
Establishing the fiber bridging law by 
an inverse analysis approach 
Lin, Y. and Karadelis, J.N. 
Author post-print (accepted) deposited in CURVE July 2015* 
 
Original citation & hyperlink:  
Lin, Y. and Karadelis, J.N. (2016) Establishing the fiber bridging law by an inverse analysis 
approach. Journal of Materials in Civil Engineering, volume 28 (2): 04015105 
http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001386 
 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  
 
 
*Cover sheet updated March 2016 
 
 
 

CURVE is the Institutional Repository for Coventry University 
http://curve.coventry.ac.uk/open  

http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001386
http://curve.coventry.ac.uk/open


 

 

1 
 

On Establishing the Fibre Bridging Law by an Inverse Analysis Approach 1 

 2 

Yougui Lin  3 
Department of Civil Engineering Architecture and Building, Faculty of Engineering and Computing, Coventry University, Coventry, 4 
W Midlands, CV1 5FB, UK 5 

John N Karadelis* 6 
Department of Civil Engineering Architecture and Building, Faculty of Engineering and Computing, Coventry University, Coventry, 7 
W Midlands, CV1 5FB, UK 8 

 9 

ABSTRACT 10 
A method for establishing the relationship between stress and crack face opening for steel fibre reinforced 11 
concrete (SFRC) beams under three-point loading was proposed using inverse analysis. The relationships were 12 
set up in two parts: Fracture mechanics theory was used before the hinge formation, followed by a classical 13 
mechanics of materials approach after the hinge was formed. This methodology did not incorporate any 14 
assumptions and was validated by the construction of experimental load versus crack-mouth-opening-15 
displacement (CMOD) curves and by predicting the experimental load vs. CMOD relationship for independent 16 
flexural tests on beams of different sizes. The proposed method can simulate and predict the complete flexural 17 
performance of SFRC beams under three-point bending. 18 
Key words: fibre, bridging-law, inverse-analysis, roller-compacted-concrete, fracture-mechanics, mechanics-of-19 
materials 20 
 21 

INTRODUCTION 22 

 23 

The addition of fibres to concrete is intended mainly to improve the mixture’s tensile strength, 24 

flexural strength and flexural toughness. It is well known that the mechanical performance of 25 

fibre-reinforced concrete (FRC) structures is strongly dependent on the mechanical 26 

interaction between matrix and fibres. For a given matrix, the fibre content, the fibre tensile 27 

strength and their geometric aspect ratio play a central role on the composite mechanical 28 

response. The main benefit gained by the addition of fibre is the improvement of the 29 

performance of FRC members after cracking. After cracking, fibres are stretched out in the 30 

cracked section, hence resisting the crack to open further. Therefore the relationship between 31 

the tensile stress developing in the fibre and the crack opening displacement should fully 32 

characterize the contribution made by the fibre-matrix interaction.  33 

In simulating the cracking performance of concrete, cracks are traditionally treated by means 34 

of classical continuum or smear-crack approaches (Etse et al. 2012). In recent years, 35 

advanced numerical techniques with embedded discontinuities have been proposed to capture 36 
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the cracking performance within the domain of fracture mechanics. For example, the 37 

elemental-finite element method (E-FEM) and the nodal finite element method (X-FEM) 38 

were developed to capture discontinuity paths (Oliver et al. 2006), while the element-free 39 

Galerkin method was proposed to capture arbitrary crack growth and growing crack problems 40 

(Belytschko et al. 1995) etc. The aforementioned numerical models cover mainly micro, 41 

meso and macro-scale approaches for FRC simulation. However, in the framework of 42 

structural scale models, interesting and practitioner-oriented proposals are founded in terms 43 

of cross-sectional based formulations (Olesen 2001; Burratti et al. 2011; Caggiano et al. 44 

2012), which lie in the classical continuum models. 45 

The simulation of load vs. CMOD of SFRC beams in flexure, lying in the cross-sectional 46 

based formulations, can be classified into two categories: One is based on the material 47 

mechanics method and the other on the fracture mechanics method. For the mechanics of 48 

materials approach, three assumptions are usually adopted (Maalej and Li 1994; Zhang and 49 

Stang 1998; Nour et al. 2011):  50 

(a) Linear distribution of stress across the un-cracked section;  51 

(b) Tensile stress at the crack tip, being equal to the tensile strength of the material;  52 

(c) Hinge formation after cracking.  53 

Based on these assumptions, the relationships of load-CMOD and load-deflection were 54 

established by applying a global equilibrium condition. 55 

The fracture mechanics-based method was based on the crack propagation criterion 56 

described by eqn.(1) (Ballarini et al. 1984; Foote et al. 1986; Zhang and Li 2004). A crack 57 

initiates and extends when the total stress intensity factor is equal to the matrix material 58 

toughness. 59 

 60 

                     (1) 61 
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 62 

Where: Ka and Kb are the stress intensity factors (SIF) induced by applied load and fibre 63 

bridging traction, respectively;       is the fracture toughness of the matrix under mode-I 64 

loading. 65 

 66 

The three assumptions adopted in the mechanics of materials based simulation are obviously 67 

debatable, for the following reasons:  68 

(a) The crack tip behaves in a different way than a hinge before the crack reaches the top 69 

of the beam;  70 

(b) The tensile stress vanishes when the crack reaches the top of the beam. In addition, 71 

the fracture mechanics-based method does not incorporate any assumptions, 72 

indicating that the latter can be more rigorous than the former. 73 

The fracture mechanics-approach used to simulate the crack propagation has been studied 74 

since 1980’s. Visalvanich and Naaman (1983) used the fracture energy concept to study the 75 

extension of cracks. Ballarini et al. (1984) and Foote et al. (1986) employed the stress 76 

intensity factor to study the crack growth length and fracture resistance of a SFRC beam. 77 

