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Abstract

Automatically generating the descriptions of an image, i.e., image captioning,

is an important and fundamental topic in artificial intelligence, which bridges

the gap between computer vision and natural language processing. Based on

the successful deep learning models, especially the CNN model and Long Short

Term Memories (LSTMs) with attention mechanism, we propose a hierarchi-

cal attention model by utilizing both of the global CNN features and the local

object features for more effective feature representation and reasoning in im-

age captioning. The generative adversarial network (GAN), together with a

reinforcement learning (RL) algorithm, is applied to solve the exposure bias

problem in RNN-based supervised training for language problems. In addition,

through the automatic measurement of the consistency between the generated

caption and the image content by the discriminator in the GAN framework and
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RL optimization, we make the finally generated sentences more accurate and

natural. Comprehensive experiments show the improved performance of the hi-

erarchical attention mechanism and the effectiveness of our RL-based optimiza-

tion method. Our model achieves state-of-the-art results on several important

metrics in the MSCOCO dataset, using only greedy inference.

Keywords: Image captioning, Hierarchical attention mechanism, Generative

adversarial network, Reinforcement learning, Policy gradient

1. Introduction1

Naturalistic description of an image is one of the primary goals of computer2

vision, which has recently received much attention in the field of artificial intel-3

ligence recently. It is a high-level task and much more complicated than some4

fundamental recognition tasks, e.g., image classification [1] [2] [3] [4], image re-5

trieval [5] [6] [7], object detection and recognition [8] [9] [10]. This requires the6

system to comprehensively understand the content of an image and bridge the7

gap between the image and the natural language. Automatically generating8

image descriptions is useful in multimedia retrieval, and image understanding.9

Some pioneering research has been carried out in generating image descrip-10

tions [11] [12]. However, as pointed out in [13], most of these models often rely11

on hard-coded visual concepts and sentence templates, which limits their gen-12

eralization capability. Recently, with the rapid development of deep learning in13

image recognition and natural language processing, the current trend of image14

captioning approaches [14] is to follow the encoder-decoder framework, which15

shares the similarity with that in neural machine translation [15]. Most of these16

approaches represented the image as a single feature vector from the top layer17

of a pre-trained convolutional neural network (CNN) and cascaded recurrent18
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neural network (RNN) to generate languages.19

In fact, the tasks like image captioning and machine translation can be con-20

sidered as a structured output problem where the task is to map the input to an21

output that possesses its own structure, as stated in [16]. An inherent challenge22

in these tasks is the structure of the output is closely related to the structure of23

the input. Hence, a key problem in these tasks is alignment [16]. Take neural24

machine translation for example, [17] trained a neural model to softly align the25

output to the input for machine translation. Subsequent research [18] applied26

the visual attention model to address this problem in image captioning, with27

much improvement. The visual attention mechanism is to dynamically select28

the relevant receptive fields in the CNN features to facilitate the image descrip-29

tion generation, which, in other words, is to align the output words to spatial30

regions of the source image. In this paper, we also employ the visual attention31

mechanism for image captioning.32

Nevertheless, natural language often consists of very meticulous descriptions,33

which correspond to the fine-grained objects of an image. As pointed out by [19],34

there are certain limitations of the most existing neural model-based schemes35

due to the mere use of the global feature representation in the image level.36

Some of the fine-grained objects might not to be recognized by only relying37

on the global image features. In this paper, we propose to use a pre-trained38

image detection model, i.e., Faster RCNN [10], to retrieve the fine-grained image39

features from the top detected objects. These fine-grained object features, are40

able to provide complementary information for the global image representation,41

which will be proved in the experiments. In terms of the model structure, the42

object features are also processed by a visual attention mechanism, and are43

3
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added to the original model to form a hierarchical feature representation and44

hence it is able to generate more meticulous descriptions.45

In addition to the improvement of the image feature representation, we also46

consider to improve the current language model, which is widely used in neural47

machine translation and image captioning. An issue with most of the previous48

language model is the training framework, namely, the RNN using Maximum49

Likelihood Estimation (MLE) to generate image descriptions. As pointed out50

in [20], the MLE approaches suffer from the so-called exposure bias in the in-51

ference stage: the model generates a sequence iteratively and predicts the next52

token based on the previously predicted ones that may never be observed in53

the training data. In image description generation, the MLE also suffers from54

a problem that the generated languages do not correlate well with a human55

assessment of quality [21].56

Instead of only relying on the MLE, an alternative scheme is the generative57

adversarial network (GAN) [22]. GAN was first proposed to generate realistic58

images. The GAN learns generative models without explicitly defining a loss59

function from the target distribution. Instead, GAN introduces a discriminator60

network which tries to differentiate real samples from generated samples. The61

whole network is trained using an adversarial training strategy. One can subse-62

quently build a discriminator to judge how realistic are the samples generated63

by the description generator. The role of the caption generator, in this model,64

is similar with that of the the generator in the conditional GAN [23], which is65

conditioned on the image features.66

However, language generation is a discrete process. Directly providing the67

discrete samples as inputs to the discriminator does not allow the gradients to be68

