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A multi-body systems approach to simulate helicopter occupant 
protection systems 
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Abstract: This paper reports on the work of computer simulations carried out at Coventry 
University as part of the European 6th Framework HeliSafe TA project which considered 
the potential improvements in occupant safety for civil helicopters. A multi-body 
systems approach with additional use of finite elements for critical components such as a 
pilot airbag and the harnesses was adopted in the computer models to simulate helicopter 
crash/rollover scenarios and to investigate the effectiveness of occupant protection 
systems deployed during helicopter crash scenarios. ADAMS and Madymo simulations 
of helicopter impact/rollover events were demonstrated. A cabin/cockpit model of a Bell 
UH-1D helicopter was developed to replicate the physical crash test setup and a 
parametric study for the pilot airbag and a range of harness concepts was performed. The 
use of validated multi-body systems based cabin/cockpit models has proved to be 
effective in the development of new restraint system concepts for occupant protection. 
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1. Introduction 
 

The Helisafe TA project [1] was established to follow on from the original Helisafe 

project set up under the European 5th Framework in recognition of the fact that 

helicopters are important not only in military service but also in a variety of civil 

operations. On some occasions, a helicopter is the only effective means of transport 

available, having to function in bad weather conditions or search and rescue 

operations close to the ground or over open water. Due to the nature of these 

operations, and the complex manoeuvres helicopters are required to undertake, 

occupants require protection for scenarios that do not exist in fixed wing aircraft [2,3]. 

Modern helicopters are designed with advanced materials and crash worthy structures 

using computer aided engineering tools and test procedures that parallel those used for 

crash analysis in the automotive industry, albeit for different scenarios. For a 

helicopter, post crash risks such as fire, ditching in open water or crashing in remote 
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locations were all identified in the Helisafe TA project as drivers for occupant 

protection systems to mitigate injuries in survivable crashes [4]. 

The initial simulations carried out here were performed with ADAMS and 

MADYMO to exploit the multi-body systems capabilities of these software systems 

to model the nonlinear behaviour of the landing gear systems for a generic helicopter 

and simulate situations such as rollover that would be difficult to recreate using a full 

finite element approach. The generic models developed made use of a SAMCEF data 

set as the basis for the model development. The approach of using a multi-body 

systems code such as ADAMS to carry out pre-simulation and transfer boundary 

conditions to a model of a vehicle interior with occupants in Madymo has precedence 

in the automotive industry and was investigated by the authors [5] where they looked 

at the problem of simulating vehicle rollover. The authors identified the strengths in 

ADAMS in that it is an established program for simulating ground vehicle dynamics 

but with a drawback in that it did not possess an embedded capability to include non-

linear finite element sections of a model, validated dummy models or restraint 

systems and airbag modules. In their work the authors were able to simulate the 

evolution of the rollover event up to the point of impact in ADAMS and then pass 

information to Madymo to continue the simulation of the rolled vehicle and 

occupants. Other work has involved the combined use of ADAMS and DYTRAN. 

This is not co-simulation, however, and the approach was still to use ADAMS for 

multi-body pre-simulation and pass the boundary conditions to the explicit DYTRAN 

finite element program. An example of this is described in [6] where the authors used 

ADAMS to model the landing gears and pass the loads predicted from initial 

simulations to a DYTRAN model of the helicopter structure. 



An early activity in the Helsafe TA project involved a study at Coventry 

University investigating the NTSB Aviation Accident Database [7] for helicopter 

crash cases to identify the significance of post-crash risk hazards with a focus on fire, 

smoke, crashing on open water or coming down in remote and inaccessible locations. 

The survey, however, also indicated that the occurrence of post-crash roll over was 

significant. As with automotive rollover subsequent egress from the crash structure 

can be compromised due to the nature of the event. The information is summarized in 

Table 1 where it can be seen that rollover occurred in 22% of the 92 cases surveyed. 