Jenq and Shah (1986) combined mechanics of materials and fracture mechanics to simulate 78 

crack propagation in a SFRC beam under the three-point bending regimes with the aid of 79 

several assumptions. Recently, Zhang and Li (2004) simulated the crack propagation of 80 

SFRC beams under three-point bending by employing fracture mechanics, based on the 81 

criterion of eqn.(1). However, the methods proposed by the aforementioned literature can 82 

only simulate the short load-CMOD curves (CMODs were usually smaller than 2mm) for the 83 

simple reason that fracture mechanics is no longer valid after the crack reached the top of 84 

beams. 85 

Relationship between Fibre Tensile Stress and Crack Opening Displacement. 86 
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It seems that whatever the choice of the method, both methods resort to the same relationship 87 

of fibre tensile stress and crack opening displacement, usually named the Fibre Bridging Law, 88 

or σ(w)-w law for convenience (Lindhagen et al. 2000; Zhang and Li 2004). The fibre 89 

bridging law of SFRC has been investigated since the 1980’s (Stroeven et al. 1978; Li and 90 

Wu 1992; Baggott and Abdel-monem 1992; Li and Chan 1994; Zhang and Stang 1998; Guo 91 

et al. 1999; Kazemi et al. 2007). Studies on σ(w)-w law can be categorized into two groups: 92 

Explicit consideration of fibre bridging mechanisms and non-explicit fibre contributions. The 93 

former resorts to pulling out individual fibres, or aligned fibres, to obtain a relationship of the 94 

tensile force, versus fibre slip. Fibre pull-out test, including normal fibre and inclined fibre 95 

pull-out, provides precise insight into the behaviour of the relationship of tensile stress and 96 

fibre slip displacement (Li and Chan 1994; Armelin and Banthia 1997; Laranjeira et al. 2010). 97 

However, the fibre bridging law cannot be obtained directly from these tests because fibres 98 

randomly distributed in the matrix behave differently to that in single fibre or aligned fibres 99 

tests. Several factors, such as the global orientation factor and the volumetric fraction of fibre, 100 

have to be taken into account in establishing the σ(w)-w law. Among these factors considered, 101 

the global orientation factor and effective volumetric fraction cannot be tested, and thus their 102 

values would be a guess (Foote et al. 1986, Jenq and Shah 1986). Therefore, it seems ideal to 103 

establish σ(w)-w laws by directly analysing load-CMOD or load-deflection using an inverse 104 

analysis approach, as it is often used to simulate the load-deformation response. 105 

 106 

FIBRE BRIDGING LAW BY INVERSE ANALYSIS 107 

 108 

It is certainly not viable to plant fibres in roller-compacted concrete (RCC) for pull-out tests. 109 

It is even more difficult to fabricate SFR-RCC (Steel Fibre Reinforced-Roller Compacted 110 

Concrete) dog-bone shape specimens for direct tensile tests and compact them with a 111 
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vibrating compactor, due to mixes being very dry. Thus, the fibre bridging law for SFR-RCC 112 

may only be determined by an indirect method. The inverse analysis method, or back analysis 113 

technique, has been employed to establish the σ(w)-w law by the following researchers: Guo 114 

et al. (1999) proposed a method for determining σ(w)-w laws for the tail of load-deflection 115 

curve utilising mechanics of materials. Sousa and Gettu (2006) employed an analytical 116 

solution based on the hinge concept proposed by Stang and Oleson (1998, 2000) to establish 117 

σ(w)-w laws of concrete and SFRC. Slowik et al. (2006) developed explicit software for 118 

obtaining the σ(w)-w laws of concrete and SFRC from experimental results and employed the 119 

inverse analysis method. The latter enclosed an optimization procedure and a finite element 120 

analysis (FEA) programme. Kwon et al. (2008) also developed a FEA program calibrated 121 

with experimental results to obtain the σ(w)-w laws of concrete and SFRC. Recently Zhang 122 

and Ju (2011) derived σ(w)-w laws of SFRC by inverse analysis using the concept of cracking 123 

strength. All the above methods were based on the mechanics of materials approach. To the 124 

authors’ best knowledge no researchers have established the σ(w)-w laws by employing both, 125 

an inverse analysis approach based on fracture mechanics and mechanics of materials 126 

theories yet. 127 

The main objective of this article is to set-up a theoretical method for establishing the 128 

relationships between fibre tensile stress and crack face opening displacement, without 129 

introducing any assumptions. This method should be used to simulate and predict the flexural 130 

performance of SFRC beams from the beginning to the long tail-end of the crack history and 131 

therefore reveal the role of steel fibres as a means of reinforcement in concrete beams 132 

undergoing flexure. This method is established by employing fracture mechanics and material 133 

mechanics, respectively.  134 

This article adopts the following procedure: First, it develops the SIFs (stress intensity factors) 135 

at crack tip and the relationships of load-CMOD (crack mouth opening displacement) 136 
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induced by both, applied load and fibre tensile stress. The above is tracked by a mathematical 137 

technique for establishing the fibre bridging law by inverse analysis approach. The 138 

subsequent section describes the materials, specimen preparation and test procedure. The 139 

establishment of fibre bridging laws, using the proposed method is presented thereafter. The 140 

above is shadowed by three established fibre bridging laws, used to simulate the experimental 141 

load-CMOD curves to validate the bridging laws in a polynomial form. In the next section, an 142 

established bridging law in conjunction with the size effect law is employed to predict the 143 

load-CMOD curve for beams of different size. The prediction is compared with the 144 

