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Abstract 
Molecular Replacement (MR) is the predominant route to solution of the phase problem in 
macromolecular crystallography. Where the lack of a suitable homologue precludes 
conventional MR, one option is to predict the target structure with bioinformatics. Such 
modelling, in the absence of homologous templates, is called ab initio or de novo modelling. 
Recently the accuracy of such models has improved significantly as a result of the 
availability, in many cases, of residue contact predictions derived from evolutionary 
covariance analysis. Covariance-assisted ab initio models representing structurally 
uncharacterised Pfam families are now available on a large scale in databases, potentially 
representing a valuable and easily accessible supplement to the PDB as a source of search 
models. 
 
Here we deploy the unconventional MR pipeline AMPLE to explore the value of structure 
predictions in the GREMLIN and PconsFam databases. We test whether these deposited 
predictions, processed in various ways, can solve the structures of PDB entries 
subsequently deposited. The results were encouraging: nine of 27 GREMLIN cases solved, 
covering target lengths of 109-355 residues and a resolution range of 1.4-2.9Å, and with 
target-model shared sequence identity as low as 20%. AMPLE’s cluster-and-truncate 
approach proved essential for most successes. For the overall lower quality structure 
predictions in the PconsFam database, remodelling with Rosetta within the AMPLE pipeline 
proved to be the best approach, generating ensemble search models from single structure 
deposits. Finally, we show that AMPLE-obtained search models deriving from Gremlin 
deposits are of sufficiently high quality to be selected by the sequence-independent MR 
pipeline SIMBAD. Overall the results help point the way towards the optimal use of 
expanding ab initio structure prediction databases. 
 

Introduction 
 
Macromolecular crystallography requires a source of phasing information to supplement the 
measured diffraction intensities and thereby solve a structure. Although experimental 
methods are available, the most popular method for obtaining phase information is Molecular 
Replacement (MR). MR involves the positioning of a search model in the asymmetric unit, 
usually by sequential rotation and translation steps, thereby providing approximate phase 
information which, together with the measured diffraction data, allows for the calculation of 
initial electron density maps (Rossmann & Blow, 1962). 
 
Conventional MR typically employs the structure of a homologue of the target protein as a 
search model, often after some manual or automatic editing. The editing is designed to 
remove loops or side chains that sequence comparison shows differ between homologue 
and target, or which are flexible and hence prone to adopt different conformations in the 
known and unknown structures (Schwarzenbacher et al., 2004,Stein, 2008,Bunkoczi & 
Read, 2011,Lebedev et al., 2008). Conventional MR becomes more difficult as the target-
search model relationship becomes more distant and, consequently, the structures tend to 
differ more. Considerable effort is therefore applied to push the boundaries of conventional 
MR by non-trivial treatments of distantly homologous structures  (Bunkoczi & Read, 
2011,Rigden et al., 2018)  (Sammito et al., 2014)  and/or their advantageous superposition 
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to serve as ensemble search models (Leahy et al., 1992,Adams et al., 2010,Keegan et al., 
2018). Ensemble search models work particularly effectively with the maximum likelihood 
scoring approach used by Phaser (McCoy, 2004,McCoy et al., 2007). Selection of 
homologues to serve as search models is typically done by a sequence homology search of 
the Protein Data Bank (PDB; (wwPDB consortium, 2018)) but the imperfect correlation 
between sequence- and structural similarity (eg in protein families that can adopt multiple 
conformations) means that large-scale sequence-independent screens of the PDB or a 
derivative database are also undertaken (Hatti et al., 2016,Stokes-Rees & Sliz, 
2010,Simpkin et al., 2018).  
 
Beyond the boundaries of conventional MR, for very distant homologues or even novel folds, 
unconventional MR approaches have been developed. These exploit other sources of 
search models such as ideal regular secondary structure elements or motifs (Rodriguez et 
al., 2012), recurring tertiary folding patterns (Sammito et al., 2013), or ab initio models (Bibby 
et al., 2012,Keegan et al., 2015,Simkovic et al., 2016). Ab initio models are structure 
predictions that can be obtained based on sequence alone, independent of structural 
information from homologues being present in the PDB. The first broadly successful 
approach, as used by the programs Rosetta (Shortle et al., 1998,Leaver-Fay et al., 2011) 
and Quark (Xu & Zhang, 2012), builds structures from fragments of unrelated proteins using 
Monte Carlo algorithms to sample search space and sophisticated search functions to 
recognise structures that share features of experimental protein structures. Early work on the 
use of ab initio models (Qian et al., 2007,Rigden et al., 2008) inspired the development of 
the pipeline AMPLE using Rosetta in particular for the modelling (Bibby et al., 2012). 
However, its utility was limited by the size of protein that could be accurately modelled - up 
to around 120 residues at the time - and by the poorer quality in general of structures that 
were rich in β-structure, in comparison to α-helical proteins (Bibby et al., 2012).  
 