Following the simulation work on rollover further studies involved the 

development of interior cabin/cockpit models of the project crash structure, a Bell 

UH-1D helicopter, in Madymo to replicate the crash test setup including a pilot 

dummy, a forward facing passenger dummy and a side seated passenger dummy. The 

Madymo models were validated against available sled test data from the first Helsafe 

project using two representative crash pulses, referred to here as HS1 and HS2. 

During the project an initial full-scale baseline crash test was performed at the CIRA 

full scale crash test facility (Figure 1) which also provided data for the ongoing 

validation of the computer models. 

Finally a parametric study using the validated Madymo Bell cabin/cockpit 

models was performed to investigate a range of harness concepts and the optimum 

position and firing time for the pilot airbag. During this phase of the work the IrSIx 

(Injury Severity Index) evaluation method [1] was used to provide a qualitative 

objective assessment of the predicted occupant injuries and inform the selection of 

concepts and operational parameters for further laboratory sled tests and the final full-

scale crash test. The sled tests were carried out using mock-up structures, one to 

represent the cabin with the instrument panel, pilot dummy and seat and similarly one 



to represent the cabin area with the two seated passenger dummies. The sled tests 

were performed by the project partners CIDAUT for the cabin mock-up and Siemens 

Restraint Systems for the cockpit mock-up. 

2. Full helicopter models for crash simulation and interior floor pulse prediction 
 

For safety simulations of an aircraft or helicopter interior, there are generally two 

types of modelling approaches suitable. One method is the use of hybrid code models 

combining multi-body and finite element techniques [8]. The alternative is based on 

full finite element models including the vehicle structure, passenger cell, seats and 

safety systems. The finite element approach provides challenges in the complexity of 

model generation and computer simulation time while the multi-body approach offers 

efficiencies that can offset these. In the work presented here a modelling approach is 

adopted in which cockpit/cabin models are developed and then analysed using 

acceleration pulses representing full helicopter crash scenarios. A summary of the 

modelling approach used is provided schematically in Figure 2. The floor acceleration 

pulses are generated from crash scenarios simulated with full helicopter models 

and/or drop test results. The acceleration pulses are then applied to the cockpit/cabin 

models to carry out simulations investigating the effectiveness of occupant protection 

concepts. 

Various modelling approaches have been used by the partners in the project. 

These include the use of a DRI-KRASH model of Bell UH-1D helicopter by DLR in 

Germany, full nonlinear finite element models at Eurocopter, and Madymo and 

ADAMS multi-body system models at Coventry University. The DRI-KRASH 

software, used at DLR, is simulation software developed specifically for crash 

analysis of aircraft structures. The work with this software was highly relevant for the 



prediction of floor crash pulses at the cabin/cockpit seat locations and for establishing 

the crash pulses used in the non-destructive sled tests performed on the cabin and 

cockpit sled tests. The computer models developed and simulations performed with 

ADAMS and Madymo exploit the multi-body systems capabilities of these software 

systems to model the nonlinear behaviour of the landing gear systems for a generic 

helicopter, and the ability to simulate situations such as rollover that would be 

difficult to recreate using a finite element approach. The generic models developed 

make use of a SAMCEF data set as the basis for the model development.  

For the full scale helicopter modelling work in this project the ADAMS and 

Madymo models were only used to simulate hard landings or rollover events resulting 

from situations such as the loss of anti-torque from the tail rotor (shown for the 

ADAMS model in Figure 3), landing on slopes with gradients that could initiate 

rollover, landing with a component of lateral velocity that could initiate rollover or 

landing on uneven surfaces that could initiate rollover (shown for the Madymo model 

in Figures 4 and 5). Modelling of the full scale drop test was performed in the project 

using the DRI-KRASH software for the full helicopter model and using Madymo for 

the interior cabin/cockpit and occupant models (described later in Section 3). 