experimental load-CMOD curves. Finally, the last section summarises all useful remarks and 145 

draws the appropriate conclusions  146 

 147 

THE DEVELOPMENT OF LOAD v CMOD RELATIONSHIP 148 

 149 

Crack Propagation of Notched Beam under Three-Point Bending (3PB) Test 150 

 151 

Observations on SFRC beams under three-point bending tests indicated that all cracks 152 

initiated from the notch tip and extended monotonically with load increments. The cracks 153 

continued to extend although the applied load started falling after the peak load was reached 154 

and a hinge formed beneath the top of the beam. The hinge was located at about 0.1h beneath 155 

the top (h is the height of the beam). The complete process of failure of SFRC beam in 156 

flexure consisted of two distinct stages: The stage prior to hinge formation (Stage-I) and the 157 

stage after the hinge formation (Stage-II). In the former, the crack propagates monotonically 158 

and thus the process can be studied by fracture mechanics. In the latter the crack no longer 159 

extends and thus fracture mechanics is no longer valid and therefore mechanics of materials 160 
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should take over. It is therefore apparent that two diverse relationships are needed to portray 161 

the stress vs. crack-face-opening-width.  162 

 163 

The Form of σ(w)-w Law 164 

 165 

Several forms of σ(w)-w laws, such as an exponential function proposed by Jenq and Shah 166 

(1986), and a complex expression by Armelin and Banthia (1997), have been used to simulate 167 

the load-CMOD path of SFRC beams in flexure. RILEM (2002) recommended four types of 168 

expressions, including multi-linear and bi-linear functions, to fit an experimental stress-crack 169 

opening curve from a uniaxial tension test, to obtain the σ(w)-w law for design purposes. 170 

Zhang and Stang (1998) conducted a direct tensile test of a notched SFRC bar and then 171 

established a σ(w)-w law using a regression fitting technique. This was a series of straight 172 

lines, representing the ascending and descending segments in the pre-peak and post-peak 173 

regions. The multi-straight line bridging law that was directly derived from a uniaxial test, 174 

was successfully used to simulate the load-CMOD relation of SFRC beams in flexure (Zhang 175 

and Li 2004). Therefore, a multi-linear function has been adopted to establish the σ(w)-w 176 

laws in later analysis.  177 

 178 

Profile of Crack Face 179 

 180 

Cox and Marshall (1991) proposed a self-consistency concept to analyse the crack face 181 

profile. Zhang and Li (2004) employed the concept to determine the crack profile for 182 

predicting load-CMOD curves of SFRC beams under 3PB test. However, the computation 183 

was a rather complicated and time-consuming iterative procedure. Fortunately, Foote et al. 184 

(1986) verified that the straight-line crack profile assumption was sufficiently accurate for 185 
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calculating fracture parameters by comparing the exact and the approximate solutions. Since 186 

then, linear crack profiles have successfully been used in many studies (Jenq and Shah 1986; 187 

Maalej and Li 1994; Armelin and Banthia 1997; Zhang and Stang 1998; Song et al. 1999; 188 

Denneman et al. 2011; Nour et al. 2011). Therefore, the straight-line crack face assumption is 189 

employed in the analysis to follow. 190 

 191 

Stress Intensity Factor and CMOD at Stage-I 192 

 193 

At Stage-I the crack propagates monotonically, thus fracture mechanics can be applied. 194 

Consider the SFRC beam under three point bending (3PB) test shown in Figure 1, which 195 

shows the fibre tensile stress acting on the crack face. The total stress intensity factor (SIF) at 196 

the crack tip is the sum of that induced by the applied load P plus the fibre bridging stress, 197 

σ(w(x)). The crack initiates from the tip of the initial notch when the SIF is equal to the 198 

fracture toughness of matrix KIC,M; and (the crack) continues advancing as the load increases. 199 

After the peak load is reached, the load decreases with crack growth in a displacement control 200 

mode. The criterion described by eqn.(1) is always satisfied during crack propagation in 201 

Stage-I. 202 

 203 

Stress Intensity Factor and CMOD Induced by Applied Load.  204 

 205 

Tada et al. (2000) provide the equations stated below for calculating SIF and CMOD of an 206 

unreinforced beam under 3PB induced by applied load: 207 

 208 
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 214 

Where:     is the SIF induced by the applied load; CMODa is the CMOD induced by the 215 

applied load; σ is the tensile stress evaluated by eqn. (4); P is the applied load; B, h, S and a 216 

are the width, height, span and length of crack; E is the Modulus of Elasticity of the material 217 

of the beam. 218 

 219 

Stress Intensity Factor and CMOD Induced by Fibres 220 

 221 

The relationships for evaluating SIF and CMOD induced by fibres are developed by the 222 

method of Green’s function and Paris’ Equation (Tada et al. 2000). The relationship for 223 

evaluating the SIF induced by fibres is: 224 
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Where: KIb is the SIF induced by fibre traction; a0 is the depth of the notch; x is defined in 228 

Figure1(b); σ       is the fibre bridging law;  (
 

 
 
 

 
) is Green’s function evaluated by eqns. 229 

(8)-(12) below. 230 
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 239 

In order to apply Paris’ Equation to obtain the CMOD induced by fibres, one has to exert a 240 

virtual pair of forces F acting at the crack mouth (see Figure1) (Tada et al. 2000). The stress 241 

intensity factor, KIF, induced by the pair of these forces is then given by: 242 

 243 
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 245 

Paris’ Equation for plane stress conditions is (Tada et al. 2000): 246 
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 248 

Applying Paris’ Equation and replacing a in the integrand with   , to avoid confusion, results 249 

in: 250 

      
 