4
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back propagated through them. The reinforcement learning (RL) [24] framework69

provides a solution to estimate the gradients of the discontinuous units. The RL70

framework, when dealing with sequence generation, has the problem of lacking71

the intermediate reward, as discussed in [25]. The reward value can only be72

obtained when the whole sequence is generated. This is not suitable since what73

we want is the long-term reward of each intermediately generated token, so the74

whole sequence better optimized.75

In the proposed scheme, the discriminator takes into account not only the76

differences between the generated captions and the reference captions but also77

the consistencies between captions and image features. Through the evaluation78

of the discriminator, the networks can better compensate for some unrealistic79

captions which might be generated under the MLE training. However, to deal80

with the discreteness of language, we treat the image captioning generator as an81

agent of RL. The feedbacks from the discriminator are considered as the rewards82

for the generator. To update the parameters of the image description genera-83

tor in this framework, we consider the generator as a stochastic parameterized84

policy. We train the policy network using Policy Gradient [26], which natu-85

rally solve the differential difficulties in conventional GAN. Also, to solve the86

problem of lacking intermediate rewards, we borrow the idea from the famous87

“AlphaGo” program [27] in which a Monte Carlo roll-out strategy is applied to88

sample the expected long-term reward for an intermediate move. If we consider89

the sequence token generation as the the action to be taken in RL, we can apply90

a similar Monte Carlo roll-out strategy to obtain the intermediate rewards. [25]91

has successfully applied the Monte Carlo roll-out in sequence generation. In92

this paper, we use a similar sampling method to deal with intermediate rewards93

5
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during the process of caption generation.94

To summarize, our contribution in this paper is threefold:95

• We propose a hierarchical attention mechanism to reason on the global96

features and the local object features for image captioning.97

• The policy gradient algorithm combined with the GAN is proposed for98

the training and optimization of the language model, with improvements99

over MLE training scheme.100

• Through comprehensive experiments, we validate the proposed algorithm101

and comparable results with current state-of-the-art methods are achieved102

on the MSCOCO dataset.103

2. Related Work104

2.1. Deep Model-based Image Captioning105

Promoted by the recent success of deep learning network in image recognition106

tasks and machine translation, the research on generating image description107

or image captioning has made remarkable progress [28] [13] [12] [29] [14] [30].108

As mentioned above, most of the previously proposed approaches consider the109

image description generation as a translation process, mainly by borrowing the110

idea of the encoder-decoder framework [31] from neural machine translation [15].111

Generally, this paradigm considers a deep CNN model as the image encoder,112

which maps the image into a static feature representation, and a RNN as a113

decoder to decode this static representations to an image description. The114

whole framework is trained using supervised learning under MLE. The generated115

description should be grammatically correct and match the content of the image.116

6
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Specifically, Karpathy et al. [13] proposed an alignment model through a117

multi-modal embedding layer. This model is able to align parts of a description118

with the corresponding regions of the image, which attracts significant atten-119

tion. Jia et al. [29] proposed a variation of LSTM, called gLSTM, for the image120

captioning task to mainly tackle the problem of losing track of the image con-121

tent. This model includes the semantic information along with the whole image122

as inputs to generate captions. Donahue et al. [30] applied both of the convolu-123

tional layers and recurrent layers to form a Long-term Recurrent Convolutional124

Network (LRCN) for visual recognition and description.125

Bahdanau et al. [17] pointed out that a potential problem in this approach126

is that the model should compress all the necessary information of a source127

sentence into a fixed-length representation. This may make it difficult for the128

neural network to cope with long sentences. The static feature representation129

in the encoder-decoder framework, for both of machine translation and image130

captioning, cannot automatically retrieve relevant information from the source131

and thus at last influence the final performance. In neural machine translation,132

Bahdanau et al. [17] proposed a kind of soft attention mechanism for machine133

translation, which enables the decoder to automatically focus on the relevant134

parts of the source sentence. In computer vision, the attention mechanism135

has long been the focus of much research [17] [32] [33] since human perception136

does not tend to process a whole scene in its entirety at once but applies some137

mechanisms to selectively focus on the information needed. A comprehensive138

study for hard attention bound with reinforcement learning and soft attention139

for the task of image captioning was published by Xu et al. [18].140

Yao et al. [34] tackled the video captioning task through capturing global141

7
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temporal structures among video frames with a temporal attention mechanism,142

which makes the model dynamically focus on the key frames that are more rel-143

evant with the predicted word. Attention Models (ATT) developed by You et144

al. [35] first extracted semantic concept proposals and fused them with RNNs145

into hidden states and outputs. This method used K-NN, multi-label ranking to146

extract semantic concepts or attributes and fused these concepts into one vector147

using an attention mechanism. Similarly, Yao et al. [36] embedded attributes148

with image features into a RNN with various methods to boost the image cap-149

tioning performance. Recently, Chen et al. [37] proposed to combine the spatial150

attention and the channel-wise attention mechanism for image captioning, with151

improved results. Alternatively, Li et al. [19] proposed a global-local attention152

mechanism to include local features extracted from the top detected objects153

from a pre-trained object detector. Inspired by [19], we also include the local154

features from top detected objects. However, we build a hierarchical model155

whilst they treated local and global features equivalently.156

2.2. Policy Gradient Optimization for Image Captioning157

Another approach to boost the performance of language tasks is to com-158

pensate the so-called exposure bias problem in RNN-based MLE learning. As159

pointed out in [38], RNNs are trained by MLE, which essentially minimized the160

KL-divergence between the distribution of target sequences and the distribution161

defined by the model. This KL-divergence objective tends to favour a model162

that overestimates its smoothness, which can lead to unrealistic samples [39].163

