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Abstract
In this work we extend previously known decidability results for 2 × 2 matrices over Q. Namely,
we introduce a notion of flat rational sets: if M is a monoid and N ≤ M is its submonoid, then
flat rational sets of M relative to N are finite unions of the form L0g1L1 · · · gtLt where all Lis are
rational subsets of N and gi ∈ M . We give quite general sufficient conditions under which flat
rational sets form an effective relative Boolean algebra. As a corollary, we obtain that the emptiness
problem for Boolean combinations of flat rational subsets of GL(2,Q) over GL(2,Z) is decidable.

We also show a dichotomy for nontrivial group extension of GL(2,Z) in GL(2,Q): if G is a f.g.
group such that GL(2,Z) < G ≤ GL(2,Q), then either G ∼= GL(2,Z) × Zk, for some k ≥ 1, or G

contains an extension of the Baumslag-Solitar group BS(1, q), with q ≥ 2, of infinite index. It turns
out that in the first case the membership problem for G is decidable but the equality problem for
rational subsets of G is undecidable. In the second case, the membership problem for G is an open
problem as it is open for BS(1, q).

In the last section we prove new decidability results for flat rational sets that contain singular
matrices. In particular, we show that the membership problem is decidable for flat rational subsets of
M(2,Q) relative to the submonoid that is generated by the matrices from M(2,Z) with determinants
0,±1 and the central rational matrices.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory;
Computing methodologies → Symbolic and algebraic algorithms
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1 Introduction

Many problems for the analysis of matrix products are inherently difficult to solve even in
dimension two, and most of such problems become undecidable in general starting from
dimension three or four. One of the such hard questions is the Membership problem for
matrix semigroups: Given a finite set of n × n matrices {M1, . . . ,Mm} and a matrix M ,
determine whether there exist an integer k ≥ 1 i1, . . . , ik ∈ {1, . . . ,m} s.t.

Mi1 · · ·Mik
= M.

In other words, determine whether a matrix M belongs to a given finitely generated (f.g.
for short) semigroup. The membership problem was intensively studied since 1947 when
A. Markov showed in [22] that this problem is undecidable for matrices in Z6×6. A natural
and important generalization is the Membership problem in rational subsets. Rational sets in
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2 Decidability of membership problems for flat rational subsets

a monoid are those which can be specified by regular expressions. For example, the problem
above is the same as to decide membership in (M1 ∪ · · · ∪Mm)+: that is, the semigroup
generated by the matricesM1, . . . ,Mm. Another difficult question is to ask membership in the
rational submonoid M∗1 · · · M∗m. That is to decide: “∃x1, . . . , xm ∈ N : Mx1

1 · · ·Mxm
m = M?”

(also known as Knapsack problem). However, even in significantly restricted cases these
problems become undecidable for high dimensional matrices over the integers, [3, 20]; and
a very few cases are known to be decidable, see [5, 8]. The decidability of the membership
problem remains open even for 2× 2 matrices over integers [7, 10, 15, 19, 24]

On the other hand, it is classical that membership in rational subsets of GL(2,Z) (the
2× 2 integer matrices with determinant ±1) is decidable. Indeed, GL(2,Z) is a f.g. virtually
free group, and therefore the family of rational subsets forms an effective Boolean algebra,
[28]. A group is virtually free if it has a free subgroup of finite index. GL(2,Z) has a free
subgroup of rank 2 and of index 24. Note that solving the membership problem for rational
sets plays an important role in modern group theory as highlighted for example in [31] or
used in [9].

Two recent results that significantly extended the border of decidability for the membership
problem moving beyond GL(2,Z) were [25, 26], the first one in case of the semigroups of
2× 2 nonsingular integer matrices and and the second one in case of GL(2,Z) extended by
integer matrices with determinants 0,±1.

This paper pushes the decidability border even further. First of all we consider membership
problems for 2× 2 matrices over the rationals whereas [25, 26] deal with integer matrices.
Since everything is fine for GL(2,Z), our interest is in subgroups G of GL(2,Q) which
strictly contain GL(2,Z). In Section 4 we prove a dichotomy result which, to the best of
our knowledge, has not been stated or shown elsewhere. In the first case G is generated
by GL(2,Z) and central matrices ( r 0

0 r ). In that case G is isomorphic to GL(2,Z) × Zk

for k ≥ 1. It can be derived from known results in the literature about free partially
commutative monoids and groups that equality test for rational sets in G is undecidable, but
the membership problem in rational subsets is still decidable. So, this is best we can hope for
groups sitting strictly between GL(2,Z) and GL(2,Q), in general. If such a group G is not
isomorphic to GL(2,Z)× Zk, then our dichotomy states that it contains a Baumslag-Solitar
group BS(1, q) for q ≥ 2. The Baumslag-Solitar groups BS(1, q) are defined by two generators
a and t with a single defining relation tapt−1 = aq. They were introduced in [2] and widely
studied since then. It is fairly easy to see (much more is known) that they have no free
subgroup of finite index unless pq = 0. As a consequence, in both cases of the dichotomy,
GL(2,Z) has infinite index in G. Actually, we prove more, we show that if G contains a
matrix of the form

(
r1 0
0 r2

)
with |r1| 6= |r2| (which is the second case in dichotomy), then

G contains some BS(1, q) for q ≥ 2 which has infinite index in G. It is wide open whether
the membership in rational sets of G can be decided in that second case. For example, as
soon as G contains a matrix

( 1 0
0 p

)
where p is prime, a semi-direct product SL(2,Z[1/p]) o Z

appears in G. This provide reasons for the hardness of deciding the membership for arbitrary
rational subsets of GL(2,Q) in the form of that dichotomy result. Actually, it is tempting to
believe that the membership in rational sets becomes undecidable for subgroups of GL(2,Q)
in general.