More recently, the availability of intra- and inter-molecular residue contact predictions, 
derived from evolutionary covariance analysis of deep protein sequence alignments (Morcos 
et al., 2011), has revolutionised structural bioinformatics (de Oliveira & Deane, 2017) with 
many implications for structural biology (Simkovic et al., 2017). It was immediately perceived 
that good quality contact predictions would enable the folding ab initio of much larger 
proteins (Marks et al., 2011). Indeed, reasonably accurate fold predictions were soon 
obtained for globular proteins of >200 residues (Marks et al., 2011) and transmembrane 
helical proteins containing more than 500 residues (Hopf et al., 2012). Several groups use 
distance geometry structure prediction methods implemented in CNS (Brunger et al., 
1998,Brunger, 2007) but others continue with fragment assembly approaches, with 
particularly impressive results obtained by exploiting metagenomics databases to deepen 
the sequence alignments that can be obtained for targets and thereby obtain more accurate 
contact predictions (Ovchinnikov et al., 2017). 
 
With the rapid development of contact-assisted ab initio modelling methods, several groups 
have given thought to producing structure predictions to cover protein sequence space, 
using Pfam (El-Gebali et al., 2018) as a convenient definition of protein families. Prominent 
among these are the GREMLIN database (Ovchinnikov et al., 2017), containing 
representatives of 614 Pfam families resulting from sophisticated iterative modelling with 
Rosetta, and the PconsFam database (Lamb et al., 2019), covering a much larger number of 
protein families - 13,617 - but with more rapidly obtained models. Since these models 
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represent Pfam families, often with thousands of members, they provide a degree of 
structural information for many proteins: for example, the GREMLIN authors calculate that 
their models with predicted TM-scores of >0.65 (where a TM-score > 0.5 is taken as a 
correct fold prediction (Zhang & Skolnick, 2004a,Xu & Zhang, 2010)) cover almost half a 
million sequences in UniRef100 (Suzek et al., 2007). Thus, as models have become 
increasingly accurate, and especially as they are likely to become ever more readily 
accessible at prominent protein sequence databases in the near future, an exploration of 
their potential for MR is timely. Here we show that the MR pipeline AMPLE provides an 
effective way to prepare search models from entries in the GREMLIN and PconsFam 
databases. The former are clustered and truncated directly using the same protocols 
developed for locally produced ab initio models: this solves many more structures than use 
of deposited structure predictions more directly. The single deposited structure predictions in 
the PconsFam database are best dealt with by Rosetta remodelling, that can be 
conveniently done within the AMPLE pipeline, with clustering and truncating of the results to 
compose ensemble search models (Figure 1). A preliminary exploration of the use of 
database-derived search ensembles in the sequence-independent MR pipeline SIMBAD 
(Simpkin et al., 2018) is also presented. 

Methods 

Test set Selection 

Cases were chosen from the GREMLIN database (Ovchinnikov et al., 2017) which contains 
30 structure predictions for each of 614 proteins, each protein representing a Pfam family 
(El-Gebali et al., 2018) that was structurally uncharacterised (i.e. the Pfam database 
recorded no experimentally determined structure in the family entry) at the time of modelling. 
At the time of publication of the database structures had subsequently been determined for 
six families. 30 families that were structurally characterised post-modelling between Jan 
2017 and Dec 2018 were identified by mining the Pfam database for structures related to the 
614 families. This gave a total of 36 (Supplementary Table 1). Of these, 10 were eliminated 
as only having diffraction data to > 3A resolution (one case), or where the quality of the 
model was too poor (nine cases). Poor modelling was defined as resulting in models 
(represented by the first of the 30 structures deposited for each protein) that gave TM-scores 
(Zhang & Skolnick, 2004a), normalised either to the target structure or to the model, that 
were both <0.5: such values indicate that the overall fold has not been correctly modelled 
(Xu & Zhang, 2010). We asked whether the remaining 26 cases (Table 1) could have been 
solved using the results of the modelling deposited in the databases. 
 
