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Abstract 

Shear deformation theory was adopted in this research to analyse the crack initiation stress occurred in the three-

point bending test (TPBT) on concrete beams. For TPBT concrete beams with different spans, the influence of 

shear force on the maximum stress and mid-span deflection was analysed. The relationship of the crack initiation 

stress, the modulus of rupture and splitting tensile strength was also studied. It was found that the crack initiation 

stress was about 90 percent of the modulus of rupture provided by the ASTM, British and European codes, and 

it was 1.125 times of the splitting tensile strength. Experimental study on notched concrete beams was also 

undertaken to validate the analytical results. For notched concrete beams in TPBT, calculations of elastic 

modulus and ultimate crack length are presented.  

Keywords: Crack initiation stress; Modulus of rupture; Shear deformation theory; Notched beam; Fracture 

process zone  

1. Introduction 

Crack is a vital issue for concrete which is one of the most widely used materials in civil engineering. Firstly, 

cracks may occur during the full life cycle of concrete members, e.g. curing and service period.  

mailto:wangqy@scu.edu.cn
mailto:zguan@liv.
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For fresh concrete, Ghourchian et al. [1] studied the performance of different passive methods in mitigation of 

plastic shrinkage cracks. By applying 3D X-ray CT, Shields et al. [2] investigated the crack sources of concrete 

in freeze-thaw condition. It was found that aggregate and matrix cracks were more prominent in concrete with a 

saturation degree of 95% and 100%. A large majority of researches were also conducted on the crack behaviour 

and failure of concrete members under different loading conditions. Moreover, crack is a basic precondition for 

investigating self-healing concrete, one of the post popular research subjects in the cement-based materials [3–

Nomenclature 
    

𝐴1, 𝐵1, 𝐶1, 

𝐷1, 𝐺1, 𝐴2 
coefficients in 𝑊𝑚 and 𝑋𝑚  SDT  shear deformation theory 

b, h, l 
width, depth and span of the beam 

(mm) 
 𝑡, 𝑡𝑐    

crack opening width and the 

maximum crack opening width in 

FPZ (mm) 

CBT classical beam theory  𝑢𝑥, 𝑢𝑧 
horizontal and vertical 

displacement (mm) 

CMOD 
crack mouth opening displacement 

(mm) 
 𝑢𝑧𝑢   

mid-span deflection when a unit 

load (1000 N) is applied in TPBT 

(mm) 

E elastic modulus (GPa)  𝑢0, 𝑤0  
displacement along the axe x and z 

(mm) 

𝑓𝑐𝑟   crack initiation stress (MPa)  
𝑈𝑚, 𝑊𝑚, 

𝑋𝑚  

Fourier coefficients in 𝑢0, 𝑤0, 

𝜑(𝑥) 

𝑓𝑟   
flexural strength provided by 

ASTM, British and European codes 

(MPa) 

 𝑈   coefficient in 𝑢𝐶𝑅 

𝑓𝑠𝑝𝑡  splitting tensile strength (MPa)  
u, 𝑢𝑁𝐶 , 

𝑢𝐶𝑅  

total deflection, deflection caused 

by flexure and caused by crack 

propagation (mm) 

FPZ fracture process zone  𝑤𝑐  
maximum crack opening width in 

the fictious crack (mm) 

gi 

(i=1,2,3,4) 
coefficients in 𝜎𝑥, 𝜏𝑥𝑧  and 𝑢𝑧  𝛼, 𝛽   

crack to depth ratio and span to 

depth ratio of the notched beam 

𝐺𝐹  fracture energy (J/mm2)  𝛼𝑠, 𝛽𝑠, 𝛼𝐹  
coefficients in bi-linear softening 

model 

ℎ1, ℎ2, ℎ3, 

𝐻2, 

depth of the compression, tension, 

FPZ and vital tension zones (mm) 
 𝛿   Dirac delta function 

𝑙𝑐, 𝑙𝑐𝑟  

crack propagation length and 

critical crack propagation length 

(mm) 

 𝜀𝑥, 𝛾𝑥𝑧   longitudinal strain and shear strain 

𝑚  mode number  𝜀𝑥0, 𝜅𝑥, 𝜂𝑥  parameters in 𝜀𝑥 and 𝛾𝑥𝑧 

N, M, S, Q   
internal force (N) and moment (N ∙
mm) 

 𝜆   
coefficient in series sum form of 

𝑢0, 𝑤0, 𝜑(𝑥) and q 

P  
concentrated force applied at mid-

span of the beam (N) 
 𝑣   Poisson’s ratio 

𝑃𝑐𝑟 , 𝑃𝑢𝑙   
crack initiation load and ultimate 

load in TPBT (N) 
 𝜎𝑢𝑚  

maximum nominal stress when a 

unit load (1000 N) is applied 

(MPa) 

q 
arbitrary vertical load along the 

beam in SDT (N/mm) 
 𝜑(𝑥)  rotation of the neutral layer 

𝑞𝑚  Fourier coefficients in q  𝜓(𝑧)    
non-linear variation across the 

thickness 
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5]. Secondly, cracks provide a path for water and ionic species to penetrate the concrete, which may significantly 

compromise the service life of concrete members. 