Let’s take the dichotomy as a preamble. It lead us in the direction where we came up
with a new, but natural subclass of rational subsets. The new class satisfies surprisingly
good properties.

Let us introduce to you the class of flat rational sets Frat(M,N). It is a relative notion
where N is a submonoid ofM . It contains all finite unions of the form g0L1g1 · · ·Lmgm where
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gi ∈M and Li ∈ Rat(N). Of particular interest in our context is the class Frat(G,H) where
H and G are f.g. groups, Rat(H) forms a Boolean algebra, and G is the commensurator
of H. The notion of commensurator is a standard concept in geometric group theory
which includes many more than matrix groups, the formal definition is given in Section 2.1.
Theorem 10 shows that in this case, Frat(G,H) forms a relative Boolean algebra. That is:
L,K ∈ Frat(G,H) =⇒ L\K ∈ Frat(G,H). Under some mild effectiveness assumptions this
means that the emptiness of finite Boolean combinations of sets in Frat(G,H) can be decided.
Thus, we have an abstract general condition to decide such questions for a natural subclass
of all rational sets in G where the whole class Rat(G) need not to be an effective Boolean
algebra. The immediate application in the present paper concerns Frat(GL(2,Q),GL(2,Z)),
see Theorem 10 and Corollary 11. For example, GL(2,Z) × Z appears in GL(2,Q) and
Rat(GL(2,Z)× Z) is not an effective Boolean algebra. Still the smaller class of flat rational
sets Frat(GL(2,Z)×Z ,GL(2,Z)) is a relative Boolean algebra. In order to apply Theorem 10
we need that Rat(H) forms an effective Boolean algebra. This is actually true for many
other groups than virtually free groups. It includes for example all f.g. abelian groups and it
is closed under free products.

The power of flat rational sets is even better visible in the context of membership
problems for rational subsets of GL(2,Q). Let P (2,Q) denote the monoid GL(2,Z) ∪
{h ∈ GL(2,Q) | |det(h)| > 1}. Then Theorem 13 states that we can solve the membership
problem “g ∈ R?” for all g ∈ GL(2,Q) and all R ∈ Frat(GL(2,Q), P (2,Q)). Theorem 13
generalizes the main result in [4].

Let us summarize the statements about groups G sitting between SL(2,Z) and GL(2,Q).
Our current knowledge is as follows. There is some evidence that the membership in rational
subsets of G is decidable if and only if G doesn’t possess any

(
r1 0
0 r2

)
where |r1| 6= |r2|.

However, we always can decide the membership problem for all L ∈ Frat(GL(2,Q), P (2,Q)).
Moreover, it might be that such a positive result is close to the border of decidability.

We also consider singular matrices. As a matter of fact, the membership problem becomes
simpler in the following sense. Let g be a singular matrix in M(2,Q) and let P be the
submonoid generated by {( r 0

0 r ) | r ∈ N} ∪GL(2,Z) ∪ {h ∈M(2,Z) |det(h) = 0}. Then can
decide the membership problem “g ∈ R?” for all R ∈ Frat(M(2,Q), P ).

2 Preliminaries

By M(n,R) we denote the ring of n × n matrices over a commutative ring R, and det :
M(n,R) → R is the determinant. By GL(n,R) we mean the group of invertible matrices.
These are those matrices g ∈ M(n,R) for which det(g) is a unit in R. By SL(n,R) we
denote its normal subgroup det−1(1), called the special linear group. Interesting results and
explicit calculation for SL(2,Z) and for special linear groups over other rings of integers for
number fields and function fields are in [30]. BS(p, q) denotes the Baumslag-Solitar group
BS(p, q) = 〈a, t | tapt−1 = aq〉.

For groups (and more generally for monoids) we write N ≤M if N is a submonoid of M
and N < M if N ≤M but N 6= M . If M is a monoid, then Z(M) denotes the center of M ,
that is, the submonoid of elements which commute with all elements in M . A subsemigroup
I of a monoid M is an ideal if M IM ⊆ I.

2.1 Smith normal forms and commensurators
The standard application for all our results is the general linear group GL(2,Q), but the
results are more general and have the potential to go far beyond. Let n ∈ N. It is classical
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fact from linear algebra that each nonzero matrix g ∈M(n,Q) admits a Smith normal form.
This is a factorization

g = r e sq f

such that r ∈ Q∗ with r > 0, e, f ∈ SL(n,Z), and q ∈ Z where sq denotes the matrix

sq =
( 1 0

0 q

)
.

The matrices e and f in the factorization are not unique, but both the numbers r and q are.
The existence and uniqueness of r and sq are easy to see by the corresponding statement for
integer matrices. Clearly, r2q = det(g). So, for g 6= 0, the sign of det(g) is determined by the
sign of q.

The notion of “commensurator” is well established in geometric group theory. Let H
be a subgroup in G, then the commensurator of H in G is the set of all g ∈ G such that
gHg−1 ∩H has finite index in H (note that this also implies that gHg−1 ∩H has finite index
in gHg−1, too). If H has finite index in G, then G is always a commensurator of H because
the normal subgroup N =

⋂{
gHg−1

∣∣ g ∈ G} is of finite index in G if and only if G/H is
finite.