  
∫  ∫

 (
 

   
  

 
) (

 

   
  

 
)

(  
  

 
)
 
√  (

 

  )
 

       

    
 

  
 

 

 
         (15) 251 

 252 

Where: CMODb is the CMOD induced by fibre traction; x is as per Figure1(b).  253 

 254 

For a relatively straight crack face, the crack opening displacement, w, at x is: 255 

 256 

  
    

    
                (16) 257 

 258 

Where: w is the crack opening displacement at x; CTOD is the notch tip opening 259 

displacement. 260 

 261 

Therefore, for the SFRC beam the total CMOD is evaluated as follows: 262 

 263 

                         (17) 264 

 265 

Where: CMODa and CMODb are the CMODs induced by applied load and fibre tensile stress, 266 

respectively and evaluated by eqn.(3) and eqn.(15), respectively. 267 

It is noted that in eqn.(15) the expression   (
 

  )
 

 may take a negative value due to the fact 268 

that variables    and x are integrated over the intervals [0, a] and [a0, a], resulting in x being 269 
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larger than   , and consequently leading to the radical √  (  ⁄  )
 
 being a complex 270 

number. For engineering applications the applicable value for       is the real part of the 271 

complex quantity. This was discussed broadly by Xiao and Karihaloo (2002). The right hand 272 

side of eqn.(15) is singular at the lower bound integral for variable   . Thus, Gaussian 273 

quadrature (Richard et al. 2005) was employed to avoid singularity problems and was achieved 274 

by numerical computation. 275 

 276 

Development of Load-CMOD Relationship in Stage-II 277 

 278 

After a hinge formation beneath the top of the beam, the concept of SIF at the crack tip is no 279 

longer valid. In fact, the criteria for crack extension defined by eqn.(1) would not be satisfied 280 

after the hinge formation. However, in this case the tensile stress on the crack face can be 281 

considered by using the mechanics of materials approach. 282 

Observations during tests indicated that the hinge is usually formed at post-peak regions, 283 

when the load was decreasing as the CMOD was increasing. The SIF induced by fibre 284 

traction increases monotonically at stage-I, due to the increase of crack opening and 285 

propagation. However, the incremental rate of SIF induced by the applied load slows down 286 

due to the load reduction, although the crack length increases. When the criterion of eqn.(1) is 287 

not satisfied, this indicates a hinge formation.  288 

Figure 2 shows a cut through the symmetry line of a SFRC beam under 3PB test, in which the 289 

crack reaches the top of the beam, and a hinge forms. The fibre tensile stress distributed on 290 

the crack face consists of       and       . The bending moments caused by applied load 291 

and fibre tensile stress with respect to the hinge are: 292 

 293 
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    ∫               
 

  
        (19) 295 

 296 

Where: MP and Mf are the bending moments induced by applied load and fibre traction, 297 

respectively.  298 

 299 

Application of global equilibrium condition with respect to the bending moments results in: 300 

 301 

  

 
  ∫               

 

  
        (20) 302 

 303 

Where:         is the fibre bridging law, consisted of         and         ; Applying 304 

the assumption of straight crack face, the relations of CTOD and CMOD and crack width at x 305 

are: 306 

 307 

     
   

 
               (21) 308 

     
    

 
              (22) 309 

 310 

Assuming that a hinge forms at w =  , the fracture mechanics-based method is valid in the 311 

interval [0, w0]. Thus the corresponding length x0 over which the bridging law,        , 312 

has been previously established, and is still valid is: 313 

 314 
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 316 

The bending moment about the hinge induced by fibres is evaluated by: 317 

 318 

    ∫   (    )       
 

    
  ∫    (    )       

    

  
    (24) 319 

 320 

Calculation Procedure 321 

 322 

It has been previously stated that the real shape of fibre bridging law, established by Zhang 323 

and Stang (1998) using the results of the uniaxial tension test of SFRC bar, consists of a 324 

series of straight lines. Therefore, a linear function is used to establish the        law by 325 

inverse analysis. Figure 3 shows the straight lines that constitute the bridging law. The 326 

calculation procedure is illustrated in Figure 4. 327 

 328 

|              |             (25) 329 

|            |             (26) 330 

| 
     

  
 |              (27) 331 

         
       

       
              (28) 332 

Where: ε1, ε2 and ε3 are allowable tolerances; CMOD is the sum of calculated Crack-Mouth- 333 

Opening-Displacement shown in eqn.(17); Suffix i provides the experimental data (wi, (w)i) 334 

for i=1, 2, 3, ∙∙∙∙∙∙(Figure 3).  335 

During the iterative procedure, the crack length ai should always be longer than the previous 336 

length ai-1, in order to ensure a monotonically increasing crack length for the crack 337 
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propagation in Stage-I. Considering the computation in stage-I, ai and (w)i consist a solution 338 

when the criteria of eqns.(25) and (26) are satisfied for a given set of experimental data 339 

(CMODi, CTODi, Pi). On the other hand, in stage-II, (w)i is the solution when the criteria of 340 

eqns.(27) are satisfied for a set of data (CTODi, Pi). 341 

 342 

EXPERIMENTAL CAMPAIGN AND RESULTS 343 

 344 

Materials and Specimen Preparation 345 

 346 

Mixes were purposely designed for concrete bonded overlay on old concrete pavements. 347 