In order to tackle the problems and generate more realistic image descrip-164

tions, some researches directly use evaluation metrics such as BLEU [40], ME-165

TEOR [41] and ROUGE [42] as the reward signal and build the model under166

8
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the RL framework. For instance, Ranzato et al. [43] is the first research us-167

ing the policy gradient algorithm in a RNN-based sequence model, in which a168

REINFORCE-based approach was used to calculate the sentence-level reward169

and a Monte-Carlo technique was employed for training. Liu et al. [44] studied170

several linear combinations of the evaluation metrics and proposed to use a lin-171

ear combination of SPICE [45] and CIDEr [46] as the reward signal and apply172

a policy gradient algorithm to optimize the model, with improved results. This173

research used a Monte-Carlo roll-out strategy to obtain the intermediate re-174

ward during the process of description generation. More recently, Bahdanau et175

al. [47], instead of sentence-level reward in the training, applied the token-level176

reward in temporal difference training for sequence generation.177

As discussed previously, the GAN [22] estimates a difference measure using178

a binary classifier, called a discriminator, to discriminate between the target179

samples and generated samples. GANs rely on back-propagating these differ-180

ence estimates through the generated samples to train the generator to min-181

imize these differences. Hence, the whole network in GAN is trained in an182

adversarial way. The GAN was originally proposed to generate naturalist im-183

ages [22] [23] [48] [49]. Directly applying a GAN for the language problem is184

impossible since sequences are composed of discrete elements in many applica-185

tion areas such as machine translation and image captioning.186

A possible solution to tackle the discreteness problem of language is to use187

the Gumbel-Softmax approximation [50] [51]. For instance, Shetty et al. [52] use188

a GAN to generate more realistic and accurate image descriptions with the aid189

of Gumbel-Softmax to deal with the discontinuousness issue in language process-190

ing. Another more general solution is to borrow an idea from the RL framework,191

9
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in which the feedback from the discriminator is considered as the reward for the192

language generator. Dai et al. [21] built a model based on conditional GAN193

to generate diverse and naturalistic image descriptions and paragraphs, which194

utilizes a policy gradient for optimization. Yu et al. [25] proposed a model called195

SeqGAN, which unified the GAN framework and RL learning problem, this has196

recently received much attention [53] [54]. They propose a three steps training197

strategy, which includes the pre-training the generator, pre-training the discrim-198

inator and the final adversarial training. In this paper, inspired by the SeqGAN,199

we propose to use a discriminator to judge the fitness of the generated image200

descriptions with reference to the image content and apply the policy gradient201

optimization technique [26] to train the model. Unlike the original SeqGAN, our202

discriminator not only cares about the differences between the target language203

and model-generated language but also considers the coherence of the language204

with the image content.205

3. Approach206

In this section, we describe the proposed method based on two parts: the hi-207

erarchical attention mechanism and the policy gradient optimization algorithm.208

3.1. Hierarchical Attention Mechanism209

The hierarchical attention mechanism consists of two parts: a spatial atten-210

tion mechanism which corresponds to global CNN features and a local attention211

mechanism which corresponds to object features.212

The spatial attention mechanism is based on the model in [18]. Specifically,213

the model comprises of an encoder and a decoder. We use a convolutional neural214

network pre-trained on the ImageNet dataset [55] in order to extract a set of215

10
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Figure 1: The hierarchical attention model structure: The CNN encoder and the object

detector extracts the global and local features, respectively. These two types of features are

forwarded to the LSTM models with the global and the local attention mechanisms. The

outputs from the two LSTM models are concatenated and decoded to words.

convolutional features. These features, denoted as a = {a1, ..., aL}, correspond216

to certain portions of the 2-D image. We extract convolutional features instead217

of fully connected ones in order to build a spatial attention mechanism since218

convolutional features have a spatial layout.219

The Long-short Term Memory (LSTM) network, originally proposed by220

Hochreiter and Schmidhuber in [56], is applied as the language decoder because221

of its superior performance in natural language processing.222

ct, ht = LSTM(zt−1, ct−1, ht−1) (1)

In Equation 1, ct and ht are the memory cells and hidden states of the223

LSTM, respectively. zt is the context vector, which can be processed by the soft224

attention mechanism and is able to capture visual information associated with225

a certain input location. The soft attention mechanism has to automatically226

allocate adaptive weights for the image locations to facilitate the task at hand.227

11
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a = Average Pooling(ai), i = 1...L (2a)

eti = MLP (a, ht−1) (2b)

αti =
exp(eti)∑L
k=1 exp(etk)