Moreover, if H ≤ H ′ be of finite index and H ′ ≤ G′ ≤ G such that G is a commensurator
of H, then G′ is a commensurator of H ′. The notion of a commensurator pops up naturally
in our context. Indeed, let H = SL(2,Z) and write g ∈ GL(2,Q) in its Smith normal form
g = r e sq f . Then the index of gHg−1 ∩H in H is the same as the index of sqHs

−1
q ∩H in

H; and every matrix of the form
(

a b/q
qc d

)
is in sqHs

−1
q if

(
a b
c d

)
∈ SL(2,Z). Thus, the index

of sqHs
−1
q ∩H in H is bounded by the size of the finite group SL(n,Z/qZ). For n = 2 the

size SL(n,Z/qZ) is in O(q3). It follows that GL(2,Q) is the commensurator of SL(2,Z), and
hence of GL(2,Z). In fact, it is known that GL(n,Q) is the commensurator of SL(n,Z) for
all n ∈ N, e.g., see [16].

2.2 Rational and recognizable sets
The results in this section are the basis for the following sections and not new. An exception
is however Lemma 5. The corresponding result in the literature is stated only for H and
G where the index of the subgroup H is finite in G. We use the our stronger version in
the proof of Proposition 9. We follow the standard notation as Eilenberg [11]. Let M be
any monoid, then Rat(M) has the following inductive definition using rational (aka regular)
expressions.

1. L <∞, L ⊆M =⇒ L ∈ Rat(M).
2. L1, L2 ∈ Rat(M) =⇒ L1 ∪ L2, L1 · L2, L

∗
1 ∈ Rat(M).

For L ⊆M the set L∗ denotes the submonoid of M which is generated by L. The submonoid
L∗ is also called the Kleene-star of L. Note that the definition of Rat(M) is intrinsic without
any reference to any generating set. It is convenient to define simultaneously a basis B(L)
for L (more precisely for a given rational expression): If L <∞, then B(L) = L. Moreover,
B(L∗) = B(L) and B(L1 ∪ L2) = B(L1) ∪ B(L2). Finally, B(L1 · L2) = B(L1) ∪ B(L2) if
B(L1) 6= ∅ and B(L2) 6= ∅, and B(L1 · L2) = ∅, otherwise. Every rational set is contained in
a f.g. submonoid of M , namely, L ⊆ B(L)∗. We will also use the fact that the emptiness
problem is decidable for rational subsets of M since L 6= ∅ ⇐⇒ B(L) 6= ∅.
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I Definition 1. Let C be a family of subsets of M which is closed under finite union. We
say that C is an effective relative Boolean algebra if first, every L ∈ C is given by an effective
description and second, if on an input K,L ∈ C the relative complement K \L is an effectively
computable set in C. If in addition, M belongs to C, then C is is called effective Boolean
algebra

We note that since by the above definition a relative Boolean algebra is closed under
finite unions, it follows that it is closed under finite intersection, too.

The following proposition gives examples when Rat(M) is an effective Boolean algebra.

I Proposition 2. The class of monoids M where Rat(M) is an effective Boolean algebra
satisfies the following:

1. It contains only f.g. monoids. (Trivial.)
2. It contains all f.g. free monoids, f.g. free groups, and f.g. abelian monoids [18, 6, 12].
3. It contains all f.g. virtually free groups [32].
4. It is closed under free product [27].

We also use the following well-known fact from [1].

I Proposition 3. Let G a group. If a subgroup H is in Rat(G), then H is finitely generated.

The family of recognizable subsets Rec(M) is defined as follows. We have L ∈ Rec(M) if
and only if there is a homomorphism ϕ : M → N such that |N | <∞ and ϕ−1ϕ(L) = L.

The following assertions are well-known and easy to show, see for example [11].

1. McKnight: M is finitely generated ⇐⇒ Rec(M) ⊆ Rat(M).
2. L,K ∈ Rat(M) doesn’t imply L ∩K ∈ Rat(M), in general.
3. L ∈ Rec(M),K ∈ Rat(M) =⇒ L ∩K ∈ Rat(M).
4. Let H be a subgroup of a group G. Then |G/H| <∞ ⇐⇒ H ∈ Rec(G).

Lemma 4 is well-known and an easy corollary of the above properties.

I Lemma 4. Let G any group and H ≤ G be a subgroup of finite index. Then

{L ∩H |L ∈ Rat(G)} = {L ⊆ H |L ∈ Rat(G)} .

Lemma 4 doesn’t hold if H has infinite index in G. For example it fails for F2 × Z =
F (a, b)× F (c) which does not have Howson property: there are f.g. subgroups H,K such
that H ∩K is not finitely generated.

The assertion of Lemma 5 below is not obvious and was proved first under the assumption
that H has finite index in G by [14, 28, 32]. The proof in [28] states the result for f.g. virtually
free groups, only. Our proof is conceptually simple. It just uses elementary transformations
on NFAs. What is new is that there is no hypothesis that H has finite index in G. This
turns out to be useful later.

I Lemma 5. Let G be any group and H ≤ G be a subgroup. Then

{L ⊆ H |L ∈ Rat(G)} = Rat(H).

Proof. Let R ⊆ G such that first, 1 ∈ R and second, R is in bijection with H \G via r 7→ Hr.
Thus, R is coset representation.

Let L = L(A) for an NFA A with state set Q. Since G = 〈H ∪R〉 as a monoid and since
1 ∈ R and 1 ∈ H we may assume that all transition are labeled by elements from G having
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the form sa with s ∈ R and a ∈ H. Moreover, we may assume that every state p is on some
accepting path. Since there are only finitely many transitions there are finite subsets H ′ ⊆ H
and S ⊆ R such that if sa with s ∈ R labels a transition, then s ∈ S and a ∈ H ′. Moreover,
G′ = 〈H ∪ S〉 is a f.g. subgroup G′ ≤ G such that L ∈ Rat(G′).