They were named steel fibre-reinforced, roller-compacted SBR (Styrene Butadiene Rubber) 348 

modified concrete (SFR-RC-SBRMC). They were purposely designed to be placed by asphalt 349 

pavers and compacted by rollers. Five groups of beams made of five different mixes were 350 

prepared, containing the hooked-end steel fibre and the polymer SBR. Two types of steel 351 

fibre were used: one was 35mm long with aspect ratio 50, the other was 50mm long with 352 

aspect ratio 80. The mix design method, ingredients of the mixes, specimen formation and 353 

curing procedure can be found in Lin et al. (2013). 354 

The specimens comprised centrally notched beams, tested under 3PB. The mix proportion is 355 

listed in Table 1, while the dimensions of the beams are reported in Table 2. Among the 356 

beams used, two beams of SBRPMC1.5%-35-L125 were purposely made for investigating 357 

the size effect on flexural strength. Mix SBRPMC1.5%-35 and SBRPMC1.5%-50 contained 358 

35 mm-long and 50 mm-long fibres in the content of 1.5% by volume. SBRPMC0% acted as 359 

the matrix of the mixes. All three mixes were the same, only mix SBRPMC0% did not 360 

contain any fibres. The beams were compacted with a vibrating compactor, specially 361 

designed for the present research study. 362 
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Mix Con.SBRPMC1.5%-35 was conventional concrete, containing the same steel fibres as 363 

mix SBRPMC1.5%-35. Its fresh mix exhibited a slump of 130mm. Con.SBRPMC0% was the 364 

matrix of Con.SBRPMC1.5%-35; the mix proportion of both mixes was the same except that 365 

the matrix did not contain fibres. Beams of the two mixes were purposely employed to reveal 366 

the fibre efficiency in both, conventional concrete and roller-compacted concrete, by 367 

comparing the fibre bridging laws of the two mixes. The mix was casted in steel moulds and 368 

consolidated on the vibrating table.  369 

The beams of matrixes SBRPMC0%-L67 and Con.SBRPMC0%-L67 were saw-cut at mid-370 

span to a 33mm deep notch to comply with the RILEM code (1991). At this point it seems 371 

opportune to provide more explanation for the identification number of the beams. 372 

Considering mix Con.SBRPMC1.5%-35-L80 as an example, this indicates that the mix is 373 

conventional SBR polymer modified concrete, containing 1.5% 35mm-length fibre in volume 374 

fraction, whereas the ligament height is 80mm.  375 

 376 

Tests of Matrix Beams 377 

 378 

The experimental setup for measuring fracture toughness in Mode-I loading is shown in 379 

Figure 5. The test machine comprised a hydraulic servo-closed loop with a maximum load 380 

capacity of 150 KN. Test data were automatically recorded by a computer at the frequency of 381 

5 Hz. The span-to-depth ratio and notch-length to depth ratio were 4 and 0.33, respectively. 382 

The test procedure complied with the RILEM code (1991). However, the loading rate and the 383 

unloading procedure recommended by RILEM were not followed. The load was controlled 384 

by CMOD at the incremental rate of 0.0001 mm/s, significantly lower than that 385 

recommended by RILEM. It was, however, consistent in all flexural tests. CMOD, CTOD 386 

and load-point deflection were measured and recorded automatically by a computer during 387 
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the test. The measurement of CTOD at maximum load was taken as the critical crack tip 388 

opening displacement (CTODC). The Two-parameter model proposed by Jenq and Shah 389 

(1985) and adopted by the RILEM (1991) was employed. The critical stress intensity factor 390 

(KIC,M), was determined based on the RILEM code. In the meantime, the stress intensity 391 

factor corresponding to crack initiation at the notch tip (     
   ), modulus of rupture (MOR) 392 

and compressive strength (  ) were determined from the same test data and listed in the same  393 

Table 3. The method to determine      
    was the same as that proposed in Double-K model 394 

by Xu and Reinhardt (1999). The load corresponding to crack initiation at notch tip was 395 

obtained by identifying the change of load-CMOD curve from linear to non-linear.  396 

 397 

Test Procedure of SFR-RC-SBRMC Beams 398 

 399 

The experimental setup for testing notched SFR-RC-SBRMC beams under 3PB is the same 400 

as the one used in matrix beams, shown in Figure 5. Load, CMOD, CTOD and vertical 401 

displacement at mid-span were measured, and the test data were automatically recorded by a 402 

computer at the frequency of 5 Hz. The loading rate was controlled by CMOD, such as: 403 

0.0001 mm/s up until CMOD was equal to 0.2 mm; then 0.0033 mm/s up until CMOD was 404 

equal to 3 mm; then 0.005 mm/s until complete failure of the specimen occurred. The 405 

experimental results used to establish the fibre bridging laws are presented in the succeeding 406 

sections. 407 

 408 

Mechanical Properties of Mixes  409 

 410 

Table 3 shows the mechanical properties of mixes SBRPMC1.5%-35, SBRPMC1.5%-50 and 411 

Con.SBRPMC1.5%-35. The compressive strength, fc, was measured by using blocks sawn off 412 
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the tested beams. The MOR (modulus of rupture) was evaluated using the maximum load and 413 

the geometrical dimension of the notched cross-section of the beam. The Moduli of Elasticity 414 

and Poisson’s ratios of mixes SBRPMC1.5%-35 and Con.SBRPMC1.5%-35 listed in Table 3 415 

were measured using cylinders of 100mm x H180mm in compression. The Modulus of 416 

Elasticity and Poisson’s ratio of mix SBRPMC1.5%-50 was simply taken as that of mix 417 

SBRPMC1.5%-35, since both mixes were the same except for the fibre length.  418 

 419 

Establishing the Bridging Law for SFR-RC-SBRMC 420 

 421 

The calculation procedure has been presented earlier. MatLab was utilised for the 422 

computations (Valentine and Hanhn 2007). 6 x 6 Gaussian integrating points (Richard et al. 423 