(2c)

zt =

L∑
i=1

αtiai (2d)

where ai ∈ {a1, ..., aL}. The first and second equations of Equation 2 map228

the image features from each location, along with information from the hidden229

state, into an adaptive weight, which indicates the importance of each image230

location for the recognition. Then, we normalize the adaptive weights into a231

probability value in the range of 0 and 1 using the Softmax function. Once these232

weights (summed to 1) are computed, we element-wisely multiply the weights233

vector αt with image feature vector a and sum them to the context vector zt,234

which can be expressed as in the last equation of Equation 2. This can be seen235

as the expectation of weighted features maps. Then the context vector zt is236

forwarded to the LSTM network to generate captions, as described in Equation237

1. This soft attention mechanism is able to adaptively select the relevant visual238

parts of the given image features and thus facilitate the recognition.239

The local attention mechanism is formulated using object features and an-240

other LSTM model. We use a pre-trained object detector to retrieve the top N241

detected object features, which are denoted as d = {d1, ..., dN}. We then use242

another LSTM model with soft attention to allocate adaptive weights to each243

of these features.244

zdt = Concat(

N∑
i=1

αdtidi, ht−1) (3)

12
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Equation 3 demonstrates that the context vector for local attention model245

catching information from both the local features and the global attention mech-246

anism, where Concat indicates the concatenation operation of the features. This247

context vector is then forwarded to a second LSTM model.248

The two LSTM models, denoted as LSTMG for the global features and249

LSTML for the local features are jointly trained to map the hierarchical feature250

representation with language. LSTML is at a higher level, which can be used to251

decode the hidden states for the final outputs. However, the gradient vanishing252

problem cannot be avoided if we only use the hidden states from LSTML to253

decode information. Inspired by [3] in which a shortcut in network connections254

is applied to solve the gradient vanishing problem, we concatenate the hidden255

states from LSTMG and LSTML to decode and map the hidden states to256

language vectors, which can be seen in Equation 4.257

houtputt = Concat(ht, h
d
t ) (4a)

logits = Wph
output
t (4b)

P (st|I, s0, s1, s2, ..., st−1) = Softmax(logits) (4c)

In MLE training, if the length of a sentence is T , the loss function can be258

formulated as in Equation 5, which is the sum of the log likelihood of each word.259

Loss =

T∑
i=0

log(p(st|I, s0, s1, s2, ..., si)) (5)

3.2. Policy Gradient Optimization260

In addition to only using the MLE to train the image caption generator, to261

alleviate the previously discussed exposure bias problem in RNN-based MLE262
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Figure 2: Policy Gradient optimization with a discriminator to evaluate the similarity between

the generated sentence and the reference sentence.

Figure 3: Policy Gradient optimization with a discriminator to evaluate the coherence between

the generated sentence and the image contents.

training as discussed previously, we also apply a policy gradient optimization263

algorithm in the RL framework to increase the quality of the generated descrip-264

tions.265

We feed both of the generated descriptions and the reference descriptions to266

the discriminator. The level of coherence of the descriptions and image content267

is calculated by the dot product, which is forwarded to the discriminator, as268

described in Fig. 3. This operation is to consider the coherence between certain269

captions (sequences) and corresponding image features, which is able to make270

the generated captions more realistic and naturalistic. The reference sequences271

are labeled as true whilst the generated sequences are labeled as false during272

the training of the discriminator. The model is also a LSTM network with273
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Softmax Cross Entropy loss. Hence, the discriminator outputs the probabilities274

of a sample being true. These probabilities, are then considered as the reward275

signal in the RL framework, to be utilized in the Policy Gradient algorithm for276

updating the parameters of the image caption generator.277

Following [26], the objective of the policy network Gθ(yt|y1:t−1) (the image278

caption generator), is to generate a sequence from the start state S0 to maximize279

its expected long-term reward as described by Equation 6:280

J(θ) = E[RT |s0, θ] =
∑
y1∈Y

Gθ(y1|s0) ·QGθDθ (s0, y1) (6)

whereRT is the reward for a complete sequence. QGθDθ (s, y) is the action-value281

function of a language sequence, which is defined as the expected accumulative282

reward starting from state s, taking a certain action, and then following policy283

Gθ.284

The action-value function is estimated using the REINFORCE algorithm [57]285

and considers the probability of being real generated by the discriminator as a286

reward, which can be defined as in Equation 7.287

QGθDθ (a = yT , s = Y1:T−1) = Dθ(Y1:T ) (7)

As can be seen in Equation 7, the discriminator only provides a reward for288

a complete sequence. We should not only care about the reward for a complete289

tokens but also the long-term reward for the future time-steps since the long-290

term reward is what we actually want. Similar to the game of Go [27] in which291

the agent sometimes give up an immediate interest but cares about the final292

victory, we apply a similar Monte Carlo roll-out strategy for an intermediate293

state, i.e., an unfinished sequence. We represent an N-time Monte Carlo search294
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as in Equation 8.295

Y 1
t+1:T , ..., Y

n
t+1:T , ..., Y

N
t+1:T = MCGθ (Y1:t;N)

MC =∼Multinomial(logits)