Using a multi-body systems approach requires that for each rigid body in the 

system it is necessary to include a definition of the mass, centre of mass location, and 

mass moments of inertia. The relative motion between different parts in the system 

can be constrained using joints, joint primitives, couplers, gears and user defined 

constraints. The next step in building the model would typically be the definition of 

external forces and internal force elements. The modelling of contact between bodies 

in ADAMS has been well catered for in recent versions of the software using a 

Parasolid geometry engine embedded in the software that allows automatic detection 



of contact at any point on any surface of the two contacting bodies. Contact forces 

have been used here to model the non-linear force displacement characteristic 

between the tyre and wheel rim and the ground surface for both the nose landing gear 

and main landing gear. 

The first stage in developing the ADAMS model was to build separate 

subsystem models of the nose landing gear and main landing gear.  For both 

subsystems it is important to check out the correct functioning of the model 

kinematics before including these models in the full helicopter model to simulate 

crash landings or rollovers. For both the nose and main landing gears the behaviour of 

the damper is asymmetric with different force generation characteristics during 

compression (bump) and extension (rebound). During compression the damper 

properties are nonlinear with dependence on velocity and stroke. During extension the 

properties are linear and are referred to as the “release stiffness”.  The nonlinear 

behaviour of the damper can be presented as a map or carpet plot and covers the full 

range of stroke to the fully closed position to allow for the severe landing cases to be 

simulated. 

The data used to develop the fuselage body was in the form of a SAMCEF 

data file which used a lumped mass representation to distribute the mass through the 

fuselage. In the ADAMS model it was necessary to represent this as a single body 

with the appropriate mass, mass centre and inertial properties summed and calculated 

taking first and second moments of mass from the distributed SAMCEF mass data.  

The roll over of a helicopter due to tail rotor failure, before or after heavy 

impact with the ground, results due to the reaction of the main rotors as they continue 

to rotate and the subsequent loss of anti-torque from the tail rotor. This mode of roll 

over is considered common but would be difficult to simulate using a finite element 



model. An example real world case, shown in Figure 3, was used as the basis for a 

simulation in ADAMS using the generic helicopter data to demonstrate the capability 

for this scenario. 

Following the initial ADAMS work rollover scenarios were developed using 

Madymo where the models included the ground landing surface and the helicopter 

systems. Compliance of the ground, for example soft soil and water, needs developing 

a corresponding model of the ground [9,10], which was not considered at this stage.  

The models developed comprised subsystems for the nose landing gear, main 

landing gears and the helicopter body. Both the nose and main landing gears were 

modelled as systems of rigid bodies linked throughout and connected to the helicopter 

body by appropriate joints or/and restraints. The body of the helicopter was modelled 

on three levels for different simulation purposes. The total mass of the body was 

distributed in the body through as nodal mass elements. Finally a seat-dummy 

subsystem with belts and airbag integrated into the full Madymo helicopter model. A 

graphical representation of the model during rollover after adverse landing on an 

uneven surface is shown in Figure 4 and time history outputs is for the body 

accelerations are shown in Figure 5. For this analysis the model was simulated with a 

ground impact velocity of 5 m/s and a pitch angle of 5 degrees nose up. The ground 

terrain was modelled with a 0.25 m elevated step under the left main landing gear 

wheel to instigate the evolution of the rollover event.  

3. Modelling and simulation of the cabin and cockpit areas 
 

In order to create a Madymo model of the helicopter interior encompassing the 

cockpit and cabin areas initial CAD models were created to capture the geometry to 

include the pedals, control sticks, instrument panel and surrounding cabin interior 



before importing this to the Hypermesh software to mesh all the surfaces. Once 

meshed, the surfaces were imported to Madymo where they were defined as facetted 

surfaces.  

Figure 6 shows the Madymo layout of the helicopter interior and the 

installation of the crash test dummies used in the full-scale drop tests. Three state-of-

the-art BK117 crashworthiness seats were adopted for the occupants to replace the 

original seats. All the other seats were removed from the helicopter and simulated by 

masses (metal plates) attached to the floor. The dummies used were a 50th%-ile 

HeliSafe Hybrid III dummy provided by TNO for the pilot, a 50th%-ile FAA Hybrid 

III dummy provided by CIRA for the forward facing passenger and a EuroSID 

dummy provided by Siemens Restraint Systems for the side-seated passenger.  