It is generally believed that crack initiation and growth and fracture properties of concrete are closely related to 

its tensile strength. In the direct tensile testing, dog-bone shaped, unnotched and notched prism or cylinder 

specimens with different geometries and gripping systems are used, and there is still lack of a standardized 

method to investigate the tensile behaviour of concrete by tensile testing [6–10]. In addition, the gripping 

specimens in direct tensile tests may encounter with problems of load eccentricity and stress nonuniformity [11]. 

As a consequence, the direct uniaxial tensile tests of concrete, which are difficult to be carried out, have been 

given little attention by researchers [11,12]. 

The indirect tensile tests on concrete, i.e. three-point bending test, compact tension test, and wedge splitting test, 

are adopted extensively in concrete fracture investigations [13]. As TPBT can be stably performed on notched 

beams, TPBT is commonly used in concrete fracture tests [14–16]. Based on TPBT, various models using 

nonlinear fracture mechanics of concrete, such as two-parameter fracture model, size-effect model, effective 

crack model, double-K and double-G fracture model, were proposed and improved by many researchers. 

Through measuring the load, deflection and crack mouth opening displacement (CMOD), some important 

fracture parameters could be obtained [17–19]. 

In TPBT, flexure strength (i.e. modulus of rupture) is frequently calculated based on the classical bending theory 

(CBT) [20–23]. Indeed, it is crucial to determine flexure strength correctly, due to a large number of flexural 

members used in engineering applications. If uncertainty occurs in determining flexure strength, both allowable 

stress design and limit state design in structural engineering can be affected [24].  

In the determination of flexural strength, it is imperative to note that there are two basic assumptions in the 

bending theory. The first one is that all cross section of the beam remains plane and perpendicular to the 

longitudinal axis during deformation. The second one is that the small lateral strain due to the Poisson’s effect 

is negligible, i.e. the cross-section retains its original shape [25]. Hence, the classical beam theory does not apply 

to model transverse shear deformation and is only appropriate for a shear bending beam with a high aspect ratio 

where shear deformation is not prominent. 

However, in three-point bending fracture tests of notched beams, the recommended span to depth ratio is 4 

[13,26,27]. Moreover, a smaller ratio, i.e. 3, is adopted in the determination of modulus of rupture in ASTM [28], 
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British and European standards [29,30]. For these deep beams, the basic assumptions made in the CBT may be 

invalid as the effect of transverse stress on cross-sectional deformation is not negligible. The CBT may bring a 

large relative error in the tensile stress calculations and the issues on how to accurately analyse the related 

problems need to be addressed.  

A similar situation appears in the laminated composite and sandwich structures, which have superior properties 

and reliability and have been extensively utilized in naval, automobile and civil engineering industries [31]. For 

these structures, transverse shear deformation is a major issue in the mechanical analysis due to their relatively 

low value of shear modulus as compared to traditional materials [32]. However, the CBT does not apply to model 

transverse shear deformations and is not appropriate for these laminated composite structures. Hence, a lot of 

work has been carried out to estimate the transverse shear deformations correctly and efficiently for design 

purpose.  

Shear deformation theory (SDT) is proposed and has been widely adopted in the static and dynamic analysis of 

laminated beams, plates, and shells [33–36]. By adopting the layerwise SDT, Shimpi and Ghugal [36] presented 

the analysis of two-layered cross-ply laminated beams. A general framework for the free vibration analysis of 

thick laminated doubly-curved panels and shells was provided by Viola et al. [37].  

According to the generalized unified formulation [31], there are mainly three well-known equivalent single layer 

(ESL) shear deformation theories, i.e. the classical lamination theory (CLT), the first order shear deformation 

theory (FSDT) and the higher-order shear deformation theory (HSDT). The HSDT assumes quadratic, cubic or 

higher (trigonometric) variations of surface-parallel displacements through the entire thickness of laminate to 

model the transversal shear deformation. 

Based on the trigonometric SDT, extensive investigations have been carried out on composite beams and plates 

[38,39]. For example, Zenkour [40] studied the bending behaviour of a simply supported rectangle functionally 

graded material plate. By means of the refined trigonometric SDT, Tounsi et al. [41] investigated the 

thermoelastic bending of functional graded sandwich plates. Utilizing the trigonometric SDT, Arya et al. [32] 

predicted displacements and stresses for symmetric cross-ply laminated beams. The predictions result in high 

accuracy, even for the beam with a small length to depth ratio.  

There has been extensive research on flexural and fracture properties of concrete beams in TPBT and the 

applications of SDT on laminated members. However, up to date the influence of shear force on nominal stress 
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distribution in TPBT concrete beams has not been given enough attention. The true maximum nominal stress 

occurred in the crack initiation and propagation has also long been neglected. Hence, in the current study, the 

basic theory of trigonometric SDT is adopted to analyse the stress and deformation of concrete beams in TPBT. 