We obtain the first invariant. Assume we read from the initial state a word u over the
H ′ ∪S such that reading that word leads to the state p with u ∈ Hr for r ∈ R. Then there is
some f ∈ G which leads us to a final state. Thus, uf ∈ L(A) ⊆ H, and therefore u ∈ Hf−1.
This means Hf−1 = Hr and therefore r doesn’t depend on u. It depends on p only: each
state p ∈ Q “knows” its value r(p) ∈ R.

This will show that we only need the finite subset R′ of R. The set R′ contains the s ∈ R
appearing on transitions in the NFA and the r ∈ R such that Hf−1 = Hr where fq is the
label of a shortest path from a state q to a final state. For simplicity R = R′.

Let r = r(p) ∈ R for p ∈ Q. We introduce exactly one new state (p, r) with transitions
p

r−→ (p, r) and (p, r) r−1

−→ p. This does not change the language.
Now for each outgoing transition p

sa−→ q define b ∈ H and t ∈ R by the equation
r−1sa = bt. Recall if we read u reaching p, then u ∈ Hr. Thus, usa ∈ Ht; and we can add a
transition

(p, r) b−1

−→ (q, t−1).

This doesn’t change the language as b = r−1sat−1 = b in G.
Now, the larger NFA still accepts L, but the crucial point is that for u ∈ L(A) we can

accept the same element in G by reading just labels from H. This is easy to see by induction
on k.

Now we can remove all original states since they are good for nothing anymore by making
(p, 1) initial (resp. final) if and only if p was initial (resp. final). So, the last modifications do
not enlarge the size of the NFA. At the end the new NFA has exactly the same size the one
for the set L ∩H ∈ Rat(G). J

I Remark 6. Another proof leaning on finite transducers was given by Sénizergues [29].
As a first corollary of Lemma 5 we state another well-known fact.

I Proposition 7. Let H be a subgroup of finite index in G. If the membership problem is
decidable for Rat(H), then it is decidable for Rat(G).

Proof. Let R ⊆ G be a rational subset and g ∈ G. We want to decide “g ∈ R?”. Suppose
u1, . . . , uk are all representatives of right cosets of H in G. Choose i such that g ∈ Hui.
Then gu−1

i ∈ H, and g ∈ R if and only if gu−1
i ∈ Ru−1

i ∩H. Since H has finite index in G, it
is recognizable, and hence Ru−1

i ∩H ∈ Rat(G). By Lemma 5, we have Ru−1
i ∩H ∈ Rat(H).

Since the membership for Rat(H) is decidable, we can decide whether g ∈ R. J

3 Flat rational sets

The best situation is when Rat(M) is an effective Boolean algebra because in this case all
decision problems we are studying here are decidable. However, our focus is on matrices
over the rational or integer numbers, in which case such a strong assertion is either wrong or
not known to be true. Our goal is to search for weaker conditions under which it becomes
possible to decide the emptiness of finite Boolean combinations of rational sets or (even
weaker) to decide the membership in rational sets. Again, in various interesting cases the
membership to rational subsets is either undecidable or not known to be decidable. The
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most prominent example is the direct product F2 × F2 of two free groups of rank 2 in which,
due to the construction of Mihailova [23], there exists a finitely generated subgroup with
undecidable membership problem.

In this work we introduce a notion of flatness for rational sets and show that the
membership problem and (even stronger) the emptiness problem for Boolean combinations
of flat rational sets are decidable in GL(2,Q).

I Definition 8. Let N be a submonoid of M . We say that L ⊆M is flat rational subset of
M relative to N (or over N) if L is a finite union of languages of type L0g1L1 · · · gtLt where
all Li ∈ Rat(N) and gi ∈M . The family of these sets is denoted by Frat(M,N).

In our applications we use flat rational sets in the following setting of a group G with
a subgroup H and G sits inside a monoid M , where M \G is ideal (possibly empty). For
example, H = GL(2,Z) < G ≤ GL(2,Q) and M \ G is a (possibly empty) semigroup of
singular matrices. In such a situation there is an equivalent characterization of flat rational
set in M with respect to H. Proposition 9 shows it can be defined as the family of rational
sets when the Kleene-star is restricted to subsets which belong to the submonoid H.

I Proposition 9. Let H be a subgroup of G and G be a subgroup of a monoid M such that
M \ G is an ideal. Then the family Frat(M,H) is the smallest family R of subsets of M
such that the following holds.

R contains all finite subsets of M ,
R is closed under finite union and concatenation,
R is closed under taking the Kleene-star over subsets of H which belong to R.

Proof. Clearly, all flat rational sets relative to H are contained in R. To prove inclusion in
the other direction, we need to show that the family of flat rational subsets of M relative
to H (i) contains all finite subsets of M , (ii) is closed under finite union and concatenation,
and (iii) is closed under taking the Kleene-star over subsets of H. The first two conditions
are obvious. To show (iii), let L be flat rational set relative to H such that L ⊆ H. Recall
that L is a finite union of the form L0g1L1 · · · gtLt, where ∅ 6= Li ∈ Rat(H) and gi ∈M . If
gi ∈M \G for some i, then we have L0g1L1 · · · gtLt \G 6= ∅ because M \G is an ideal, and
hence L 6⊆ H.

So if L ⊆ H, then all gi ∈ G and L ∈ Rat(G). By Lemma 5, L is a rational subset of H,
and hence L∗ ∈ Rat(H). In particular, L∗ is flat rational relative to H. J

I Theorem 10. Let H and G be f.g. groups with H ≤ G such that the following holds.

Rat(H) is an effective Boolean algebra.
G is the commensurator of H.
The membership to H (that is, the question “g ∈ H?”) is decidable.
Given g ∈ G we can compute a set of left coset representatives of Hg = gHg−1 ∩H in H.
(Note that this set is finite by the above assumption.)