(8)

where Y1:t is the generated sequence tokens and Y nt+1:T is the Monte Carlo296

sampled based on a roll-out policy, which, in our case, is set as the same as the297

image caption generator for convenience. In reality, we can use any policy to298

perform the roll-out operation. logits is the output of the LSTM decoder. MC299

is defined as a sampling procedure from a Multinomial distribution.300

If there is no intermediate reward, the Monte Carlo roll-out strategy can301

sample the future possible tokens N times and average these rewards to achieve302

the goal of reward estimation, which is described in Equation 9.303

QGθDθ (a = yt, s = Y1:t−1) =


1

N

N∑
n=1

Dθ(Y
n
1:T ), Y n1:T ∈MCGθ (Y1:t;N), for t < T

Dθ(Y1:T ), for t = T

(9)

The Monte Carlo roll-out strategy can be better visualized in Fig. 4.304

Once the reward value from the discriminator is obtained, it is ready to305

update the generator. The goal is to maximize the average reward starting306

from the initial state as defined in Equation 10.307

J(θ) =
1

N

N∑
i=1

Vθ(s0|Xi, Yi) (10)

where N is the number of samples used for training. We can use the Policy308

Gradient theorem from [26] and write the gradient of the objective function309
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Figure 4: Monte Carlo roll-out: We use Monte Carlo sampling to sample tokens in the future

time steps and average them to obtain the intermediate rewards so as to optimize the token

generated at each time step.

(reward signal) as in Equation 11.310

5θJ(θ) = EY1:t−1∼Gθ [
∑
yt∈Y

5Gθ(yt|Y1:t−1) ·QGθDθ (Y1:t−1, yt)] (11)

Since the expectation can be approximated by sampling, we can now update311

the parameters of the image caption generator using Equation 12.312

θ ← θ + αh 5θ J(θ) (12)

In practice, we can use advanced gradient algorithms such as RMSprop [58]313

and Adam [59] in training the caption generator.314

The image caption generator and discriminator are adversarially trained315

in the framework of GAN [22]. In GAN [23], the discriminator can pass the316

gradient directly to the generator. Due to the discreteness of the sequence317

generation, we apply RL to estimate the gradient of the generator in our model.318

Specifically, the training strategy is described in Algorithm 1. We initially319
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pre-train the image caption generator using MLE. In practice, this is equivalent320

to the Cross Entropy loss [60]. Hence, we can set the pre-training step the321

same as in [18]. The trained model is used to generate some captions which322

are set as fake samples, which, along with the reference captions, are fed into323

the discriminator for training. Similarly, the discriminator is also pre-trained324

for certain steps. The next steps are the adversarial training steps, in which325

the image caption generator and discriminator are trained alternatively until326

convergence of the networks.327

In addition to the sentence comparison scheme introduced previously, and328

shown in Fig. 2, we also employ a scheme to evaluate the coherence between329

the generated captions and the image content. Specifically, both of the global330

features and local object features are processed by average pooling in order to331

obtain fixed-size feature representation, denoted as Vi. The captions, similar332

to the sentence comparison scheme, are also encoded into a fixed-size vector,333

using a LSTM model, denoted as Vw. The two vectors Vi and Vw are then334

dot producted and forwarded to logistic function to obtain the reward for RL335

training, which can be seen in Fig. 3.336

4. Experimental Validation337

4.1. Dataset Introduction338

We conduct our experiments using the MSCOCO dataset [61]. To be consis-339

tent with the previous researches, we use the MSCOCO 2014 released version,340

which includes 123,000 images. The dataset contains 82,783 images in the train-341

ing set, 40,504 images in the validation set and 40,775 images in the test set. As342

the ground-truth for the MSCOCO test set is not available, the validation set is343
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Algorithm 1 Image Caption Generation by Adversarial Training and Rein-

forcement Learning

Input: Image Caption Generator Gθ; Discriminator Dθ.

Pre-training Gθ using MLE by 10 epoches.

Generating negative samples using pre-trained Gθ to train Dθ.

Pre-training Dθ by 2500 steps.

repeat

for update-generator for 1 step do

Generate a sequence Y1:T = (y1, .., yT ).

for t = 1 to T do

Compute the intermediate reward Q(t) by Monte Carlo roll-out.

end for

Update the parameters θ using Policy Gradient.

end for

for update-discriminator for 1 step or 5 steps do

Training discriminator Dθ using reference sequence (True) and generated

sequence (Fake) using current generator.

end for

until Convergence
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Table 1: Parameter Settings of the Hierarchical Image Encoder

Global Image Decoder Global Image Features Dimension Faster RCNN model Local Image Features Dimension

Residual-152 49× 2048 VGG16 30× 4096

Table 2: Parameter Settings of the Language Decoder

Word Embedding Dimension LSTMG Dimension LSTML Dimension Maximum Sequence Length (Training) Maximum Sequence Length (Inference)