The PconsFam database (Lamb et al., 2019) contains single structure predictions for 13,617 
proteins, again each representing a Pfam family. As well as addressing novel folds, it 
contains models for families that are structurally characterised. For 22 of the 26 cases above 
models were available from the PconsFam database. However, only six of the 22 passed the 
TM-score >0.5 criterion and one of these (4xb6) was not attempted since the models were 
rather poor (TM-score of 0.55) and eight copies of the target protein were present in the 
asymmetric unit. Since the number of suitable PconsFam models was rather small, 
experiments were also undertaken with selected other families for which it was known that 
high quality models were available in the PconsFam database. These were the Ras family 
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(PF00071) where the model was used to try to solve the structure deposited in the PDB as 
1yzq (1.78 Å resolution) and the DUF305 family (PF03713; 5ffa; 1.50 Å) 
 

Search model generation 

 
For the 26 GREMLIN test cases, the 30 structure predictions deposited for each were used 
as direct input to AMPLE 1.4.6 in CCP4 7.0.68  (Winn et al., 2011) . The current default 
processing options were used for search model composition, namely for each of the top 10 
SPICKER (Zhang & Skolnick, 2004b) clusters, truncate progressively in 20 steps from 100% 
(untruncated) down to around 5% remaining, subcluster (Bibby et al., 2012) using 1 or 3Å 
radii and remove all side chains to leave polyalanine search models. Models are truncated 
into bins as close to the desired percentage intervals as possible, but as protein sequences 
are discrete entities of variable lengths they are not always evenly divisible into the desired 
bins. As the actual size of the truncation bins is reported, the size of the bins may vary a little 
from the ideal percentage values. 
 
Two additional attempts were made for comparison: all 30 structure predictions were 
presented directly to Phaser as an ensemble; and entries in the separate database of single 
‘final models’ were processed in AMPLE single structure mode (Rigden et al., 2018) using 
VoroMQA (Olechnovic & Venclovas, 2017) to provide per-residue quality scores which drove 
progressive truncation over a set of 20 thresholds. Retention of side chains or editing to 
polyalanine were specified so that 40 search models were derived for each case.  
 
Since the PconsFam database contains only single models per Pfam family, three 
approaches were tried. Firstly, truncation of the single models in AMPLE was done using its 
single structure mode as above using VoroMQA server protein structure quality predictions. 
Secondly, Rosetta remodelling was done using the PconsFam model as a basis. This 
approach was previously employed with NMR ensembles and proved to improve 
performance. Using the -nmr_remodel flag causes AMPLE to idealise the input structure, 
here the PconsFam model, and then remodel the result, using a provided target sequence, 
into a number of new structures, sampling conformational space in a fragment-dependent 
fashion. Fragment libraries were obtained from the Robetta server (Kim et al., 2004) with the 
exclude homologues option selected in order that the remodelling was not influenced by any 
knowledge of the target structure or homologues. Here, 100 structures were derived from 
each PconsFam model and given to AMPLE for clustering and truncation as above. Thirdly, 
for selected targets, the PconsFam single structures were transformed into ensembles using 
CONCOORD (de Groot et al., 1997) as previously (Rigden et al., 2018). Briefly, 
CONCOORD extracts restraints from a given structure and then uses distance geometry 
methods to build a set of variant structures that differ from the original but which obey the 
derived restraints. By this procedure, less well-packed regions such as loops exhibit 
structural divergence in resulting derivative structures and hence, by the AMPLE algorithm, 
are subject to truncation. 

Molecular Replacement 
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Within the AMPLE pipeline, MrBUMP (Keegan et al., 2018) trialled the search models using 
Phaser 2.8.2 (McCoy et al., 2007,Read & McCoy, 2016). The default AMPLE estimated 
rmsd error of 0.1 Å was used but this value was adjusted internally by Phaser where 
inconsistent with the internal structural variability of the ensemble. Success was judged as a 
placement that yielded a map Correlation Coefficient (CC) of 0.25 or higher using 
phenix.get_map_cc_mtz_pdb (Adams et al., 2010). All of these cases also produced a CC of 
>25% upon main chain tracing using SHELXE 2016 (Thorn & Sheldrick, 2013) with the 
single exception of 5uw2, for which diffraction data to only 2.9 Å were available, which 
produced a marginally lower score of 24.8. All these solutions could be refined to Rfree 
<0.45, using either just the BUCCANEER (Cowtan, 2006) plus REFMAC (Murshudov et al., 
2011) protocol built into AMPLE’s default operation or, where necessary (for 5oon and 5uw2) 
by directly refining the PHASER placement with REFMAC (Murshudov et al., 2011), or with 
manual model building.  For comparison we attempted solution of all 27 using AMPLE’s ideal 
helix mode with a Phaser time limit per search model of 24 hours.  
 