Then Frat(G,H) forms an effective relative Boolean algebra. In particular, given a finite
Boolean combination B of flat rational sets of G over H, we can decide the emptiness of B.

Before giving the proof Theorem 10 let us state its consequence for GL(2,Q).

I Corollary 11. Let B ⊆ GL(2,Q) be a finite Boolean combination of flat rational sets of
GL(2,Q) over GL(2,Z), then we can decide the emptiness of B.
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Proof. It is a well-known classical fact that GL(2,Z) is a finitely generated virtually free
group, namely, it contains a free subgroup of rank 2 and index 24. Hence Rat(GL(2,Z)) is an
effective Boolean algebra by [32]. It is also well-knows that GL(2,Q) is the commensurator
subgroup of GL(2,Z) in GL(2,Q). Thus, all hypotheses of Theorem 10 are satisfied. J

A direct consequence of Corollary 11 is that we can decide the membership for flat rational
sets of GL(2,Q) over GL(2,Z). However in Section 4 we explain why we are far away from
knowing how to decide the membership for all rational subsets of GL(2,Q).

For the proof of Theorem 10 we need the following observation.

I Lemma 12. Let L ∈ Rat(H) and g ∈ G. As above, let

Hg = gHg−1 ∩H =
{
h ∈ H

∣∣ g−1hg ∈ H
}
.

Then we can compute an expression for g−1(L ∩Hg)g ∈ Rat(H).

Proof. Since gHg−1 ∩H is of finite index in H, we can compute the expression for L′ = L∩
Hg ∈ Rat(Hg) over a basis B′ ⊆ Hg by Lemma 5. Now, for any g and K ∈ Rat(Hg) we have
g−1K∗g = (g−1Kg)∗, g−1(L1L2)g = g−1L1gg

−1L2g, and g−1(L1∪L2)g = g−1L1g∪ g−1L2g.
Hence, we simply replace the basis B′ ⊆ Hg by g−1B′g ⊆ H. This gives a rational expression
for g−1(L ∩Hg)g over H. J

Proof of Theorem 10. Let g ∈ G and K ∈ Rat(H). First, we claim that we can rewrite
Kg ∈ Rat(G) as a finite union of languages g′K ′ with g′ ∈ G and K ′ ∈ Rat(H).

Indeed, by assumption we can compute a set Ug ⊆ H of left-representatives such that
H =

⋃
{uHg |u ∈ Ug}. Thus,

Kg =
⋃
{K ∩ uHg |u ∈ Ug} g =

⋃{
ug g−1(u−1K ∩Hg)g

∣∣u ∈ Ug

}
=
⋃{

g′g−1(u−1K ∩Hg)g
∣∣ g′ ∈ Ugg

}
.

Using Lemma 12 we obtain g−1(u−1K ∩Hg)g = K ′ ∈ Rat(H). This shows the claim.
Let L be a flat rational subset G, that is, L is equal to a finite union of languages

L0g1L1 · · · gtLt where all Li ∈ Rat(H). Using the claim, we can write L as a finite union of
languages gK with g ∈ G and K ∈ Rat(H). Since the membership in H is decidable, we
can computably enumerate a set S of all distinct representatives of the right cosets of H,
and moreover for each g ∈ G find a representative g′ ∈ S such that g ∈ g′H. Since g = g′h

for some h ∈ H, we can write gK = g′(hK), where hK ∈ Rat(H). Therefore, every flat
rational set L can be written as a union L =

⋃n
i=1 giKi, where gi ∈ S and Ki ∈ Rat(H).

Since gK1 ∪ gK2 = g(K1 ∪K2), we may assume that all gi in the expression L =
⋃n

i=1 giKi

are different.
Now let L and R be two flat rational sets. By the above argument we may assume that

L =
n⋃

i=1
aiLi and R =

m⋃
j=1

bjRj ,

where ai, bj ∈ S and Li, Rj ∈ Rat(H). Then we have

L \R =
n⋃

i=1

(
aiLi \

m⋃
j=1

bjRj

)
.
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Note that if ai /∈ {b1, . . . , bm}, then aiLi \
⋃m

j=1 bjRj = aiLi, but if ai = bj for some j then
aiLi \

⋃m
j=1 bjRj = ai(Li \Rj). Since Rat(H) is an effective Boolean algebra, we can compute

the rational expression for Li \Rj in H. Hence we can compute the flat rational expression
for L \R. J

Below we give one more application of Theorem 10. Let P (2,Q) we denote the following
submonoid of GL(2,Q) of matrices:

P (2,Q) = {h ∈ GL(2,Q) | |det(h)| > 1} ∪GL(2,Z).

Note that P (2,Q) contains all nonsingular matrices from M(2,Z). So, the following theorem
is a generalization of the main result in [25].

I Theorem 13. Let g ∈ GL(2,Q) and R be a flat rational subset of GL(2,Q) with respect
to P (2,Q). Then we can decide g ∈ R.

Proof. Smith normal forms tells us that

g = cresnf = cre ( 1 0
0 n ) f,

where cr = ( r 0
0 r ) is central, e, f ∈ SL(2,Z) and r ∈ Q. Replacing R by r−1e−1Rf−1, we may

assume that g = sn with 0 6= n ∈ Z. Moreover, by making guesses we may assume that

R = R0g1R1 · · · gtRt

where Ri ∈ Rat(P (2,Q)) and each gi is of the form gi = ( r 0
0 r ) with 0 < r < 1. Multiplying

g and R with some appropriate natural number, we can assume that g = ( m 0
0 n ) with

m,n ∈ N \ {0} and R ∈ Rat(P (2,Q)).
Without restriction we may assume that R is given by a trim NFA A with state space Q,

initial states I and final states F . (Trim means that every state is on some accepting path.)
Note that a path in A accepting g can use transitions with labels from P (2,Q) \GL(2,Z) at
most k =

⌊
log(mn)

log t

⌋
many times, where

t = min{ |det(h)| : |det(h)| > 1 and h appears as a label of a transition in A}.