512 512 512 20 30

further splited into a validation subset for model selection and a test subset for344

local experiments. This is the “Karpathy” split [13]. It utilizes the whole 82,783345

training set images for training, and selects 5,000 images for validation and 5,000346

images for testing from the official validation set. The standard evaluation pro-347

tocol contains BLEU [40], METEOR [41], CIDEr [46] and ROUGE-L [42].348

BLEU is the most popular metric for the performance evaluation in machine349

translation. The metric is only based on the n-gram statistics. The BLEU-350

1, BLEU-2, BLEU-3 and BLEU-4 measure the performance of the 1, 2, 3,351

4-gram, respectively. METEOR is based on the harmonic mean of unigram352

precision and recall, and seeks correlation at the corpus level. CIDEr can be353

used to evaluate the generated sentences with human consensus. ROUGE-L354

measures the common maximum-length subsequence for the target sentence355

and the generated sentence.356

4.2. Implementation Details357

The whole pipeline of the algorithm and implementation procedure are pre-358

Table 3: Parameter Settings of Training

MLE Pre-training Batch Size Learning Rate of MLE Optimizer Discriminator Pre-training Learning Rate of Policy Gradient

10 epochs 32 0.001 Adam 2500 iterations 0.0001
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Algorithm 2 The whole pipeline of the proposed method

Pre-train the Faster R-CNN on the MSCOCO dataset.

Extract features via Residual-152 and the pre-trained Faster R-CNN.

Language pre-processing.

MLE pre-training.

Perform Algorithm 1.

sented in Algorithm 2. For all the images in the COCO dataset, we obtain global359

convolutional features (from the layer “res5c”) using a pre-trained Residual-152360

network [3] on the platform of Caffe [62], with a dimensionality of 49 × 2048.361

We also retrieve local object features using a Faster RCNN [10] object detec-362

tion network pre-trained on the MSCOCO dataset. Specifically, we obtain the363

top K detected object features from the layer of “FC6” layer of the VGG16364

model [2] used in Faster RCNN, with dimensionality of K × 4096. We build365

the hierarchical attention mechanism and policy gradient optimization on the366

TensorFlow platform [63].367

4.2.1. Training the Faster RCNN on the MSCOCO dataset368

In order to obtain better local object features, we train the Faster RCNN369

model on MSCOCO object detection dataset. The model is first pre-trained370

on the ImageNet object detection dataset [55]. The MSCOCO object detection371

dataset shares the same images with the image caption task. Consequently, we372

keep the same splits with the image caption dataset for training. The training373

process on the MSCOCO dataset is almost the same with the pre-training on374

ImageNet. The initial learning rate is set to 0.001. The momentum of the375

stochastic gradient descent is set to 0.9 and the weight decay is set to 0.0005.376
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4.2.2. Language Pre-processing377

To pre-process the language, the special symbols such as ‘.’, ‘,’, ‘(’, ‘)’ and378

‘-’ are replaced with blank spaces whilst ‘&’ is replaced with ‘and’. Since we379

set the maximum length of the descriptions as 20 words, we delete the caption380

references from the original dataset which are longer than 20. For the vocabulary381

establishment, following the open-source code of [13], we include words that382

occurs more than 5 times in the vocabulary. We map the symbol ‘NULL’ to 0,383

‘START’ to 1 and ‘END’ to 2.384

4.2.3. Training Details of the Model385

Following the open-source code of [13], at training time, we set the maximum386

length of the input sequence to 20 words. During the testing time, alternatively,387

we set maximum length of a generated symbols as 30 words. During the training388

of the proposed model, we add a trainable word embedding layer from Google’s389

TensorFlow platform [63]. All the experiments are conducted on a server em-390

bedded with NVIDIA TITAN X GPU and installed with the Ubuntu 14.04391

operating system. We summarise the parameters of the model and training in392

Table 1, Table 2 and Table 3. Our code is publicly available at 1.393

4.3. Results394

4.3.1. Quantitative Evaluation395

In this section, a comprehensive quantitative evaluation is conducted using396

different experimental settings on the MSCOCO dataset.397

1https://github.com/Shiyang-Yan/image-captioning-with-hierarchical-attention-and-

policy-gradient-optimisation
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Comparison between the global attention, the local attention and the hierarchi-398

cal attention model. We first obtain the results using only the global attention399

model, which is similar to the soft attention model in [18]. Since we use advanced400

CNN features from the Residual-152 model, the results of BLEU, METEOR,401

CIDEr and ROUGE-L are all satisfactory, and are listed in Table 4. Then402

only the local attention model using the detected object features from a Faster403

RCNN detector is tested, with results which are much lower than those for the404

global attention model as listed in Table 4. One of the possible reasons is that405

the Faster RCNN only uses the VGG16 model, which is not as powerful as the406

Residual-152 network. Another reason is that the local object features, despite407

the capability to provide complementary information to the global attention408

model, can sometimes miss many important features. Finally, we test our pro-409

posed hierarchical attention model under MLE training, which utilizes both of410

the global and local attention for image captioning. The results improve the411

baseline significantly, which can be seen in Table 4. Specifically, all of the seven412

evaluation metrics are improved using our hierarchical attention model.413

The determination of the number of top detected objects. To determine the best414

number k for the top detected objects in the local attention model, we perform415

an ablation study. We extract the 10, 20 and 30 top detected object features416

and test them using the hierarchical attention model. The results can be seen417

in Table 5. With the increase of the number k from 10 to 30, the performance418

increases accordingly. Although the maximum length of our generated sentences419

is set as 30, not every word represents an object. Also, intuitively, there are a420

maximum 30 objects within an image. Hence, in the following experiments, we421

use the 30 top detected object features for the local attention model.422
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Table 4: Comparison of image captioning using different attention mechanism results on the