The Madymo cabin/cockpit model combines elements of multi-body systems 

and finite elements to integrate the geometry of the interior, the seats represented by 

40 interconnected rigid bodies, the occupants, a range of harness concepts and the 

pilot airbag. To accelerate the modelling process and simulation times the three 

occupants were simulated in isolation, as there were no interactions between them, 

before integration into the full model shown in Figure 6. For each of the seated 

occupant dummies shown in the model separate crash pulses were applied at the seat 

to floor locations to represent the acceleration pulses corresponding with the full-scale 

crash test. For the initial simulations the harness modelled was a 4-point system with 

a Y-connection behind the neck, and a load limiter and pre-tensioner behind the seat 

using Madymo switch elements to trigger and lock the pre-tensioner. Finite element 

models of the harness fabric were used with membrane elements representing the belt 

components. 



For the validation of the cabin/cockpit model two crash cases were considered, 

referred to as the HS1 and HS2 scenarios. The HS1 scenario represents a horizontal 

crash with a velocity of 12.8 m/s and 10° yaw angle into a rigid obstacle. This was 

modelled by a triangular pulse (JAR 18.4 g) with duration of 142 ms. The HS2 

scenario is equivalent to a 9.2 m/s crash with the helicopter floor horizontal, but with 

the flight path at 60° pitch angle to the ground. This is simulated by a triangular pulse 

(JAR 29.3) with duration 62 ms applied at 60° to the helicopter floor [4]. 

The pulses used in the simulations were based on those recorded during the 

actual sled tests and therefore they were not pure triangular shapes. A preliminary 

airbag system was incorporated in the MADYMO model. Comparisons of the 

simulated pilot dummy kinematics and those recorded at test are presented in Figure 7 

for the HS1 scenario and Figure 8 for the HS2 scenario. Example vertical forces in the 

upper lumbar spine obtained from the simulation and sled test are compared in Figure 

9 for the HS2 scenario.  

Following the sled test simulations the cabin/cockpit model was used to 

simulate the full-scale drop test to recreate the CIRA test conditions for impact on 

hard ground with a horizontal impact velocity of 12.8 m/s, a vertical impact velocity 

of 7.9 m/s, and a nose up pitch angle of 8.8°. A comparison of the simulated and 

measured injury curves is provided in Figure 10 and the occupant kinematics are 

compared in Figure 11.  

Overall the injury curves and kinematic movements are well matched with the 

test results except for the head acceleration values. From Figure 10 it can be seen that 

head acceleration value in the test includes a high peak value caused due to the 

contact of the dummy head with the wind screen during the test, occurring due to the 



collapse of the frontal structure, a mechanism which was not feasible to capture in the 

simulation model. 

4. Modelling and simulation of the harness design concepts and pilot airbag 
 

All the initial simulations made use of a 4-point harness system. The work which 

followed considered six new harness systems for the front and side seated occupants 

as shown in Figure 12. The concepts considered were a 4/5-point harness, a triangle 

harness, a body-centred harness, a 3-point harness, a 3/4-point harness, and an X 

harness. Parameter studies were carried for all seven harness systems for the cases of 

side-faced and front faced passenger seats with HS1 pulse.  

Each harness system was modelled in Madymo as a combination of finite 

element belts with membrane elements and the conventional Madymo belts. Finite 

elements were used to model all the belt segments that can make contact with the 

occupant’s body, while conventional belt elements were used in the other areas. Either 

one or two inertia reels were used to mount a shoulder harness at the upper area of the 

backrest of the seat, depending on specific harness setup.  

A range of simulations were performed to establish the optimum position of 

the airbag shown in Figure 13 before installation in the crash structure for the final 

full scale test. The time to fire the airbag (TTF) was also established. The Madymo 

simulations also indicated a major advantage in adding the pilot airbag in that the 

peak head acceleration occurring due to the head impact with the windscreen, not 

captured in the baseline model, would be avoided in the final full scale drop test. 