SIMBAD 

 
SIMBAD is a MR pipeline that uses the rotation function to screen large databases of 
structures (Simpkin et al., 2018). SIMBAD has recently been modified to run Phaser’s 
likelihood-enhanced fast rotation function (Simpkin et al., 2019). This has increased the 
sensitivity of the pipeline and also allowed single search models to be replaced with 
ensembles. The MoRDa (Vagin & Lebedev, 2015) ensemble database that SIMBAD is 
typically run against, was modified to include AMPLE derived ensembles made from the 
models in the GREMLIN database. Initial experiments suggested that the rotation function 
was not sensitive enough to pick up these poor models, so SIMBAD was modified to also 
run Phaser’s likelihood enhanced fast translation search (McCoy et al., 2005) but only on the 
best orientation identified in the rotation function. In this work the top 200 solutions by 
translation score were taken forward for MR and refinement as opposed to the top 200 
solutions by rotation score in previously published work.  
 

Results and Discussion 

Using models from the GREMLIN database 

The 27 cases studied include many cases that are challenging in terms of the relatively high 
structural  deviations between model and target and/or the complex and sometimes 
heterooligomeric composition of the asymmetric unit: only eight cases contained a single 
chain in the asymmetric unit. When the GREMLIN structure predictions, each comprising 30 
models of a given protein representing a particular Pfam family, were supplied to AMPLE for 
its default clustering and truncation approach, nine of the 27 cases were solved (Table 1).  
These nine cases include four transmembrane helical proteins, one globular helical protein 
and four  mixed fold proteins. Thus successes spanned all fold classes but the numbers are 
too small to suggest whether certain types of protein may be particularly (un)favourable. The 
ultimately successful structure predictions overall can be considered of medium quality, 
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sharing rmsd 1.5 to 2.8Å on Calpha atoms (TM-scores of 0.63-0.84) with the targets. The 
solved cases cover a range of lengths of 112-355 residues and a resolution range of 1.35-
2.85Å.  
 
In most cases, the modelled member of a given Pfam family was closely related (>90% 
shared sequence identity) to the member ultimately structurally characterised. However, 
there were three exceptions. The first was 5cuo, the crystal structure of Rhodopseudomonas 
palustris PduL which was solved with models of phosphate propanoyltransferase from 
Bacillus megaterium (Pfam: PF06130, Uniprot: D5DKA5) with which it shared only 49% 
sequence identity. The second was 5xj5, the structure of Aquifex aeolicus glycerol-3-
phosphate acyltransferase where the model of Bacillus subtilis (Pfam: PF02660, Uniprot: 
Q45064), shared only 36% sequence identity with the target.  Most remarkable was 5mlz, 
the structure of dolichyl phosphate mannose synthase, where the model of an 
uncharacterised GtrA-family protein from Bacillus subtilis (Pfam: PF04138, Uniprot: 
O31821), shared only 20% sequence identity with the target. When considering these 
successes with relatively distant homologues, it is worth remembering that the covariance 
signal, which strongly influences the modelling, will be strongest for features shared 
throughout the superfamily. This may well help produce models that serve to solve targets 
from across a superfamily. However, it is also true that the GREMLIN structure predictions 
are derived from an all-atom, fully sequence-aware protocol that would be expected to give 
authentically different predictions for homologous proteins. As such, it remains encouraging 
that structure predictions can solve quite distantly homologous targets. In the three cases 
mentioned here the secondary structure of the GREMLIN prediction matched that of the 
target quite well (Supp figs 1-3).   
 
As expected, cases with multiple chains in the asymmetric unit solved less often, but AMPLE 
succeeded with 5caj (two chains) and 5uw2 (three chains). Since some of the targets 
contained multiple domains, the search models sometimes represented only a portion of the 
target. Such was the case with 5mlz where the available model was 123 residues long but 
solved a structure of 352 residues. 
 