2005) were used to perform the double-variable integration for CMODb and six Gaussian 424 

integrating points were used for KIb and Mf. The allowable tolerance of ε1 was usually taken 425 

to be within the range of 2-6 MPa∙mm
0.5

, that of ε2 was in the range of 0.008-0.02 mm and 426 

that of ε3 was less than 0.01. The variable allowable tolerance for ε1 and ε2 was chosen to 427 

achieve computational convergence and a unique solution. Calculations showed a hinge 428 

forming at the crack length, a, being approximately equal to 0.9h. This is consistent with the 429 

observation results during the test, which have been declared previously. 430 

In order to demonstrate the method proposed earlier, the SBRPMC1.5%-35-L80 beam with 431 

20mm notch depth, under 3PB is taken as a case-study to establish the fibre bridging law. The 432 

experimental load-CMOD curves of the four beams are plotted in Figure 10(a) and the 433 

averages of CMOD, CTOD and P of the four beams at specific CMOD values are listed in 434 

Table 4. It is noted that the load P, in Table 4, is the applied load for 1 mm width of beam. 435 

The calculated σ(w) and the corresponding w are tabulated in Table 4 too. The fracture 436 

mechanics-based method was applicable until the crack face opening was equal to 0.958mm 437 
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(            ). Afterwards, a hinge formed beneath the point load and the mechanics of 438 

materials theory was utilised. The displacement range in Stage-I was 0.121 – 0.958 mm, 439 

while that in Stage-II was in the range of 0.958 – 12.45 mm. The established fibre bridging 440 

law for mix SBRPMC1.5%-35 is plotted in Figures 6 & 7. 441 

Figures 6 and 7 show clearly that the profile of the established σ(w)-w relationship using 442 

inverse analysis, is quite similar to the experimental one under direct tensile tests, as 443 

illustrated in the literature by Zhang and Stang (1998). This validates the method for 444 

establishing σ(w)-w as proposed earlier. The regression fitted polynomial for the calculated 445 

stress σ(w) and crack face opening w represents its general tendency. 446 

 447 

The procedure for establishing the fibre bridging law for the other two mixes 448 

Con.SBRPMC1.5%-35 and SBRPMC1.5%-50 is similar. The results are illustrated in Figures 449 

8 and 9. The fitted polynomials for the fibre bridging laws are shown in the same figures and 450 

listed in Table 5. 451 

 452 

Simulating Load-CMOD  453 

 454 

It has been previously pointed out that the bridging law, as defined by a polynomial, 455 

represents approximately only the general tendency of the experimental load-CMOD. 456 

Therefore, it may be appropriate to back the polynomial bridging law by validating the load-457 

CMOD relationship. The fibre bridging law established previously and listed in Table 5 is 458 

used to simulate the relationship of load-CMOD at crack initiation (the notch tip), in Stage-I, 459 

and in Stage-II. 460 

 461 

Load and CMOD during Crack Initiation at Notch Tip 462 
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 463 

Before cracking of the matrix takes place the fibres are inactive, thus the very first crack birth 464 

is resisted by the matrix only. The load causing crack initiation at notch tip can be evaluated 465 

using eqn.(2) by setting a=a0 and          
   . The CMOD is calculated using eqn.(3) with a 466 

known load. The critical stress intensity factor of the matrix for crack initiation at notch tip is 467 

listed in Table 3. 468 

 469 

Simulating Stage-I 470 

 471 

In stage-I, in which the notch tip opening displacement (CTOD) is less than w0, the fracture 472 

mechanics method is used. The establishment of the load-CMOD relationship takes place by 473 

calculating the load P for a given CMOD. Thus, for a given CMOD, vary P and crack length 474 

a, and then calculate KIa, KIb, CMODa and CMODb. P and a are the solutions when the 475 

criteria of eqns. (25) & (26) are satisfied. Assuming a straight crack face, the CTOD is 476 

calculated by: 477 

 478 

     
    

 
              (29) 479 

 480 

Simulating Stage-II  481 

 482 

In Stage-II, in which the notch tip opening displacement (CTOD) is larger than w0, the 483 

Mechanics of Materials method is used. The establishment of the load-CMOD relationship 484 

can be achieved by calculating the load P for a given CMOD. Thus for a given CMOD, vary 485 
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P and then calculate x0 and MP and Mf. When the criterion of eqn.(27) is satisfied, the 486 

corresponding value of P represents the solution. 487 

 488 

Discussion 489 

 490 

The results from the numerical simulation are plotted and compared with the experimental 491 

results in Figures 10 and 11. It is reminded that the load shown in both figures is the applied 492 

load for 1mm width of beam. Also, it is pointed out that the clip gauges for measuring 493 

CMOD of Beams 3 and 4, made of mix SBRPMC1.5%-35, disengaged abruptly during the 494 

test, at CMOD=3.6mm for Beam-3 and 10.2mm for Beam-4, as shown in Figure 10(a).  495 

It should also be mentioned that three beams of mix SBRPMC1.5%-50-L80 were prepared. 496 