Consider a new automaton B with state space Q× {0, . . . , k}, initial states I × {0} and final
states F × {0, . . . , k}. The transitions of B are defined as follows:

for every transition p g−→ q in A with g ∈ GL(2,Z), there is a transition (p, i) g−→ (q, i)
in B for every i = 0, . . . , k;
for every transition p

g−→ q in A with g ∈ P (2,Q) \ GL(2,Z), there is a transition
(p, i) g−→ (q, i+ 1) in B for every i = 0, . . . , k − 1.

The automaton B defines a flat rational subset R′ ⊆ R over GL(2,Z) such that g ∈ R′ ⇐⇒
g ∈ R. So, using Theorem 10, we can decide whether g ∈ R′ and hence whether g ∈ R. J

4 Dichotomy in GL(2,Q)

In the following we show a dichotomy result. To the best of the authors the result has not
been stated elsewhere. The dichotomy shows that extending our decidability results beyond
flat rational sets over GL(2,Z) seems to be quite demanding.

I Theorem 14. Let G be a f.g. group such that GL(2,Z) < G ≤ GL(2,Q). Then there are
two mutually exclusive cases.
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1. G is isomorphic to GL(2,Z) × Zk, with k ≥ 1, and does not contain a copy of the
Baumslag-Solitar group BS(1, q) for any q ≥ 2.

2. G contains a subgroup which is an extension of BS(1, q), for some q ≥ 2, of infinite index.

Proof. Let H = GL(2,Z). There are two cases. In the first case some finite generating set for
G contains only elements from H and from the center Z(G). Since GL(2,Z) ≤ G we see that
Z(G) ≤ {( r 0

0 r ) | r ∈ Q}. Moreover, since
(−1 0

0 −1
)
∈ H, we may assume in the fist case that

G is generated by H and f.g. subgroup Z ≤ {( r 0
0 r ) | r ∈ Q ∧ r > 0}. The homomorphism

g 7→ |det(g)| embeds Z into the torsion free group {r ∈ Q∗ | r > 0}. Hence, Z is isomorphic
to Zk for some k ≥ 1. Since Z ∩ H = {1}, the canonical surjective homomorphism from
Z ×H onto G is an isomorphism.

In the second case we start with any generating set and we write the generators in Smith
normal form e

(
r 0
0 rq

)
f . Since e, f ∈ GL(2,Z) and GL(2,Z) < G, without restriction, the

generators are either from GL(2,Z) or they have the form
(

r 0
0 rq

)
with r > 0 and 0 6= q ∈ N.

So, if we are not in the first case, there is at least one generator s =
(

r 0
0 rq

)
where r > 0 and

2 ≤ q ∈ N.
Let BS be the subgroup of G which is generated by ( 1 0

1 1 ) and s and BS(1, q) be the
Baumslag-Solitar group with generators b and t such that tbt−1 = bq. We have s ( 1 0

1 1 ) s−1 =
( 1 0

1 1 )q. Hence there is surjective homomorphism ϕ : BS(1, q) → G such that ϕ(t) = s and
ϕ(b) = ( 1 0

1 1 ). Let us show that ϕ is an isomorphism. Every element g ∈ BS(1, q) can be
written the form tkbxtn where k, x, n are integers. Suppose ϕ(tkbxtn) = 1. Then ( 1 0

x 1 ) =
ϕ(bx) = ϕ(t−k−n) =

(
r 0
0 rq

)−k−n is a diagonal matrix. This implies x = 0. But then g = tm

and ϕ(g) = sm = 1 implies m = 0. Hence, ϕ is an isomorphism and BS is the group BS(1, q).
Moreover, consider any g ∈ BS∩SL(2,Z). As above g = sk ( 1 0

1 1 )x
sm with x, k,m ∈ Z. Since

by assumption det(g) = 1 we obtain m = −k and hence g = ( 1 0
xk 1 ) ∈ 〈( 1 0

1 1 )〉. Therefore
SL(2,Z) ∩BS is the infinite cyclic group 〈( 1 0

1 1 )〉 = Z, which has infinite index in SL(2,Z). It
follows that G contains an extension of BS(1, q) of infinite index.

But this is not enough, we need to show that GL(2,Z) × Zk cannot contain BS(1, q),
otherwise there is no dichotomy. Actually, we do a little bit more: BS(1, q) is not a subgroup
in GL(2,Z)×A for all abelian groups A. Assume by contradiction that it is. Then there are
generators b = (a, x), t = (s, y) ∈ GL(2,Z)×A such that tbt−1 = bq. As q ≥ 2 this implies
x = 0. Thus, b = (a, 0). Consider the canonical projection ϕ of GL(2,Z)×A onto GL(2,Z)
such that ϕ(b) = a and ϕ(t) = s. We claim that the restriction of ϕ to 〈b, t〉 is injective.

Let ϕ(g) = 1 for g ∈ 〈b, t〉. As above we write g = tkbztn with z, k, n ∈ Z. Then we have
skazsn = 1 ∈ GL(2,Z); and therefore az = s−k−n. Hence az commutes with s, but since
sas−1 = aq for q ≥ 2, this is possible only if z = 0. Hence g = tm for some m ∈ Z. Since
ϕ(g) = 1, we know sm = 1 and hence m = 0. This tells us that ϕ is injective on 〈b, t〉, and
the claim follows.