Based on the experimental results of notched concrete beams in TPBT, the effect of shear force on the crack 

initiation stress and flexural strength is studied here. In addition, the relationships of the splitting tensile strength, 

the crack initiation stress and the flexural strength provided by the ASTM, British and European codes [28–30] 

are discussed. Furthermore, the elastic modulus and critical crack propagation length in TPBT of notched 

concrete beams are determined. The results of this paper can be contributed to the more reasonable crack and 

fracture calculations and rational allowable stress design and limit state design of concrete structures.  

 

2. Development of the proposed theory 

2.1. Shear deformation theory 

Consider a rectangular beam with a span l, width b and depth h, subjected to a distributed load, q, as shown in 

Fig. 1. In the coordinate system, the x-axis is at the centre of the beam along its longitudinal direction and the z-

axis is perpendicular to it. The longitudinal and transverse displacements at any point (x, z) in the beam can be 

written as [32,40]: 

0 0( , ) ( ) ( ) (( ) )xxu x z x z zxu xw      (1a-b) 

0( , ) ( )zu x z w x  

Where u0 and w0 are the displacements along x and z axes respectively, φ(x) is a rotation about the y-axis which 

is perpendicular to the x-z plane.  

 

Fig. 1. The geometry of a rectangular beam. 

Using the trigonometric shear deformation theory, there is ( ) / sin( / )z h z h    . Here, the trigonometric sine 

x

z

h

l

q
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term, ( )z , represents the non-linear variation across the thickness and h is the beam depth. 

The longitudinal strain and shear strains compatible with the displacement are 

2

0 0( ) ( ) ( ) ( )x x x xu x z w x z x         (2a-b) 

( ) ( )xz z z x      

The governing equations of equilibrium associated with the displacement functions can be derived by using the 

principle of virtual displacements. These variation consistent equations are 

0x N   

(3a-c) 2 0xM q    

0xS Q    

where N and M are the basic components of stress resultant and stress couples, S is an additional stress couple 

associated with the transversal shear effects, Q is transversal shear stress resultant. The resultant force and 

moment can be obtained by 
/2

/2
[ , , ] [1, , ( )]

h

x z
h

N M S z z d


   and 
/2

/2
( )

h

xz z z
h

Q z d 


  , where 
x xE   and 

/ (2(1 ))xz xzE v   , E and v are the elastic modulus and Poisson’s ratio respectively. 

2.2 The exact solutions of SDT in TPBT 

To solve the present problem, the following solution forms based on the displacement functions, which satisfy 

the simply supported boundary conditions, are adopted.  

0 1
( ) ( )mm

u x U cos x



  

(4a-c) 
0 1
( ) sin( )mm

w x W x



  

1
cos( ) ( )mm

x X x 



  

where /m l  , 
mU , 

mW  and 
mX  are arbitrary parameters to be determined, and m is mode number.  

Similar to the displacement functions, the external force is expressed in the form of a trigonometric series  

1
sin( ) ( )mm

q x q x



  

(5) 

where mq  is the Fourier coefficients which can be calculated by 
0

2 / ( )sin( )
l

mq l q x x dx   . For a concentrated 

load P applied at the mid-span in TPBT, it can be expressed as ( ) / ( / 2)q x P b x l   , where ( / 2)x l   is 

the Dirac delta function.  
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By substituting Eqs. (2), (4) and (5) into Eq. (3), parameters Um, Wm and Xm can be solved, which are expressed 

as follows.  

0mU   

(6a-c) 
2 2 4 2 2

1 1

3 6

11 1

2

'

4[ / ( ( 2)[ (1 )] / [ (1 )]

/(

/

)

)]m

m

W A P Eb sin m B C m v D m G m v

W P Eb

           

   

32 2 2 '

2 1 1[ / ( )] [ ( 2)(1 )] / [ (1 )] /( )/m mX A P Eb h sin m v D m G m v X P Eb            

where /l h   is the span-depth ratio, 
1A , 

1B , 
1C , 

1D , 
1G  and 

2A  are the coefficients independent of the 

span and depth. The computed results of 
1A , 

1B , 
1C , 

1D , 
1G  and 

2A  are shown in Appendix A. 

In this case, for a beam specimen with a span of l and depth of h, the longitudinal stress and deflection at point 

(x, z) can be determined by the following equations. 