The ease of solution of the nine cases, as expressed as the proportion of search model 
ensembles that succeeded, varies widely. For 5edl, 132 of 170 search models (78%) 
succeeded while for 5caj the figures were six of 132 (4.5%). 5edl solved with search models 
containing 11-100% of the starting model residues while others solved over a narrower 
range of search model sizes - 27-41% for 5mlz, for example.The most truncated successful 
search model contained 7% of the starting structure (19 residues) of the 5azb model. This 
target is the structure of E. coli lipoprotein diacylglyceryl transferase, an integral membrane 
enzyme, 300 residues long, determined to a resolution of 1.6 Å. The 7% successful search 
model comprises an antiparallel pair of helices. Successful search models for a given target 
tended to derive from different clusters but cluster 1, containing the largest number of the 
input 30 models, was not always successful: 5cuo, for example, only solved with search 
models deriving from clusters 2 and 3. Overall, the results suggest that AMPLE’s cluster-
and-truncate approach, intensively sampling many non-trivial edits of ensembles deriving 
from the deposited models, is an appropriate strategy to deal with these structures. 
 
The need to use AMPLE’s automated processing and sampling for best performance is 
illustrated by the poorer performance of two simple baseline approaches. When the top 
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model for each protein, provided separately to the ensembles in the GREMLIN database, 
was used, using VoroMQA quality measurements to produce a series of truncated 
derivatives, only two cases were solved, 5mlz and 5edl. Secondly, when the 30 structures 
were presented as an ensemble to Phaser directly, only one case could solve. The 
successful case was PDB code 5edl, where models in the ensemble were between 1.59 Å 
and 2.30 Å rmsd (TM-scores 0.4-0.87) from the true structure.  
 
The successes presented undoubtedly cover targets that could potentially have been solved 
alternatively using fragment-based approaches (Rodriguez et al., 2009,Jenkins, 2018). 
Although the simple ideal helix mode in AMPLE performed relatively poorly, only solving 
three, more sophisticated approaches might well do better, particularly for cases with higher-
resolution diffraction data, helix-rich composition and/or small asymmetric unit contents. The 
more challenging cases to be solved therefore include 5cuo, a largely beta structure 
containing two ~200 residue chains;  5uw2 with diffraction only to 2.9 Å resolution; and 5caj, 
where diffraction data to 1.65A resolution were available but the asymmetric unit contained 
510 residues.  Fig 2 illustrates that the most successful search models in these three cases 
are only moderately truncated down to 54, 70 or 80% of the starting structures, indicating 
that correct overall fold prediction is important (see also Supp Figs 4-6). In contrast, the best-
performing search model for 5azb (Fig 2) contained only 12% of the starting structure, and 
truncations to below 33% were required for success (Supp Fig 7). This observation 
demonstrates the importance of AMPLE’s sampling of truncations over a wide range. 
 

Using models from the PconsFam database 

Applying the same TM-score threshold of 0.5, indicating a broadly correct predicted fold (Xu 
& Zhang, 2010), only five of the 26 families considered above were represented by 
PconsFam structure predictions that were good enough to take to MR trials. PconsFam 
contains only single structure predictions for representative proteins of Pfam domains. Three 
different strategies were therefore employed: truncation of that single structure according to 
local model quality prediction from the VoroMQA server, generation of ensembles using the 
distance geometry method CONCOORD and Rosetta remodelling using the PconsFam 
deposit as a starting point.  
 
The simplest approach, editing a single model according to per-residue predicted quality 
scores, failed to solve any of the five targets. Rosetta remodelling was successful with two of 
the five, 5xj5 and 5azb, each transmembrane helical proteins. 5xj5 solved with two search 
models out of 49, being truncated ensembles from the first cluster containing 23 or 41 
residues. The SHELXE traces were automatically rebuilt using BUCCANEER within the 
AMPLE pipeline to final Rfree values of 28-29%. The larger search model, c1_23_r3_polyAla 
(where c1 means deriving from cluster 1, 23 means 23% of the initial model remains, r3 
refers to a 3Å subclustering radius, and polyAla refers to the side chain treatment) contains 
most of the C-terminal 3-helical subdomain of the target structure which is more accurately 
predicted (Figure 3). 5azb was solved by a single search model from the 200 produced. It 
was derived from the 7th cluster and truncated until it contained 57 residues, mainly 
composing portions of four of the transmembrane helices. Again, automated rebuilding 
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produced an Rfree of 29%. Neither of these cases was solved by the simpler and somewhat 
less time-consuming approach of ensemble generation with CONCOORD. 
 