The above claim implies that BS(1, q) appears as a subgroup in GL(2,Z). However,
no virtually free group can contain BS(1, q) by [13]; and GL(2,Z) is virtually free. A
contradiction.

Actually, [13] shows a stronger result. If a Baumslag-Solitar group BS(p, q) appears in a
group G with pq 6= 0, then G is not hyperbolic. On the other hand, f.g. virtually free groups
are basic examples of hyperbolic groups. J

I Proposition 15. Let G be isomorphic to GL(2,Z) × Zk with k ≥ 1. Then, the question
“L = R?” on input L,R ∈ Rat(G) is undecidable. However, the question “g ∈ R?” on input
g ∈ G and R ∈ Rat(G) is decidable.
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Proof. The group GL(2,Z) contains a free monoid {a, b}∗ of rank 2. Thus, under the
conditions above, G contains the free partially commutative monoid M = {a, b}∗ × {c}∗. It
is known that the question “L = R?” on input L,R ∈ Rat(G) is undecidable for M , see [17].

For the decidability we use the fact that SL(2,Z) has a free subgroup F of rank two and
index 12. Thus, the index of F in GL(2,Z) is 24 and therefore finite. By [21] the question
“g ∈ R?” is decidable in F × Zk. Since F × Zk is of finite index (actually 24) in G, the
membership in G is decidable by Proposition 7. J

I Remark 16. Let G be a group extension of GL(2,Z) inside GL(2,Q) which is not isomorphic
to GL(2,Z)×Zk for k ≥ 0. Then, by Theorem 14, the group G contains an infinite extension
of BS(1, q) for q ≥ 2. To date (when this text was written) it is still open whether the
membership in rational sets of BS(1, q) is decidable. However, even if it was decidable, it is
by far not clear how to extend these results to infinite extensions of BS(1, q).

5 Singular matrices

5.1 Membership for the zero matrix
The membership problem for the zero matrix is decidable with respect to the largest class of
flat rational sets we are considering in our paper.

I Theorem 17. Let P the submonoid of M(2,Q) which is generated by all central matrices
( r 0

0 r ), all matrices in GL(2,Z) and all matrices h ∈ M(2,Z) with det(h) = 0. If R ⊆ M(2,Q)
is flat rational over P , then we can decide ( 0 0

0 0 ) ∈ R.

Proof. We may assume that R is given by a trim NFA over a f.g. submonoid M of
M(2,Q). If any transition is labeled by 0, then we have 0 ∈ R since the NFA is trim. Thus,
we may assume that all transitions labeled by a central matrix are invertible. However,
invertible central matrices have no effect for accepting 0. Thus, we can assume that all
transitions labeled by a central matrix are the identity matrix. These transitions can
be removed by standard techniques. Thus, we can assume that R is flat rational over
GL0(2,Z) = GL(2,Z) ∪ {g ∈ M(2,Z) |det(g) = 0}. Replacing R by R′ =

(
k 0
0 k

)
· R where

k ∈ N is large enough, we may eventually assume that R ⊆ M(2,Z) is flat rational over
GL0(2,Z). The result follows from Theorem 18. J

5.2 Membership for the singular matrices
Throughout this section, H denotes GL(2,Z); and for a ∈ Z we let

Mij(a) = {( g11 g12
g21 g22 ) ∈ H | gij = a} .

The monoid P ′ mentioned in Theorem 18 is a proper submonoid of monoid P mentioned
in Theorem 17. The difference is that P allows all central matrices whereas P ′ allows only
those matrices ( r 0

0 r ) where r is a natural number.

I Theorem 18. Let P ′ the submonoid of M(2,Q) which is generated by all central matrices
( r 0

0 r ) with r ∈ N, all matrices in GL(2,Z) and all matrices h ∈ M(2,Z) with det(h) = 0. If
R ⊆ M(2,Q) is flat rational over P ′, then we can decide g ∈ R for all singular matrices g in
M(2,Q).

The proof of Theorem 18 covers the rest of Section 5.2. The following lemma was originally
shown in [26], but we include its proof here for completeness.
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I Lemma 19. The sets Mij(a) ⊆ M(2,Z) are rational for all i, j and a ∈ Z.

Proof. For a = 0 we see that M21(0) = ± ( 1 1
0 1 )Z is rational. From that we can easily deduce

that Mij(0) ∈ Rat(H) for all i, j.
Therefore let a 6= 0. Let us show thatMij(a) ∈ Rat(H) for al i, j. We content ourselves to

show it forM11(a). Indeed, then we have g ∈M11(a) if and only if g =
(

a b
c d

)
=
(

a b0+ma
c0+na d

)
where m,n ∈ Z and 0 ≤ b0, c0 < |a|. Moreover.(

a b0+ma
c0+na d

)
= ( 1 0

n 1 )
(

a b0
c0 d′

)
( 1 m

0 1 )

where d′ = 1+b0c0
a ∈ Z and 0 ≤ d′ ≤ |a|. Hence, M11(a) ∈ Rat(H) because M(a) is a finite

union of languages of type

( 1 0
1 1 )Z

(
a b0
c0 d′

)
( 1 1

0 1 )Z.

The assertion of Lemma 19 follows. J

We may assume that R is given by a trim NFA A over a f.g. submonoid M of M(2,Q).
Without restriction, all transitions are labeled with elements of H or rsq for q ∈ N or r ≥ 0.
If g = 0 and there is one transition labeled by 0, then we know g ∈ R. For g 6= 0 we cannot
use any transition labeled by 0. Hence without restriction, if a transition is labeled by a
rational number r, then r > 0. Using Smith normal form and writing rsq as a product, in
the beginning all transitions are labeled either by a matrix in GL(2,Z) or by a central matrix
( r 0

0 r ) or by s0 = ( 1 0
0 0 ).