1 2( , , , ) / [ ( , , ) ( , , ) ( / )sin( / )]x l h x z P b g l h x z g l h x h z h        
(7) 

3( , , , ) / ( ) ( , , )zu l h x z P Eb g l h x   
(8) 

where 

m

2 '

11( , , ) ( )mg l h x W sin x 



  

(9a-b) 
2 m

'

1
( , , ) ( )mg l h x X sin x 




   

'

3 m 1
( , , ) ( )mg l h x W sin x




  

2.3. Determination of E in TPBT of a notched concrete beam 

For concrete, its elastic modulus is a basic material property, which is mainly determined by compression testing 

of the cylinder. In fact, the deflection in TPBT is closely related to the elastic modulus. However, with the 

influence of both the shear force and initial notch on the deflection, the accurate calculation of elastic modulus 

in bending fracture tests is difficult. Here, an attempt was made to obtain the elastic modulus by utilizing the 

measured data in bending tests based on the SDT. 

For the pre-notched beams in TPBT, the mid-span deflection at the ultimate load is caused by the shear dominated 

bending (
NCu ) together with the crack opening (

CRu ). Hence, it can be expressed as

/ ( ) ( , )ul NC CR NCu u u u P Eb U       , where α and β are the notch to depth ratio and span to depth ratio, 

respectively. As to the coefficient item of ( , )U   , different empirical models are proposed [26,42–44]. 

For the notched beam with a span to depth ratio of 4, ( , )U    can be computed by 
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2 2 2 3 4( , (3 / 2)[ (1 )] (5.58 19.57 36.82 34.94 12.77) / )U              
 

(Tada [26], 10a) 

2 2 2 3 4( , (1 ) (1.193 1.98) 0 4.478 4.443 1.739 )/U                
(Underwood [42], 10b) 

2 5 4 3 2

2 2

( , ) 4.5 { 0.3645 1.326 2.71 3.874 8.614

2.268 6.018ln(1 2 ) 1.015ln(1 )

(2.829 4.437 2.268) / [(1 2 )(1 ) ]}

U        

 

   

     

    

      

(Wu [43], 10c) 

Moreover, Guinea et al. [44] proposed a model, which is valid for notched beams with a span to depth ratio 

larger than 2.5, which can be expressed as 

2 2

3 2

2 2 2

( , ) 72{[ ( 7.8224 6.3904 0.6327 ) / 432 (11 0.88 )(1.24 0.14 ) / 864

( 1.24 0.14 ) / 432 2.65 ( 4.64 0.13 ) / [512(1 )]

(2.65 ) (2 ) / [512(1 ) (16.48 45.19 ) / [82944(1 3 )]] }

U        

    

      

      

      

       

(Guinea [44], 10d) 

The equations of those models are indeed complex and therefore, the /ul NCu u  is calculated and fitted in a form 

of exponential function, as shown in Fig. 2. For a notched concrete beam with a span to depth ratio of 3 or 4 and 

a notch to depth ratio between 0.1 and 0.8, its elastic modulus can be obtained by 

3

2 2

/ ( ) ( , , ) /

/ ( ) (4 0.78 ) exp(0.4177 2.2433 6. 7675= )

ul ul ul N C

ul ul

E P u b g l h x u u

P u b    

  

      

(11) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

5

10

15

20

25

30

35

 

 

 SDT & Tada ( =4) [26]

 SDT & Underwood ( =4) [42]

 SDT & Wu ( =4) [43]

 SDT & Guinea ( =4) [44]

 SDT & Guinea ( =3) [44]

u
u

l 
/u

N
C

Notch to depth ratio ()

u
ul

 / u
NC

 = exp(0.4177-2.2433+6.7675
2
)

 

Fig. 2 The relationship between /ul NCu u  and α (β = 3, 4). 

2.4. Stress distribution in the critical cross section 

As concrete is a material which has different properties in tension and compression, its neutral axis will shift 

away from the tensile side after the crack formation, accompanied by the redistribution of stresses. Moreover, as 

a quasi-brittle material, a large and variable size of damage zone also exists ahead of the macro-crack. This 

damage zone is known as the fracture process zone (FPZ) and has the capacity to transfer the cohesive stress 
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across the crack faces which decreases with increasing deformation [13]. In this study, the cohesive stress along 

FPZ is assumed to be linear over the micro-cracks and the bilinear softening traction-separation law is adopted, 

as shown in Fig. 3. 

 

Fig. 3. The distribution of cohesive stress along FPZ. 

The cohesive stress can be expressed as  

( ) / , 0cr cr s s sf f t t t t       

(12a-c) ( ) / ( ),s c c s s ct t t t t t t       

0, ct t    

where 𝑡  is the crack opening width. The maximum crack opening displacement in the FPZ, 𝑡𝑐 , can be 

calculated by /c F F crt G f , where 9F ad   . Here, GF and da are the fracture energy and maximum size of 

aggregate respectively. 

The value of a kink point in a non-dimensional form is /s s crf   and /s s ct t   respectively. The 

coefficients, 
s  and 

s , can be determined by (2 / ) /s cr c F Ff CTOD G     and / 1s s ct CTOD   , 

where  
cCTOD  is the critical crack tip opening displacement. 