In order to further explore approaches that could convert PconsFam models into successful 
search models, some trials were done with Ras protein (Pfam accession PF00071; PDB 
code 1yzq) and DUF305 (PF03713; 5ffa). For these, high-quality structure predictions were 
available with TM-scores of 0.85 and 0.76 respectively and both solved using Rosetta 
remodelling. The Ras structure was solved with 29 from 175 search model ensembles 
generated, deriving from clusters 1, 2 3 or 7, containing 53-170 residues (170 residues being 
the full size of the model), and tracing and refining to Rfree values as low as 33% within the 
AMPLE pipeline. The DUF305 structure solved with 18 of 175 search model ensembles. 
These were derived from clusters 2, 3, 6 or 7, contained between 79 and 143 residues and 
automatically traced and refined to Rfrees as low as 33% (Table 2). 
 
Interestingly, CONCOORD-derived ensembles could solve the Ras structure but not the 
DUF305 case. In the successful run, seven search model ensembles out of a total of 400 
generated were successful, deriving from clusters 5, 7 8 or 9 and containined 50-75% of the 
original model, corresponding to 79-119 residues.  Although deriving from different clusters, 
the successful search models were similar in having discarded less accurately modelled 
loops but retaining the core fold of well-captured secondary structure elements (Figure 4). 
 
Several factors could be contributing to the relative success of the Rosetta remodelling 
approach as compared to the single PconsFam model. Most obviously, remodelling the 
target sequence could take the structure closer to that of the target, especially in cases 
where the sequence identity between the target and the PconsFam deposit is low. This 
would combine with the use of a sophisticated energy function in Rosetta (Alford et al., 
2017), rather than the simpler function used by PconsFam’s structure building algorithm 
CONFOLD (Adhikari et al., 2015), to potentially allow for more accurate modelling i.e. the 
PconsFam structure might be ‘refined’ by the Rosetta step. Secondly, modelling based on 
covariance information guided distance geometry methods, as in PconsFam, can often lead 
to results in which local backbone geometry is poor. Potentially the backbone geomtry could 
be improved by running through Rosetta’s fragment-based remodelling. Finally, as is well-
established (Qian et al., 2007,Rigden et al., 2008), the comparison across the multiple 
structures resulting from remodelling, allows the inference of quality enabling truncation to 
more accurately modelled core regions. Supplementary Table 2 shows the overall accuracy 
and stereochemical quality of the PconsFam models and the Rosetta structures derived from 
them. 
 
The results confirm a clear and consistent improvement in backbone geometry as measured 
by Ramachandran plot statistics and an overall G-factor calculated on backbone dihedrals 
with positive values indicating better quality. However, these suggest that Rosetta does not 
generally act to refine the PconsFam models: in fact, in three of the four cases the average 
correctness of the models, measured as TM-scores, is worse than for the PconsFam starting 
model. Where the starting structure is poorer quality, it seems that Rosetta fragment-based 
conformational exploration can effectively unfold the structure. Options to try to prevent this 
in the future could include the imposition of evolutionary covariance derived contact 
predictions or more generalised restraints to maintain the structure in the vicinity of the 
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starting model. Nevertheless, the AMPLE protocol, being based on clustering, is tolerant of 
some unfolded structures among the input set.  
 
Overall the results suggest that simple editing of the single structure PconsFam models is 
unlikely to transform them into successful search models. However, where the overall fold 
has been correctly captured, Rosetta remodelling with subsequent clustering and truncating 
to generate ensembles, can be effective. This approach clearly outperforms CONCOORD 
for ensemble generation. 

SIMBAD and search models derived from databases 

SIMBAD is a sequence-independent MR pipeline that attempts to solve structures using a 
lattice search, a search of a curated database of known contaminant structures and/or a 
large-scale search of domain structures (around 120,000) from the MoRDa database. Since 
recent developments to SIMBAD (Simpkin et al., 2019) have improved its sensitivity - by 
using Phaser in place of the original AMoRe and through the use of ensemble search 
models - we tested whether truncated search model ensembles derived from the GREMLIN 
database that succeeded in AMPLE could succeed in SIMBAD too. 
 
Success in the large scale MorDa screen can arise in two ways in SIMBAD. First, if a tested 
search model yields a Phaser RFZ high enough (>7) to generally indicate an accurate 
rotation then it is immediately trialled in a full MR protocol the success of which (R-values 
below 0.45 and/or both LLG>120 and TFZ>8) would lead to termination of the SIMBAD 
without testing any remaining search models. Alternatively, if no search model reaches the 
RFZ threshold, then at the end of the rotation function screen of all search models the 200 
that have the highest RFZ scores are trialled for full MR. 
 