MSCOCO dataset

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L

Soft Attention [18] 70.7 49.2 34.4 24.3 23.90 - -

Global Attention 70.121 50.304 35.434 25.111 23.658 84.701 54.308

Local Attention 64.059 42.359 28.089 19.033 20.203 56.898 49.861

Hierarchical Attention 72.611 52.769 37.802 27.243 24.731 88.140 56.048

Table 5: Comparison of image captioning results on the MSCOCO dataset with different

numbers of objects

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L

Hierarchical Attention with 10 Objects for Local Attention 70.601 50.423 36.643 25.389 24.633 87.316 55.241

Hierarchical Attention with 20 Objects for Local Attention 72.159 52.498 37.552 26.918 24.725 88.639 55.825

Hierarchical Attention with 30 Objects for Local Attention 72.611 52.769 37.802 27.243 24.731 88.140 56.048

Table 6: Comparison of image captioning results on the MSCOCO dataset with different

settings for policy gradient (PG) optimization

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L

MLE training only 72.611 52.769 37.802 27.243 24.731 88.140 56.048

PG with 2500 steps for pre-training D followed by 1 D and 1 G step 72.450 52.845 38.141 27.551 24.543 87.416 55.876

PG with 2500 steps for pre-training D followed by 5 D and 1 G step 72.104 52.739 38.122 27.602 24.928 89.072 56.063

The performance of Policy Gradient with reward only from language compar-423

ison. Next we start the reinforcement learning steps. We first train the dis-424

criminator which only compares the similarity between the reference sentence425

and the generated sentence. Specifically, we follow the model defined in Fig.426

2. The discriminator is first trained in 2500 steps, which we find sufficient for427

the discriminator to converge. The loss curve of the image caption generator428

is shown in Fig. 5. After 2500 steps pre-training the discriminator, the loss of429

the image caption generator starts to decline, which validates that the policy430

gradient starts to work. Then we further train the generator and discriminator431
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Figure 5: The loss curve of the image caption generator during reinforcement learning steps:

before 2500 iterations, we pre-train the discriminator. Starting from the 2500 iterations,

we start the adversarial training of the generator and discriminator. The loss value starts to

decrease starting from 2500 iterations as the parameters of the generator begins to be updated.

adversarially for another 1 epoch, and report the results in Table 6. We also432

experimented with two different settings in the adversarial training steps. The433

first setting is to train 1 step for the discriminator, followed by another step for434

the generator. Another setting is to train the discriminator for 5 steps, followed435

by 1 step training for the generator. We find the final results of the two setting436

are similar, which all slightly improve the MLE training baseline. The reason for437

the improvement is because the reinforcement learning solves the exposure bias438

problem during MLE training. However, this scheme lacks the measurement439

of the similarity between the generated descriptions and the image contents,440

which prevents the image caption generator from generating more naturalistic441

and diverse descriptions.442

The performance of Policy Gradient with reward from the measurement of coher-443

ence between language and image content. To train the image caption generator444
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Table 7: Comparison of image captioning results on the MSCOCO dataset for policy gradient

(PG) optimization with discriminator for evaluation of the coherence between language and

image content.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L

MLE training only 72.611 52.769 37.802 27.243 24.731 88.140 56.048

Global Attention 70.121 50.304 35.434 25.111 23.658 84.701 54.308

PG with similarity of global features (1 D and 1 G step) 72.250 52.290 37.099 26.331 23.815 84.516 55.238

PG with similarity of global features (5 D and 1 G step) 72.234 52.120 36.887 26.065 23.957 84.224 55.244

PG with similarity of global-local features (1 D and 1 G step) 73.036 53.688 39.069 28.551 25.324 92.449 56.539

to generate more naturalistic and diverse descriptions, we further test the model445

defined in Fig. 2. First we only extract the global features and perform aver-446

age pooling, resulting with a feature dimension of 2048. We then use the dot447

product to measure these image features and language embedding features by a448

discriminator, which can be considered as the reward within the reinforcement449

learning framework. The experimental results from this model can be seen in450

Table 7.451

However, the results from all of the seven metrics are even lower than the452

MLE training baseline. One possible reason, is the measurement of discrim-453

inator which only uses the global features, which is not consistent with the454

hierarchical attention model in the generator side. As can be seen from the Ta-455

ble 7, the results from this model are similar to that of global attention model,456

since the reward signal from the discriminator tends to force the generator to457

produce sentences that only matches the global features.458

We further build a model exactly like in the one defined in Fig. 3. This model459

includes both of the global image features and the local object features, and460

thus guarantees that the discriminator and the generator are utilizing the same461

information source. The final results can be seen in Table 7, which outperform462