As aforementioned, after formation of a crack, there are three stress zones, i.e. the tension, compression and 

fracture progress zones, along with the mid-span cross-section. The stresses redistributed at ultimate load are 

shown in Fig. 4. It should be mentioned that the tensile zone (
2h ), corresponding to the crack initiation stress 

crf , is assumed to be a part of the vital tensile zone with a depth of 2H . This can be regarded as the consequence 

of the formation of cohesive stress zone. If this hypothesis does not conform to reality, the results of 
2h  and 

2H  will be equal with each other and they have no influence on the calculation of critical crack propagation 

length.  

𝜎 
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The equilibrium and geometry equations, which are required to determine the size of stress zones, are given by 

1 2 3 0N N N    

(13a-d) 
1 2 3 / (4 )ulM M M P l b     

1 2 3h h h h    

2 2( , , / 2, )cr xf l H l h  

where 
ulP  is the ultimate load, the subscript 1, 2 and 3 are related to the compressive, tensile and fracture 

progress zones, respectively.  

It should be noted that the coefficient items 
1g  and 

2g  in Eq. (9) are described in the manner of series 

summation, which leads to great difficulty in solving equation set (13). Consequently, results of the series 

summation are fitted using an exponential function. The detailed fitting expressions are shown in Appendix B.  

 

Fig. 4. The stress distribution along the critical cross-section at mid-span. 

 

3. Experimental setup for validation of the theory   

In this study, the notched concrete beams with a span to depth ratio of 3 and cylinders were selected to prove the 

validity of SDT in the concrete fracture test. In each type of tests, three repeated tests were carried out to obtain 

the corresponding average results. The detailed experimental setup is shown in Fig. 5. Both the calculated elastic 

modulus and crack propagation length, based on SDT, are compared with the experimental ones. By determining 

the crack initiation load and ultimate load in TPBT, i.e. crP  and ulP , the relationship between the cracking 

stress and traditional modulus of rupture are analysed.  
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Fig. 5. The experimental setup adopted in this study.  

As the accurate determination of deflection is vital in this research, the digital image correlation (DIC) method 

was adopted. The displacement caused by the gap between the specimen and supports, which is the major error 

source in the deflection measurement, was also determined by the DIC method. In order to identify deformations 

clearly, the specimen surface was treated by creating a random, sprayed-on speckle pattern.  

Both normal and basalt fibre concrete, whose mixture properties are listed in Table 1, were used to make the 

specimens. The notched beams are with a dimension of 100 mm100 mm400 mm, and a notch depth of 30 

mm. The geometry of the notched beam is shown in Fig. 6. The cylinders are with a radius of 50 mm and a 

height of 200 mm. In TPBT, an electronic universal testing machine with a maximum capacity of 100 kN was 

employed. An extensometer was used to determine the crack mouth opening displacement (CMOD). For the 

cylinder compression test, a 2000 kN electro-hydraulic servo universal testing machine was utilized. 

 

 

Fig. 6. The geometry of the notched beam. 
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Table 1  

The concrete mixture properties (𝐤𝐠/𝐦𝟑). 

Specimen Cement NCA RCA Sand Fly ash Water Fibre S.P. 

NC 440 620 620 610 110 165 0 1.1 

FC 440 620 620 610 110 165 4 1.1 

Note: NCA - natural coarse aggregate; RCA - recycled coarse aggregate; S.P. - superplasticizer. 

 

4. Results and discussion 

4.1 The maximum nominal stress and mid-span deflection based on SDT and CBT 

Here, the stress distribution in a beam with a dimension of 300 mm×100 mm×100 mm is calculated by both SDT 

(Eq. 7) and 3( ) 3 / ( )CBT z Plz bh  . If a unit load of 1000 N is applied and a Poisson’s ratio of 0.3 is adopted, the 

calculated stresses across the beam depth are plotted in Fig. 7. It is clear that, for the maximum nominal stress 

occurred at the point farthest away from the neutral axis, the one obtained by SDT is larger than the CBT one. 

For the beam with a span to depth ratio of 3, which is recommended in the ASTM, British and European codes 

[28–30], the modulus of rupture computed by SDT is even 49.3% larger than the CBT one. It indicates that, for 

TPBT beams made of brittle material with a low span to depth ratio, the CBT significantly underestimates the 

maximum nominal stress on the cross-sectional area of a beam.  

 

Fig. 7. The stress distribution in the mid-span cross-section based on CBT and SDT (a unit load P=1000N is 

applied at mid-span). 
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Subsequently, for beams with the same cross-section (100 mm100 mm), the effects of the span on the deviation 

of the maximum nominal stress and mid-span deflection are considered. For a unit load of 1000 N being applied, 

the corresponding maximum nominal stress and deflection at mid-span ( / 2x l ) are defined as the unit 

maximum nominal stress (
um ) and unit mid-span deflection (

zuu ). They can be obtained by setting  

1000NP  , 2 100mmb h z   in Eqs. (7) and (8) or 3( ) 3 / ( )CBT z Plz bh   and  3 3( ) / (4 )CBTu z Pl Ebh . An 

elastic modulus of 20 GPa is adopted in the deflection calculation. 