The GREMLIN structure predictions are of moderate accuracy at best and require significant 
processing to succeed. Therefore, we first assessed whether they would score RFZ values 
likely to lead to their selection in the top 200 in a full MorDa+GREMLIN run. Supp Table 3 
shows the range of RFZ values obtained for the range of truncated search models produced 
by AMPLE for cases that successfully solved. In general the results were somewhat 
disappointing: no search model ensemble achieved an RFZ greater than 6.11. Although full 
SIMBAD runs were not done, experience suggests that these values are unlikely to place the 
search model ensembles, even those that ultimately succeeded in AMPLE, within the top 
200. As such, they would never proceed to the full MR step. 
 
In a bid to improve the sensitivity of the SIMBAD pipeline further, we therefore experimented 
with the addition of the Phaser translation function on just the top ranked orientation in the 
rotation search. We reasoned that placing the search model would improve the signal to 
noise from good search models. Preliminary results suggested that this worked well: for 
example, search model ensembles for 5xj5 gave LLG/TFZ scores of up to 90.35/7.68 while 
ensembles for 5edl gave LLG/TFZ scores as high as 147.32/13.05. These values are 
indicative of success. 
 
A version of SIMBAD in which the database, in this case MoRDa supplemented by 
GREMLIN-derived ensembles, is screened using a rotation function in combination with the 
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rapid translation function was then produced. As a proof of principle this was tested on 5edl 
due to the high TFZ scores observed. This gave a clear success with six AMPLE ensembles 
being reported in the top 200 (c1_74_r3_polyala, c1_t89_r3_polyala, c1_t74_r1_polyala, 
c1_t79_r1_polyala, c1_t84_r3_polyala, c1_t100_r3_polyala) with the best example being 
shown in Figure 5.  
 
Naturally, the additional translation function can increase the runtime of SIMBAD but this will 
be compensated for, to some extent, by more frequent early termination due to the improved 
sensitivity with which good search models can be selected. 
 

Conclusions 
Databases of protein homology models have a long history (Kiefer et al., 2009,Pieper et al., 
2014,Guex & Peitsch, 1997), more recently under the aegis of the Protein Model Portal 
(Haas et al., 2013), and homology models have been used for MR e.g. (Horsefield et al., 
2008,Jung et al., 2011). Nevertheless, we are unaware of cases where a homology model, 
much less an ab initio model, downloaded from a database has been used as a search 
model. These new results demonstrate that recently emerged databases of ab initio models, 
representing Pfam families with structures that are very different from anything deposited in 
the PDB, already contain information that can solve structures of proteins from those families 
by MR. The success of the MR in AMPLE should be considered in the context of the quality 
of the models available in the GREMLIN and PconsFam databases. We could collect 36 
cases representing Pfam families that were structurally characterised at the time of their 
GREMLIN modelling but subsequently deposited in the PDB. Of these 26 had GREMLIN 
models of the right fold (TM-score >0.5) while the figure was only five for the PconsFam 
database. This observation can be related to the more sophisticated modelling protocol 
behind the GREMLIN database and its exploitation of metagenomic data to improve the 
quality of the contact predictions driving the modelling (Ovchinnikov et al., 2017). However, 
within those different sets the success by MR was actually comparable - 9/26 with 
GREMLIN-derived search models, two from five with PconsFam. GREMLIN predictions with 
TM-scores as low as 0.64 could succeed while the two successful PconsFam cases in the 
set of five were based on structure predictions with TM-scores of 0.80 and 0.69: for the 
additional PconsFam cases (Ras and DUF305) these values were 0.85 and 0.76. Overall, 
the results suggest that models should score somewhat better than the correct fold criterion 
of TM-score >0.5 in order to succeed.The current advantage of the PconsFam databases is 
its coverage, but the simpler modelling protocol is likely to mean that its predictions are 
poorer quality on average than the GREMLIN contents. A user may currently estimate the 
likely model quality of a PconsFam model by looking at its Pcons (Lundstrom et al., 2001), or 
ProQ3D (Uziela et al., 2017) model quality scores, or the underlying alignment depth 
(number of effective sequences) upon which the contact prediction was done. 
 
The requirement of the Rosetta remodelling approach for success with some PconsFam 
models might invite the comment that a user could simply generate her own models rather 
than work with those from the database. However, databases like PconsFam and GREMLIN 
contain models derived using state-of-the-art contact predictions and, in the latter case, 
complex, bespoke and iterative modelling pipelines. For a crystallographer to recapitulate 
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these approaches, within or without AMPLE, is certainly more demanding in computational 
skills and infrastructure than the comparatively rapid (around 80 min on 10 cores) 
remodelling approach outlined here.   
 