Two beams were centrally saw-cut to a notch depth of 19mm. Unfortunately, the third beam 497 

was notched 25mm (target depth was 20mm). The experimental load-CMOD curve of the 498 

third beam was far below the curves of the other two beams. Thus, its experimental data are 499 

not used and its curve is not presented in Figure 11. It is accepted that the transition from 500 

fracture mechanics to mechanics of materials approach is visible at the simulation curves 501 

plotted in Figures 10(a) and 11. However, the differences at the transition points are fairly 502 

small from the viewpoint of engineering applications. 503 

It is apparent that the simulated load-CMOD curves are in good agreement with the 504 

experimental results. It is also clear that with the aid of the established bridging law, the 505 

proposed method can simulate the flexural performance of SFRC beams from the origin to 506 

the long tail-end. 507 

 508 

Prediction of Load-CMOD Relationship 509 

 510 
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In this study two beams of the mix SBRPMC1.5%-35 with the dimensions 100 mm x 150 mm 511 

x 500 mm width, height and span were tested, following the same procedure as in the beams 512 

of the same mix described previously. These beams were larger in size than the beams used 513 

for establishing the fibre bridging law listed in Table 5.in Table 5. 514 

The relation of load-CMOD of the larger beams is predicted using the fibre bridging law, the 515 

calculation procedure proposed earlier and the size effect law. Research conducted by the 516 

authors (Lin 2014) indicated that the flexural strengths were significantly affected by the size 517 

of specimens. It was noted that the trajectories of the flexural strength-CMOD curves of the 518 

mix SBRPMC1.5%-35 beams with different ligament heights were nearly parallel to each 519 

other, especially in the post-peak region, indicating that the        laws for different 520 

specimen size may be related by a constant factor. 521 

Using mix SBRPMC1.5%-35, Lin (2014) confirmed experimentally the size effect law, in its 522 

form of Bazant’s Equation (Bazant 1989), by testing a total of eleven notched beams with 523 

ligament heights in the range of 40 – 125 mm. Essentially, he casted nine 80x100x400 mm 524 

beams, four of which had a 20 mm notch saw-cut at mid-span, three a 40 mm notch and two a 525 

60 mm notch. The remaining two beams were made of 100x150x500 mm and were centrally 526 

notched 25 mm deep. The size effect equation for the mix SBRPMC1.5%-35 is: 527 

 528 

   
     

√
 

   
  

           (30) 529 

 530 

Where: fp is maximum flexural strength (MPa); D is the height (depth) of ligament (mm). 531 

 532 

The ligament height of the beam used for establishing the bridging law was 77.3mm (Table 533 

4), whereas the average height of ligaments of the beams used for prediction is 123mm. Thus, 534 
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the ratio of maximum flexural strength of the 123mm - ligament beam to that of the 77.3mm- 535 

ligament beam is 0.787, which is determined using eqn. (30). Therefore, the bridging law for 536 

the beam with the 123mm-height ligament is then: 537 

 538 

                                                               

0≤w≤0.958 mm                  (31) 539 

                                                540 

0.958≤w≤12.45 mm                 (32) 541 

 542 

The procedure for the prediction of load-CMOD relationship is the same as that described 543 

previously. The prediction of load-CMOD using the bridging law above, is illustrated and 544 

compared with the experimental load-CMOD curves in Figure 12. It is noted that the clip 545 

gauge of beam-2 disengaged abruptly during the test at CMOD= 4 mm, hence a 546 

comprehensive experimental load-CMOD history is not available. It is observed that the 547 

predicted results are in good agreement with the experimental results as the maximum 548 

predicted load is only 8% higher than the measured one. It is obvious that the proposed 549 

method, combined with the established bridging law and size effect law, can predict the 550 

flexural performance of SFRC beams from the origin to the long tail-end. 551 

 552 

REMARKS AND CONCLUSIONS 553 

 554 

Summarizing the above, the following conclusions can be drawn: 555 

An assumptions free method for establishing the performance of SFRC in flexure using an 556 

inverse analysis approach has been proposed. It has been proved experimentally and verified 557 

by simulating and predicting the load-CMOD relations of beams. The proposed method 558 
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consists of two stages: Stage-I is defined as the stage before a hinge forms at the top of the 559 

beam. In this case the fibre bridging law was set up by using fracture mechanics. Stage-II 560 

defines the mechanics after the formation of a hinge. In this case the fibre bridging law was 561 

established by using mechanics of materials.  562 

The established relationship between stress and crack face width can be regarded as the real 563 

stress distribution on the crack’s face. The general tendency of the established bridging laws 564 

for the mixes used in the study (Figures 10-12) is similar to that obtained by a direct tension 565 

test conducted by Zhang and Stang (1998). 566 

The fibre bridging law is affected by specimen size. The combination of fibre bridging law 567 

and size effect law may be regarded as a material property. The method, combined with the 568 

established bridging law and size effect law, can predict the flexural performance of SFRC 569 

beams from the origin to the long tail-end. 570 

Although the specimens used in the study were steel fibre-reinforced roller compacted SBR 571 

modified concrete, the proposed method for establishing the fibre bridging law can be 572 

suitable to any fibre reinforced concrete and even plain concrete. 573 
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 723 

List of Figure Captions  724 

 725 

Figure 1. (a) SFRC beam under three-point bending. (b) Fibre tensile stress distribution on crack faces. 726 

 727 

Figure 2. A crack reaching the top of SFRC beam under three-point bending. 728 

 729 

Figure 3.        law consisting of multi-linear lines 730 

 731 

Figure 4. Synoptic calculation procedure for establishing the fibre bridging law. Stage-I (left): Fracture 732 
Mechanics Method. Stage-II (right): Mechanics of Materials Method. 733 

 734 

Figure 5 (a). Loading configuration and instrumentation. (b) Notched beam under three-point bending. The clip 735 
gauge for measuring CMOD, a LVDT for measuring CTOD, and a second LVDT for measuring load-point 736 
deflection are visible. 737 