A span range of 300 – 1200 mm is considered. The calculated unit maximum nominal stress and unit mid-span 

deflection based on CBT and SDT are listed in Table 2. The subscripts ‘CBT’ and ‘SDT’ mean the results are 

based on CBT and SDT respectively. The deviation and the relative deviation are defined as 
um SDT um CBT    

(or 
zu SDT zu CBTu u  ) and ( ) /um SDT um CBT um SDT      (or ( ) /zu SDT zu CBT zu SDTu u u   ), respectively. The 

calculated derivations of the unit maximum nominal stress and unit deflection are shown in Fig. 8.  

 

Table 2  

The unit maximum nominal stress and mid-span deflection of beams with a cross-section of 100 

mm×100 mm. 

Span (mm) 300 400 500 600 700 800 900 1000 1100 1200 

𝜎𝑢𝑚−𝐶𝐵𝑇 (MPa) 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 1.65 1.8 

𝜎𝑢𝑚−𝑆𝐷𝑇 (MPa) 0.67 0.82 0.97 1.12 1.27 1.42 1.57 1.72 1.87 2.01 

𝑢𝑧𝑢−𝐶𝐵𝑇 (μm) 3.38 8 15.63 27 42.88 64 91.13 125 166.38 216 

𝑢𝑧𝑢−𝑆𝐷𝑇  (μm) 4.5 9.51 17.52 29.29 45.55 67.07 94.58 128.85 170.61 220.63 

 

For the maximum stress, the derivation declines linearly with the increase in span, whilst the relative deviation 

has a large decrease in a nonlinear fashion for the span less than 600 mm, which can be regarded as the result of 

the significant increase in 
um SDT 

. For example, for beams with a span from 300 to 1200 mm, the relative 

deviation is dropped from 0.33 to 0.11. However, the high relative deviation, which is still larger than 0.1 for the 

beam with a span of 1200 mm, indicates a clear difference between the stresses computed by SDT and CBT.  

Different from the trend of the stress derivation, the mid-span deflection derivation increases with the span 

linearly. In the TPBT, the deformation is caused by both the inner bending stress and shear stress and therefore, 

this derivation can be deemed as the displacement induced by the shear stress independently. Moreover, this part 

of the deformation can be calculated by 0.78 / ( )Pl Ebh , which is based on the virtual work principle. The 

deviations are almost equal to the virtual work principle ones, as shown in Fig. 8(b). However, its relative 
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counterpart decreases sharply for beams with a span less than 600 mm. For the beam with a span larger than 550 

mm, its relative deflection deviation is smaller than 0.1. With respect to the stress one, the deflection difference 

is less evident. Especially, for the specimen with a span of 300 mm, its relative deviation in the maximum stress 

and mid-span deflection is 0.33 and 0.25 respectively. It is conceivable to conclude that the influence of 

transverse shear deformations should be taken into consideration for the beams studied in this paper. 

 
(a)  

  
(b) 

Fig. 8. The influence of span on the deviation: (a) the maximum stress; (b) the deflection.  

4.2 The elastic modulus 

Based on the proposed equation (11), the elastic moduli calculated are plotted in Fig. 9. ND2 and ND5 are the 

specimens adopted in [45] with a notch to depth ratio of 0.2 and 0.5 respectively. Notched concrete beams with 
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a dimension of 515100100 𝑚𝑚3 were tested and a span to depth ratio of 4 was adopted [45]. The ultimate 

load and displacement used in the calculation are listed in Table. 3.  

As shown in Fig. 9, the elastic modulus obtained by Eq. (11) is much closer to the experimental one in general. 

For specimens with a span to depth ratio of 3 and 4, the proposed equation can give results with a good correlation 

to the experimental measurements.  

14.7
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Fig. 9. The experimental and calculated results of elastic modulus. 

Table 3  

Test results of the notched beam. 

Specimen 𝛼  𝛽  𝑃𝑢𝑙  (N)  𝐶𝑀𝑂𝐷𝑢𝑙  (mm)  𝑢𝑢𝑙 (mm) 𝑢𝑁𝐶  (mm)   

NC 0.3 3 8302 ± 194 0.0447 ± 0.0008 0.059 ± 0.005 0.0415 

FC 0.3 3 6405 ± 177 0.0444 ± 0.0008 0.056 ± 0.004 0.0396 

ND2 [45] 0.2 4 8913 - 0.048 0.0374 

ND5 [45] 0.5 4 3562 - 0.040 0.0150 

4.3 The crack initiation stress and modulus of rupture 

The modulus of rupture, 
rf , is generally regarded as the flexural strength computed from the maximum bending 

moment [28–30]. For concrete beams, it can be regarded as a macroscopic value, which reflects the failure stress. 

However, the crack initiation stress, 
crf , is defined as the maximum tensile stress in the TPBT. It is the local 

stress at which the crack initiates and growths.  