In summary, these results demonstrate that ab initio structure predictions deposited in online 
databases are already of sufficient quality to form the basis of successful MR search models. 
Some of the targets addressed  here could undoubtedly be alternatively solved with 
sophisticated fragment-based methods (Rodriguez et al., 2009,Jenkins, 2018), but AMPLE 
conveniently provides a unifying framework to attempt solution of such cases (typically 
higher resolution, higher helical content) as well as harder cases (Fig 2) where high quality 
modelling is key and moderately edited search models containing almost entire folds 
succeed. However, the evidence currently suggests that non-trivial processing is required for 
optimal performance, to transform single models into ensembles and to eliminate inaccurate 
regions from ensembles such that better-modelled core regions remain. These ab initio 
models are calculated using covariance-driven approaches, and represent sometimes large 
families of structurally uncharacterised proteins.  The GREMLIN database has much smaller 
coverage at the time of writing, but there are plans to liaise with the Pfam database (El-
Gebali et al., 2018) and use the latter as a means to disseminate models that cover more of 
protein sequence space. Such models will be periodically recalculated as and when 
expansion of sequence databases allowed for improved contact predictions and hence 
better modelling (R Finn, personal communication). These plans run alongside similar efforts 
to collect homology models from structural bioinformatics resources such as Genome3D 
(Lewis et al., 2013) and make them available within the InterPro database (Mitchell et al., 
2019) (R Finn, personal communication). In the near future these databases will facilitate 
access to increasingly available and high quality models, be they ab initio- or homology-
based. As such, they will increasingly be viewed as a valuable supplement to the PDB as 
sources of MR search models. 
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Figure legends 
 
Figure 1) Flowchart showing the methods used to treat search models obtained from 
GREMLIN and PconsFam prior to AMPLE/AMPLE single model mode. The relative success 
of each method is represented in green, orange or red where green represents a more 
successful method and red represents a less successful one.  
 
Figure 2) a) The 30 models obtained from the GREMLIN database for PF01790 (magenta) 
aligned with the crystalised structure, 5azb (rainbow from blue at the N-terminus to red at the 
C-terminus). b) The best-performing AMPLE derived ensemble (magenta), derived by 
truncating cluster 1 down to 12% (33 residues), aligned with the crystalised structure, 5azb 
(rainbow). c) The 30 models obtained from the GREMLIN database for PF02470 (magenta) 
aligned with the crystal structure, 5uw2 (rainbow). d) The best-performing AMPLE derived 
ensemble (magenta), derived by truncating cluster 2 down to 80% (96 residues), aligned 
with the crystal structure, 5uw2 (rainbow). e) The 30 models obtained from the GREMLIN 
database for PF03883 (magenta) aligned with the crystalised structure, 5caj (rainbow). f) 
The best-performing AMPLE derived ensemble (magenta), derived by truncating cluster 1 
down to 54% (137 residues), aligned with the crystal structure, 5caj (rainbow). g) The 30 
models obtained from the GREMLIN database for PF06130 (magenta) aligned with the 
crystalised structure, 5cuo (rainbow). h) The best-performing AMPLE derived ensemble 
(magenta), derived by truncating cluster 3 down to 70% (138 residues),  aligned with the 
crystal structure, 5cuo (rainbow). 
 
Figure 3) a) PconsFam model for PF02660 (magenta) aligned with the crystalised structure, 
5jx5 (rainbow). b) An untruncated AMPLE ensemble (magenta ribbon), following Rosetta 
remodelling, aligned with the crystalised structure, 5jx5 (rainbow). c) The truncated AMPLE 
ensemble (c1_23_r3_polyAla) obtained from the Rosetta remodelled versions of the 
PconsFam model for PF02660 (magenta) aligned with the crystalised structure, 5jx5 
(rainbow). 
 
Figure 4) a) PconsFam model for PF00071 (magenta) aligned with the crystalised structure, 
1yzq (rainbow). b) An untruncated AMPLE ensemble (magenta ribbon), following 
CONCOORD, aligned with the crystalised structure, 1yzq (rainbow). c) The AMPLE 
ensemble obtained from the CONCOORD derivatives for PF00071 (magenta) aligned with 
the crystalised structure, 1yzq (rainbow). 
 
Figure 5) Cross-eyed stereo view of the AMPLE ensemble (c1_t74_r3_polyala) which gave 
the best score in the SIMBAD search for PF09819 (magenta) aligned with the crystalised 
structure, 5edl (rainbow from blue at the N-terminus to red at the C-terminus). 
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