the generalized-ensemble algorithms put forward so far
employ local updates (apart from the multi-bondic algo-
rithm of Ref. [17]).

As an interesting application of our ansatz we suggest
the analysis of the tri-critical point qc, where the order
of the thermal transitions changes from second to first
order, in three dimensions. There has been quite some
debate about the location of this point, estimates rang-
ing from qc = 2.15 [25] to qc = 2.6 [26]. Furthermore, the
universality class, critical exponents etc. of this transi-
tion have not yet been properly analyzed. A test for the
qc = 4 case in two dimensions shows that our method
is well suited for such an analysis. This problem will be
considered in a forthcoming publication.
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APPENDIX A: CLUSTER ESTIMATORS

Consider the Potts model coupled to an external mag-
netic field H with Hamiltonian [27]

H = −J
∑

〈i,j〉

δ(σi, σj) − H
∑

i

δ(σi, 1). (A1)

Then, the random-cluster representation of the partition
function on a graph G consisting of N sites and E edges
(bonds) is given by

Zp,q(G, B) =
∑

G′⊆G

(eK − 1)b(G′)
∏

c

[(q − 1) + eBnc ]

= eKE
∑

G′⊆G

pb(G′)(1 − p)E−b(G′)

×
∏

c

[(q − 1) + eBnc ], (A2)

where the product runs over the set of clusters {c} of
the subgraph G′, nc is the number of sites in cluster c,
K = βJ is the thermal coupling parameter and B = βH
denotes the reduced magnetic field. p = 1 − e−K is the
probability for the activation of bonds.

The zero-field, per-site internal energy u is then given
by

u = − ∂

∂K

[

lnZp,q(G, B = 0)

N

]

= − 1

N

〈

∂
∂K [(eK − 1)b]

(eK − 1)b

〉

= −1

p

〈

b

N

〉

, (A3)

which shows the close connection between the b and E
distributions.

The zero-field specific heat cv follows from

cv = K2 ∂2

∂K2

[

lnZp,q(G, B = 0)

N

]

=
K2

N

[

− 1

p2
〈b〉2 +

〈

∂2

∂K2 [(eK − 1)b]

(eK − 1)b

〉]

=
K2

p2N
[

〈b2〉 − 〈b〉2 − (1 − p)〈b〉
]

. (A4)

In the thermodynamic limit, the per-site, zero-field “magnetization” m̃ = 〈∑i δ(σi, 1)/N〉 is given by

m̃ = lim
B→0+

lim
N→∞

∂

∂B

[

lnZp,q(G, B)

N

]
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= lim
B→0+

lim
N→∞

eKE

Zp,q(G, B)

∑

G′⊆G

pb(G′)(1 − p)E−b(G′)
∏

c

[(q − 1) + eBnc ]
∑

c′

n′
c

N
eBn′

c

(q − 1) + eBn′
c

= lim
B→0+

lim
N→∞

[〈

∑

cπ

nπ
c

N
1

(q − 1)e−Bnπ
c + 1

〉

+

〈

∑

cφ

nφ
c

N
1

(q − 1)e−Bnφ
c + 1

〉]

. (A5)

Here, we split the cluster contributions of the sub-
graph into percolating clusters cπ and non-percolating,
finite clusters cφ. In the indicated order of taking the
limits, first N → ∞ and then B → 0, the factors
exp(−Bnc) take the values 0 and 1 for percolating and
non-percolating clusters c, respectively. Thus, we arrive
at

m̃ =

〈

∑

cπ

nπ
c

N

〉

+
1

q

〈

∑

cφ

nφ
c

N

〉

=
q − 1

q

〈

∑

cπ

nπ
c

N

〉

+
1

q
, (A6)

which explicitly reflects the symmetry-breaking nature of
the percolating configurations. For the order parameter
m, which varies between 0 for the completely disordered
state and 1 for the ground states, we find

m ≡ qm̃ − 1

q − 1
=

〈

∑

cπ

nπ
c

N

〉

. (A7)

For finite lattices one can retain this definition since the
notion of percolating and non-percolating clusters is still
well-defined. Note, that this gives a consistent defini-
tion of the order parameter throughout the disordered
and broken phases. In contrast, in the EM language one
has to explicitly break symmetry in the low-temperature
phase, which is usually done by defining

m̃K>Kt
=

〈

max
1≤j≤q

∑

i

δ(σi, j)

〉

, (A8)

whereas for the unbroken phase one uses

m̃K≤Kt
=

〈

∑

i

δ(σi, 1)

〉

. (A9)

Obviously, for finite lattices, the expectation values of the
RC and EM definitions will not coincide exactly; critical
exponents, however, will of course agree.

The zero-field susceptibility χ̃ is given by

χ̃ = lim
B→0+

lim
N→∞

∂2

∂B2

(

lnZ(B)

N

)

= lim
B→0+

lim
N→∞

[

− 1

NZ(B)2

(

∂Z(B)

∂B

)2

+
1

NZ(, B)

∂2Z(B)

∂B2

]

= −Nm2 + lim
B→0+

lim
N→∞





〈

∑

c

n2
c

N
1

(q − 1)e−Bnc + 1

〉

+ N
〈(

∑

c

nc

N
1

(q − 1)e−Bnc + 1

)2〉

+

〈

∑

c

n2
c

N
1

[(q − 1)e−Bnc + 1]2

〉]

= N
(

q − 1

q

)2




〈(

∑

cπ

nπ
c

N

)2〉

−
〈

∑

cπ

nπ
c

N

〉2


+
q − 1

q2

〈

∑

cφ

nφ
c
2

N

〉

. (A10)

From Eq. (A10) one recognizes the widely used improved
cluster estimator for the high-temperature phase, namely
the last term. Note, however, that the original improved
estimator includes all clusters here instead of only the
non-percolating ones, which makes a difference for finite
lattices. For finite lattices, once again, from Eq. (A10)
we have a single definition for both, the unbroken and
broken phases.

Alternatively defining the susceptibility corresponding

to the order parameter m we get

χ =

(

q

q − 1

)2

χ̃ =
1

q − 1

〈

∑

cφ

nφ
c
2

N

〉

+N





〈(

∑

cπ

nπ
c

N

)2〉

−
〈

∑

cπ

nπ
c

N

〉2


 . (A11)
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