For determining such the stress, the crack initiation load need to be obtained firstly. In this study, both the strain 

gauges, which are attached beside the notch tip [14], and the DIC technique [46] are adopted to determine the 

crack initiation load. It is found that the crack loads of 5115 N and 3862 N for specimens NC and FC determined 
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by DIC are smaller than the strain gauge ones (5574 N and 4022 N). This may be related to the average strain, 

not the notch tip one, obtained by strain gauges. 

As a result, the DIC results are utilized in the stress calculation. The obtained crack initiation stress and modulus 

of rupture are shown in Fig. 10. Clearly, there is a large difference between these stresses. In fact, the 𝑓𝑟−𝐶𝐵𝑇 in 

Fig. 10 is the modulus of rupture determined by the ASTM, British and European codes [28–30]. Consequently, 

attentions should be paid to their difference.  

In the previous investigation conducted by Guo et al. [46], it was found that, for a notched concrete beam with 

a span to depth ratio of 3 and a notch to depth ratio of 0.2, the crack initiation load is equal to or larger than 60 

percent of the peak load, i.e. 0.6cr ulP P . The experimental results in this study are in consistent with this. Hence, 

for conservative calculations, it is reasonable to consider that 
crP  equals 60 percent of 

ulP . Moreover, taking 

account of the fact that the previous investigations were based on the classical beam theory, the crack initiation 

stress with better accuracy can be obtained by using shear deformation theory “SDT”. Therefore, for a notched 

concrete beam with a span to depth ratio of 3 and a notch to depth ratio of 0.2 or 0.3, the stress can be determined 

by the following equation 

0.6 ( / )cr r un SDT un CBTf f      (14) 

where 
rf  is the modulus of rupture, 

crf  is the crack initiation stress, 
um SDT 

 and 
um CBT 

 is the unit 

maximum nominal stress calculated by shear deformation theory and classical beam theory respectively. 

Based on the specimen dimensions in this study and Guo’s results [46], it can be concluded that the crack 

initiation stress (by SDT) is about 89.5 percent of the modulus of rupture calculated by the ASTM, British and 

European codes [28–30]. It should be noted that, although a large difference occurs between the crack initiation 

load and the ultimate load, the calculated crack initiation stress based on SDT is close to the modulus of rupture 

computed by the ASTM, British and European codes [28–30], which are CBT based. 
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Fig. 10. The crack initiation stress and modulus of rupture calculated by SDT and CBT. 

4.4 The critical crack propagation length 

By solving equation set (13), the sizes of stress zones can be obtained, which are shown in Table 4. The DIC 

determined ones are also listed in Table 4. The fracture surface of failure specimens and determination of critical 

crack propagation length by DIC method is shown in Fig. 11 and Fig. 12 respectively.  

 

(a) 

 

(b) 

Fig. 11. The fracture surface of failure specimens: (a) NC; (b) FC. 
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(a)                                   (b) 

Fig. 12. The critical crack propagation length determined by DIC method: (a) NC; (b) FC. 

Table 4  

The calculated results of the size of different stress zones. 

Specimen ℎ1 (mm) ℎ2 (mm) ℎ3 (mm) 𝐻2 (mm) ℎ3−𝐷𝐼𝐶  (mm) 

NC 26.65 16.52 26.83 26.64 25.37 ± 1.23 

FC 26.37 14.78 28.85 25.68 27.23 ± 1.57 

For specimens NC and FC, their calculated crack propagation lengths are about 38.33 and 41.21 percent of the 

original depth, which are close to the ones determined by DIC, 36.25 and 38.9, respectively. The difference 

between the computed and experimental results of crack propagation length is small. This indicates that the crack 

initiation stress obtained by SDT is approaching to the real value. In addition, the results of ℎ2 and 𝐻2 indicate 

that the appearance of crack has an influence on the stress distribution in tthe ension region, which are mentioned 

in the calculations of stress redistribution.  

The ultimate crack propagation length based on cr CBTf   and the CBT are then considered. However, in this case, 

the calculation has no solution. Moreover, the same situation occurs for the computation based on 
cr CBTf 

 and 

stress distribution of SDT. Consequently, given the experimental ultimate load, the available 
crf  and the 

corresponding crack propagation length are analysed, as shown in Fig. 13.  
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Fig. 13. The relationship between 
crf  and crack propagation length at certain loads (based on SDT). 

It is significant that the crack propagation length is sensitive to the crack initiation stress adopted. With the 

increase in 
crf , the crack propagation length reduces quickly. This trend agrees with the fact that, for the 

specimen with a higher crack initiation stress, it can bear a higher load with the potential extra crack propagation 

capacity. When the stress is larger than the modulus of rupture, the obtained 
cl  is nearly equal to 0, which can 

be regarded as uncracked. For both specimens, the obtained 
cr SDTf 

, 6.31 and 4.71 MPa, are much close to the 

minimum one in available crack initiation stress (6.1 and 4.7 MPa). It indicates that the adopted trigonometric 

shear deformation theory can give the stress predictions with high accuracy. 