26



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 8: Comparison of image captioning results on the MSCOCO dataset with previous

methods.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L

Google NIC [14] 66.6 46.1 32.9 24.6 - - -

m-RNN [28] 67 49 35 25 - - -

BRNN [13] 64.2 45.1 30.4 20.3 - - -

MSR/CMU [64] - - - 19.0 20.4 - -

Spatial Attention [18] 71.8 50.4 35.7 25.0 23.0 - -

gLSTM [29] 67.0 49.1 35.8 26.4 22.7 81.3 -

GLA [19] 56.8 37.2 23.2 14.6 16.6 36.2 41.9

MIXER [43] - - - 29.0 - - -

Conv Image Caption [65] 71.1 53.8 39.4 28.7 24.4 91.2 52.2

SCA-CNN-ResNet [37] 71.9 54.8 41.1 31.1 25.0 - -

Semantic Attention [35] 70.9 53.7 40.2 30.4 24.3 - -

DCC [66] 64.4 - - - 21.0 - -

RL with G-GAN [21] - - 30.5 29.7 22.4 79.5 47.5

RL with Embedding Reward [67] 71.3 53.9 40.3 30.4 25.1 93.7 52.5

Self-Critical (CIDEr) [68] - - - 31.9 25.5 106.3 54.3

Ours 73.036 53.688 39.069 28.551 25.324 92.449 56.539

all of other experimental settings.463

To prove the effectiveness of the proposed method, we compare our final464

results on the “Karpathy” test split with previously published results, which465

is shown in Table 8. We list most of the published results on the “Karpathy”466

split, which are grouped into three categories. The first category corresponds467

to various methods without external information and reinforcement learning.468

The best of them (SCA-CNN-ResNet) is the spatial and channel-wise attention469

model [37] in which both the spatial and channel-wise attention mechanisms are470

utilized for image captioning. The methods in the second group use extra infor-471

mation during the training of the model. For instance, Semantic Attention [35]472

utilizes rich extra data from social media to train the visual attribute predictor.473
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Deep Compositional Captioning (DCC) [66] generates extra data to prove its474

unique transfer capability. The third group corresponds to the reinforcement475

learning technique. RL with G-GAN [21] applies conditional GAN and policy476

gradient to generate image descriptions. Although their results on the eval-477

uation metrics are not improved, they prove that the generated captions are478

more diverse and naturalistic. Embedding Reward [67] applies a policy network479

to generate captions and a value network to evaluate the reward. Additionally,480

they also apply advanced inference method called lookahead inference and beam481

search during testing. They achieve the current state-of-the-art results on the482

“Karpathy” split. Although we do not use any external knowledge and any483

advanced inference technique (including beam search, we use greedy search in484

all of our experiments), we achieve similar results to the current state-of-the-art485

methods (Embedding Reward [67], SCA-CNN-ResNet [37] and self-critical [68]),486

with state-of-the-art results on two important metrics: BLEU-1 and ROUGE-L487

and lead other methods significantly.488

4.3.2. Qualitative Evaluation489

In addition to the quantitative evaluation using the standard metrics, we490

qualitatively evaluate the proposed model by visualization. Firstly, we plot491

some global attention maps corresponding to each generated words as shown in492

Fig. 6. It is obvious in the figure that the attentive regions normally correspond493

with the semantic meaning of the generated word in each time step. Then we494

choose some examples to visualize the local attention weights on the detected495

objects, which are shown in Fig. 7. We only retrieve the top 10 detected496

objects and corresponding attentive weights obtained from the local attention497

mechanism because of limited space in the figure. The detector can detect498
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Figure 6: Visualization of the global attention maps and generated captions. The red color

indicates the importance of each region of the image.

Figure 7: Visualization of the attentive weights on the top 10 detected objects, the blue boxes

indicate the detected objects whilst the labels show the attentive weights of the local attention

model.
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Figure 8: The visualisation of some captioning results.
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some fine-grained objects, which provide complementary information for the499

global attention mechanism. At last, we show some of the generated sentences500

using different methods. Specifically, we show the ground-truth sentences, de-501

scriptions generated by the MLE training-based model and by the proposed502

model as shown in Fig. 8. The text in blue are the sentences generated by the503

proposed model, which are more accurate and naturalist than the MLE-based504

model, which are shown in green. Specially, the proposed model show supe-505

rior performance in finding the fine-grained properties of the image since the506

RL model automatically measure the coherence of the sentences and the image507

content.508

5. Conclusion509

This paper targets the image captioning task, which is a fundamental prob-510

lem in artificial intelligence. Based on the recent successes of deep learning,511

especially the CNN feature representation and the LSTM with attention model,512

the paper proposes the use of a hierarchical attention mechanism, considering513

not only the global image features but also detected object features, with im-514

proved results. A significant improvement over the current RNN-based MLE515

training has also been demonstrated. Specifically, a GAN framework with RL516

optimization for the image captioning task is proposed to generate more accurate517

and high-quality captions. The discriminator is to evaluate the coherence and518

consistency between the generated sentences and image content, thus providing519

the rewards for optimization. The whole model follows a three-step training520

strategy. Experiments analysis confirms the merits of the framework and key521

contributors the improved performance. Comparable results with current state-522

of-the-art methods are achieved using only greedy inference, which proves the523
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effectiveness of the training procedure.524
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