
For the best experience, open this PDF portfolio in
 
Acrobat X or Adobe Reader X, or later.
 

Get Adobe Reader Now! 

http://www.adobe.com/go/reader




Wang-Landau study of the 2d random-bond Blume-Capel model


A. Malakisa∗, A. Nihat Berkerbcd, I. A. Hadjiagapioua and N. G. Fytasa


aDepartment of Physics, Section of Solid State Physics, University of Athens,
Panepistimiopolis, GR 15784 Zografos, Athens, Greece


bFaculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla 34956,
Istanbul, Turkey
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We study, via a two-stage Wang-Landau (WL) strategy, the random-bond version of the
square lattice ferromagnetic Blume-Capel (BC) model, in both the first- and second-order
phase transition regimes of the pure model. The second-order phase transition, emerging
under random bonds from the second-order regime of the pure model, has the same
values of critical exponents as the 2d Ising universality class, with the effect of the bond
disorder on the specific heat being well described by double-logarithmic corrections. On
the other hand, the second-order transition, emerging under bond randomness from the
first-order regime of the pure model, has a distinctive universality class with ν = 1.30(6)
and β/ν = 0.128(5). These results amount to a strong violation of universality principle of
critical phenomena, since these two second-order transitions, with different sets of critical
exponents, are between the same ferromagnetic and paramagnetic phases. Furthermore,
the latter of these two sets of results supports an extensive but weak universality, since it
has the same magnetic critical exponent (but a different thermal critical exponent) as a
wide variety of 2d systems with and without quenched disorder.


1. INTRODUCTION


Quenched bond randomness may or may not modify the critical exponents of second-
order phase transitions [1], whereas in 2d it always affects first-order phase transitions
by conversion to second-order phase transitions even for infinitesimal randomness [2–4].
These predictions have been confirmed by various Monte Carlo simulations and they have
been also well verified by the present study of the random-bond 2d BC model using the
WL algorithm [5]. Furthermore, we find dramatically different critical behaviors of the
second-order phase transitions emerging, due to bond randomness, from the first- and
second-order regimes of the pure model, indicating a strong violation of universality with
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different critical exponents along the corresponding two segments of the phase diagram.
The random-bond version of the BC model is defined by the Hamiltonian


H = −
∑


<ij>


Jijsisj + Δ
∑


i


s2
i ; P (Jij) =


1


2
[δ(Jij − J1) + δ(Jij − J2)], (1)


where the spin variables si take on the values −1, 0, or +1, < ij > indicates summation
over all nearest-neighbor pairs of sites and Δ is the value of the crystal field. The above bi-
modal distribution describes our choice for the quenched random ferromagnetic exchange
interactions where both J1 and J2 are taken positive and the temperature scale may be set
by fixing 2kB/(J1 +J2) = 1. It is well-known that the pure square lattice model (J1 = J2)
exhibits a phase diagram with ordered ferromagnetic and disordered paramagnetic phases
separated by a transition line that changes from an Ising-like continuous phase transition
to a first-order transition at a tricritical point (Tt, Δt) = (0.609(4), 1.965(5)) in the tem-
perature - crystal field plane [6,7].


In this study we consider two distinct cases: In the first case we study the conversion
to a second-order phase transition, due to the introduction of bond-randomness, of the
first-order transition of the pure model at the value Δ = 1.975. In the second case we
examine the modifications induced, by bond-randomness, on the critical behavior of the
second-order phase transition of the pure model at the value Δ = 1 of the crystal field.
Both studies are carried out for the same disorder strength r = J2/J1 = 0.6 and for the
estimation of the properties of a large number (100) of bond disorder realizations (lattice
sizes L = 20 − 100) of the random-bond versions, we have used our two-stage strategy of a
restricted entropic sampling. The first stage is based on a repeated application of a multi-
range WL approach and the resulting accurate DOS is then used for a final redefinition
of the restricted subspace in which the second stage entropic sampling is applied. The
scheme has been described in detail in our recent studies [8,9].


2. RESULTS AND DISCUSSION


We consider first the value Δ = 1.975 [9]. Figure 1(a) contrasts the specific heat
results for the pure 2d BC model and two strengths of disorder, r = 17/23 � 0.74 and
r = 3/5 = 0.6. The saturation of the specific heat is clear and signals the conversion of
the first-order transition to a second-order transition with a negative critical exponent α.
Figures 1(b) - (d) summarize our finite-size scaling analysis (FSS) for the disorder strength
r = 3/5 = 0.6. The behavior of five pseudocritical temperatures T[Z]∗


av
, T[Z]∗


av
= Tc +


bL−1/ν (corresponding to the peaks of the following quantities averaged over the disorder
realizations: susceptibility, derivative of the absolute order parameter with respect to
the inverse temperature (K = 1/T ) and first-, second-, and fourth-order logarithmic
derivatives of the order parameter with respect to the inverse temperature) is presented
in figure 1(b) and allow us to estimate both the critical temperature Tc = 0.626(2) and the
correlation length exponent ν = 1.30(6). From the behavior of the peaks of the average
susceptibility and the values of the average order parameter at Tc = 0.626 we obtain
estimates for the exponent ratio γ/ν and β/ν. As shown in the corresponding figures
these estimates are very close to γ/ν = 1.75 and to β/ν = 0.125 which are the exact
values of the simple Ising model. It appears that this “weak universality” is well obeyed
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Figure 1. Behavior of the 2d BC model at Δ = 1.975: (a) Illustration of the saturation of
the specific heat for the random-bond model (open symbols). FSS behavior, for r = 0.6,
of (b) pseudocritical temperatures, (c) susceptibility peaks, and (d) order parameter at
Tc. Linear fits are applied for L ≥ 50.


for several pure and disordered models, including the pure and random-bond version of
the square Ising model with nearest- and next-nearest-neighbor competing interactions [8].
In conclusion, at Δ = 1.975, the first-order transition of the pure model is converted to
second-order, giving a distinctive universality class with ν = 1.30(6), thus supporting
an extensive but weak universality since it has the same (ratios) of magnetic critical
exponents as a wide variety of 2d systems without [10] and with [8,11] quenched disorder.


Let us now turn to the random-bond 2d BC model at Δ = 1. At this regime, the
random version should be comparable with the random Ising model, a model that has
been extensively investigated and debated [8,12–18]. According to these studies, the effect
of disorder gives rise only to logarithmic corrections as the critical exponents maintain
their 2d Ising values. Fitting our data for the corresponding pseudocritical temperatures
in the range L = 50 − 100 to the expected power-law behavior mentioned above, we find
that the critical temperature is Tc = 1.3812(4) and the shift exponent is 1/ν = 1.011(22).
This last estimate is a strong indication that the random-bond 2d BC at Δ = 1 has the
same value of the correlation’s length critical exponent as the pure version, and therefore,
as the 2d Ising model. Furthermore, our data for the specific heat maxima averaged
over disorder, [C]∗


av, showed that the expected double-logarithmic divergence scenario is
well obeyed. Finally, the FSS behavior of the susceptibility peaks (giving the estimate
1.749(7) for γ/ν) and the order-parameter values at the estimated critical temperature
Tc = 1.3812 (giving an estimate β/ν = 0.126(4)) are in good agreement with the expected
2d Ising universality class behavior. Thus, at this disorder strength, the random-bond
2d BC model with Δ = 1 belongs to the same universality class as the random Ising
model and the effect of the bond disorder on the specific heat is well described by the
double logarithmic scenario. In conclusion, our results amount to a strong violation of
universality, since the two second-order phase transitions mentioned above, with different
sets of critical exponents, are between the same ferromagnetic and paramagnetic phases.
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