4.5 The relationship of 
rf , 

crf  and sptf  

Nominally, the splitting tensile strength is regarded as the crack initiation stress in the softening model. The 

rationale of this assumption is analysed below.  

The relationship between the modulus of rupture (
rf ) and compressive strength, the splitting tensile strength 

( sptf ) and compressive strength have been studied comprehensively for prediction purpose. The ACI Code [47] 

defines the modulus of rupture and splitting tensile stress as 1/20.7r cf f  and 1/20.56spt cf f . Similarly,  

0.670.3r cf f  and 2/30.3spt cf f  are adopted in the Euro Code [48] and CEB-FIP [49] respectively. Based on 
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statistical study and support vector machine learning theory, 1/20.7r cf f  and 0.6810.283spt cf f  are proposed 

by F. Legeron et al. [50] and A. Behnood et al. [51] respectively. In contrast, there is limited research focused on 

the relation between 𝑓𝑟  and 𝑓𝑠𝑝𝑡.  

The experimental results of 
rf  and sptf  in mechanical properties studies [52–59] are introduced for analysis. 

All the test results are presented in Fig. 14. The relationships obtained from the code [47–49] and the previous 

studies [50,51] are also plotted. As shown in Fig. 14, r sptf f  is the lower bound relationship, and 1.25r sptf f  

is close to the average. The relationship, 0.73422.3761r sptf f , obtained from [50] and [51], is more likely to 

overestimate the modulus of rupture. Hence, a fitting equation, 1.09211.1578r sptf f , is proposed for reference in 

the concrete fracture analysis. 

The above comparison indicates that the modulus of rupture is about 1.25 times of the splitting tensile. For the 

crack initiation stress, 
crf , it may be 12.5 percent larger than the sptf . As the crack propagation length is very 

sensitive to the crack initiation stress, this difference cannot be neglected in the fracture calculations. 
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Fig. 14. The relationship between sptf  and 
rf . 

 

5. Conclusions 

In this study, the trigonometric shear deformation theory has been developed to analyse concrete beams in TPBT. 

The crack initiation stress, modulus of rupture, elastic modulus and critical crack propagation length are 



JO
URNAL P

RE-P
ROOF

JOURNAL PRE-PROOF

21 

 

considered. Fracture tests of notched beams were designed to validate the accuracy of the theory developed. 

Based on the outputs, the following conclusions can be drawn: 

(1) For the commonly adopted specimens with a span to depth ratio of 3 in flexural strength test, the modulus 

of rupture obtained with SDT is nearly 1.5 times of that obtained with CBT in the ASTM, British and 

European codes [28–30]. The crack initiation stress, i.e. the maximum nominal stress in the crack tip, is 

about 90% of the modulus of rupture provided by the ASTM, British and European codes [28–30]. 

(2) For the notched concrete beams in TPBT with a span to depth ratio of 3 and 4, the proposed equation can 

provide accurate results of elastic modulus. The difference is within 3% between the calculated and the 

measured values in this study. 

(3) The crack initiation stress is about 1.125 times of the splitting tensile strength. In the crack and fracture 

calculations of concrete materials, it may not be appropriate to adopt the splitting tensile strength as the 

crack initiation stress. 

(4) The computed crack propagation length is in a good agreement with the DIC results. This indicates that the 

stress distribution based on SDT is more reasonable than the CBT one. 
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Appendix 

A. The computed coefficients in Wm and Xm 

For specimen with a span of l and a depth of h, the coefficients in Wm and Xm are as follows.  

1 609352794144333891512279364585672A   

(A.1) 

1 2778046668940015B    

1 562949953421312C   

1 70533770832581560215947799704262441126745686045D   

1 206760185653755264372406867439246885494194176G   

2 436765889032398006375275097303035385987433758720A   

B. The relationship between g1, g2 and h 

For beams with a span of 300 mm but different depths, the calculated results of g1 and g2 at mid-span are shown 

in Fig. B1. It is obvious that both g1 and g2 have a good exponential relationship with the depth of h. And they 

can be expressed as i

i ig h
  , where i equals to 1 and 2 respectively. 
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Fig. B.1. The fitting curves of 
1g  and 

2g . 

For beam with a span of 400 mm and consideration of the mid-span cross-section, the coefficients in Eq. B1 are 

1 500.11912  , 
1 2.60045   , 

2 26.91994    and 2 1.95765   . The R-Square is 0.99981 and 0.99999 

respectively. 
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Highlights:

⚫ Shear deformation theory was adopted to analyse the stress distribution in TPBT.

⚫ Crack initiation stress is about 90% of the modulus of rupture.

⚫ Crack initiation stress is about 1.125 times the tensile strength.

⚫ Elastic modulus and ultimate crack length can be accurately calculated based on

SDT.