 738 

Figure 6. Calculated tensile stress σ(w) for a given crack face opening w and regression fitting expressions 739 

for the SBRPMC1.5%-35-L80 beams under 3PB by inverse analysis (w0= 0.958mm) 740 

 741 

Figure 7. Calculated σ(w)-w for the SBRPMC1.5%-35-L80 beams under 3PB by inverse analysis using 742 

fracture mechanics, for w < 0.958mm 743 

 744 

Figure 8. Calculated σ(w) and w, and regression fitting expressions for the Con.SBRPMC1.5%-35-L80 beams 745 
under 3PB by inverse analysis (w0= 0.907mm) 746 

 747 

Figure 9. Calculated σ(w) and w and regression fitting expressions for the SBRPMC1.5%-50-L80 beams under 748 
3PB by inverse analysis (w0=1.063mm). 749 

 750 

Figure 10. Comparison between experimental load-CMOD curves with simulated curve: (a) mix 751 
SBRPMC1.5%-35, (b) mix Con.SBRPMC1.5%-35 752 

 753 

Figure 11. Comparison of experimental load-CMOD curves with simulated curve of mix SBRPMC1.5%-50 754 

 755 

Figure 12. Comparison of experimental load-CMOD curves with predicted curve of SBRPMC1.5%-35-756 
L123beam 757 
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 772 

List of Tables with their Headings 773 

 774 

Table 1 775 
Mix proportion of the five mixes. 776 

Mix ID Mix proportion Mix wet  

Cem. Coarse 

aggre. 

sand SBR added 

water  

Fibre by 

volume 

density 

(MPa) 

SBRPMC1.5%-35 1 1.266 1.266 0.217 0.095 1.50% 2482 

SBRPMC1.5%-50 1 1.266 1.266 0.217 0.095 1.50% 2480 

Con.SBRPMC1.5%-35 1 1.266 1.266 0.217 0.244 1.50% 2330 

SBRPMC0% 1 1.266 1.266 0.217 0.095 0% 2306 

Con.SBRPMC0% 1 1.266 1.266 0.217 0.244 0% 2297 
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 810 

Table 2 811 
Mixes and dimensions of tested beams for establishing the     laws by inverse analysis. 812 

ID of beams  Num.of  Fibr. leng. Dimen.of beam (mm) Ligament/notch  

 beams mm width x height x span (mm) 

SBRPMC1.5%-35-L80 4 35 80x100x400 80/20 

SBRPMC1.5%-35-L125 2 35 100x150x500 125/25 

SBRPMC1.5%-50-L80 3 50 80x100x400 80/20 

Con.SBRPMC1.5%-35-L80 

SBRPMC0% -L67                                 

Con.SBRPMC0%-L67 

2 

3 

3 

35 

- 

- 

100x100x400 

80x100x400 

100x100x400 

80/20 

67/33 

67/33 
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 848 

 849 

Table 3 850 
Mechanical properties of mixes and their matrix 851 

Mix ID KIC,M CTODC KIC
ini

,M E ν MOR(3PB) fc 

(MPamm0.5) (mm) (MPamm0.5) (MPa) (MPa) (MPa) 

SBRPMC1.5%-35       32365 0.187 15.22 79.61 

SBRPMC1.5%-50    32365 0.187 16.76  
Con.SBRPMC1.5%-35    31000 0.19 10.37 68.18 

SBRPMC0% 48.76 0.0104 24.63 

  

7.93 75.5 

Con.SBRPMC0% 41.36 0.0182 15.2     6.52 65.9 
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Table 4 885 

Experimental data of beams SBRPMC1.5%-35-L80 under 3PB and calculated σ(w) for a given w by inverse 886 

analysis (P= applied load per 1mm width; dimensions: h(ave)= 99.3mm, a0(ave)= 22mm) 887 

Type of  

theory 

Average of experimental results  Calculated values for σ(w)-w 

CMOD CTOD P w σ(w) 

mm mm N/mm width mm MPa 

Fracture 

mechanics 

0 0 0 0.000 5.2 

0.2 0.1206 137.4 0.121 5.2 

0.4 0.2495 147.6 0.250 5.5 

0.6 0.3676 154.6 0.368 5.5 

0.8 0.522 153.5 0.522 5.12 

1 0.663 151.8 0.663 4.93 

1.4 0.958 147 0.958 4.56 

Mechanics  

of 

Materials  

 

1.6 1.103 146.7 1.103 4.54 

2 1.407 138.4 1.407 4.22 

4 2.945 105.7 2.945 2.5 

6 4.497 82.7 4.497 1.94 

8 6.078 70.2 6.078 1.84 

10 7.646 60.2 7.646 1.06 

12 9.34 54.1 9.340 1.42 

14 10.9 50.5 10.900 1.42 

16 12.45 47.8 12.450 1.38 
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Table 5 911 
Fibre bridging laws of mixes SBRPMC1.5%-35, Con.SBRPMC1.5%-35 and SBRPMC1.5%-50, as established 912 
for beams under 3PB. 913 

Mix ID Bridging law in flexure 

SBRPMC1.5%-35 σ(w) =-59.768w5+146.64w4-122.85w3+37.82w2-2.7337w+5.193   0≤w≤0.958mm 

σ(w) =-0.0056w3+0.1612w2-1.5044w+5.9306                       0.958mm≤w≤12.45mm 

Con.SBRPMC1.5%-

35 

σ(w) = -24.88w3 + 26.568w2 - 5.5956w + 3.3125                                 0≤w≤0.907mm 

σ(w) = 0.0012w3 - 0.025w2 - 0.0461w + 2.4392                     0.907mm≤w≤12.64mm 

SBRPMC1.5%-50 σ(w) = 11.165w3 - 22.287w2 + 11.068w + 4.5571                                0≤w≤1.063mm 

σ(w)= -0.0012w3 + 0.0654w2 - 0.9482w + 5.9164                 1.063mm≤w≤12.99mm 

 914 

 915 
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