Since det(g) = 0, such a transition must be used at least once. So, by writing R as a
finite union R1 ∪ Rm and guessing the correct j we may assume without restriction that
g ∈ Rj = R = L1s0L2 where Li ∈ Rat(M). Note that the Li are just rational, and not
assumed to be flat rational. Throughout we use the following equation for r ∈ Q and
a, b, c, d ∈ Z:

s0r
(

a b
c d

)
s0 = s0 ( ra 0

0 0 ) s0 = s0ras0 = ras0. (1)

Now, we perform a first round of “flooding-the-NFA” with more transitions without
changing the state set.

1. For all states p, q of A consider the subautomaton B where p is the unique initial and
q is the unique final state and where all transitions are labeled by h ∈ H (all other are
removed from A). This defines a rational language L(p, q) ∈ Rat(H).

2. Introduce for all states p, q of A an additional new transition labeled by L(p, q).
3. If g = 0 and 0 ∈ L(p, q), then accept g ∈ R. After that replace all L(p, q) by L(p, q) \ {0}.
4. If 1 ∈ L(p, q) where 1 = ( 1 0

0 1 ) is the identity matrix, replace L(p, q) by L(p, q) \ {1} and
introduce a new transition p 1−→ q.

After that we may assume that all accepting paths of A are as follows:

p1
L1−→ q1

r1s0−→ p2
L2−→ · · · rks0−→ pk

Lk−→ qk (2)

where ri ∈ Q, ri > 0, and 0, 1 /∈ Li for all 1 ≤ i ≤ k. We may assume the transition p1
L1−→ q1

is the only transition leaving a unique initial state p1.
It is convenient to assume that the states are divided into two sets: p-states where

outgoing transitions labeled by rational subsets of H and which lead to q-states; and q-states
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where outgoing transitions labeled by rs0 and lead to p-states. In particular, pi 6= qj for all
i, j.

Since R is flat over P ′, there is constant ρ depending on R such that each accepting path
as in (2) uses a transition labeled by r = ( r 0

0 r ) with r /∈ N at most ρ times. Splitting R again
into a finite union we may assume that all accepting paths have the form

q0
r−→ p1

L1−→ q1
r1s0−→ p2

L2−→ · · · rks0−→ pk
Lk−→ qk (3)

where the r ∈ Q, r 6= 0, ri ∈ N \ {0}, and 0, 1 /∈ Li ∈ Rat(M). Here, q0 is a new unique
initial state. We choose some z ∈ Z such that rz ∈ N; and we aim to decide zg ∈ zR. The
NFA for zR is obtained by making the unique p1-state initial again, to remove q0, and to
replace all outgoing transitions q1

r1s0−→ p2 by q1
zr1s0−→ p2. After that little excursion we are

back at a situation as in (2). The difference is that all ri are positive natural numbers. In
order to have g ∈ R, we must have g ∈ M(2,Z). So, we can assume that, too.

Phrased differently, without restriction from the very beginning g ∈ M(2,Z), det(g) = 0,
and A accepts R such that all accepting paths are as in (2) where all ri ∈ N \ {0}.

Let g = ( g11 g12
g21 g22 ). We define a target value t ∈ N by the greatest common divisor of the

numbers in {g11, g12, g21, g22}.
We keep the following assertion as an invariant. If a transition q rs0−→ appears in A, then

r divides t. This leads to second “flooding” with transitions.

Second flooding. As long as possible, do the following.

Choose a sequence of transitions q′ rs0−→ p
L−→ q

r′s0−→ p′ and an integer z ∈ Z such that:

1. z = 0 ⇐⇒ g = 0,
2. the integer rzr′ divides t,
3. we have L ∩M11(z) 6= ∅,
4. there is no transition q′ rzr′−→ p′.

Introduce an additional transition q′ rzr′−→ p′.

It is clear that the procedure terminates since for g 6= 0 the target t has only finitely many
divisors. So, the number of integers r, z, r′ such that rzr′ divides t is finite for g 6= 0. For
g = 0 we have z = 0 and 0 divides the target 0. The accepted language of A was not changed.
But now, every accepting path for g can take short cuts. As a consequence, we may assume
that all accepting paths for g have length three:

p1
L1−→ q1

rs0−→ p2
L2−→ q2. (4)

By guessing such a sequence of length three, we may assume that the NFA is exactly that
path in (4) with those four states and where r divides t.

We are ready to check whether g ∈ L(A). Indeed, we know that each matrix m ∈ L(A)
can be written as

m = f1rs0f2

with fk ∈ Lk ∈ Rat(H) for k = 1, 2. We can write f1rs0 = r ( a 0
b 0 ) and s0f2 = ( c d

0 0 ) where
the a, b, c, d depend on the pair (f1, f2). Hence

m = rfs0h = rfs0s0h = r ( a 0
b 0 ) ( c d

0 0 ) = r
(

ac ad
bc bd

)
.
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Remember that 0 6= r ∈ Z. We make the final tests. We have g ∈ R if and only if r, L1, and
L2 allow to have the four values rac, rad, rbc, rbd to be the corresponding gij . To see this
we start with eight tests “0 ∈Mij(0) ∩ Lk = ∅?”. After that it is enough to consider those
entries gij where gij 6= 0. But then each gij/r has finitely many divisors e ∈ Z, only. Thus,
a few tests “Mij(e) ∩ Lk = ∅?” suffice to decide g ∈ R. We are done.
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