The final configuration in terms of harness selection, the pre-tensioning force 

(PTF) and time to fire for each occupant was also established through simulation for 

the final drop test. Additional work was also carried out to investigate the introduction 



of new seat cushion material to reduce the lumbar spine load. The operational 

parameters for the new safety concepts established through simulation are 

summarised in Table 2. 

5. Simulation of the final full-scale drop test with the optimised safety layout 
 

The results of the final drop test and simulations are compared below. The simulation 

injury curves are correlated with test result curves and compared in Figure 14. The 

dummy kinematics established through simulation also compare well with those 

recorded during the test as shown in Figure 15. 

Overall there is good agreement between the simulated and measured drop test 

results. From the kinematics comparison it can be observed that the pilot dummy is 

constrained from forward motion by the deploying airbag and is protected from 

collision with the instrument panel and helicopter structure. For the forward facing 

occupant dummy forward motion relative to the seat is prevented by the new harness 

system. The critical injury parameters such as the neck tension force and lumbar spine 

force are also showing good agreement between the test results and simulation. 

6. Conclusions 
 

The work presented here has demonstrated that it is possible to develop multi-body 

systems based models of helicopters and simulate appropriate crash scenarios with the 

use of programs such as Madymo and to investigate the effectiveness of occupant 

protection systems deployed during helicopter crash scenarios. The modelling 

methodology is based on a mixed use of multi-body and finite element techniques, in 

which a subsystem cabin/cockpit model was used for the occupant protection studies. 

The use of full scale helicopter models to simulate events such as rollover following 



ground impact has also been demonstrated as feasible and capable of producing 

boundary conditions for occupant protection systems using similar methodologies to 

those applicable in automotive safety studies associated with rollover. In particular the 

use of simulation to select safety concepts and establish operation parameters such as 

the time to fire airbags or harness pre-tensioners to support a programme of sled and 

crash tests for helicopter occupant protection has proved to be effective. 
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Table 1. Survey of the NTSB Aviation Accident Database for reported helicopter 
crash cases 
 
Post 
Crash 
Risk 

Cases Occupants Fatalities Major 
Injuries 

Minor 
Injuries 

No 
Injuries 

No. % No. % No. % No. % No. % 
Water 5 5 22 11 50 0 0 1 5 10 45 
Fire 6 7 17 9 53 1 6 5 29 2 12 
Remote 
Location 

5 5 16 5 31 2 13 1 6 8 50 

Rollover 20 22 46 2 4 0 0 12 26 32 70 
 
 
Table 2. TTF, PTF and load limiter values for final drop test 
 
 Pilot Front Facing 

Passenger 
Side Seated 
Passenger 

TTF of Airbag (ms) 75 - - 
Harness 4-Point X-Harness X-Harness 
TTF of harness system (ms) 75 60 60 
PTF of harness system (kN) 2 2 2 
Load limiter for harness system (kN) 5 2.5 2.5 
 
 
Figure 1. CIRA full scale crash test facility 
 
Figure 2. Integration of simulation models in Helisafe TA 
 
Figure 3. ADAMS simulation of helicopter rollover after loss of anti-torque 
  



Figure 4. Simulation of roll-over due to uneven ground in Madymo  
 
Figure 5. Body acceleration from the Madymo model for the roll-over due to uneven 
ground  
 
Figure 6. Layout of the crash test structure for the full-scale drop test 
 
Figure 7. Madymo simulation of the pilot dummy with airbag and sled test for the 
HS1 scenario 
(Sled test pictures from SRS) 
  
Figure 8. Madymo simulation of the pilot dummy with airbag and sled test for the 
HS2 scenario 
(Sled test pictures from SRS) 
 
Figure 9. Comparison of simulated upper lumbar spinal forces with sled test for the 
HS2 scenario 
 
Figure 10(a). Comparison of baseline drop test injury curves with simulation results 
 
Figure 10(b). Comparison of baseline drop test injury curves with simulation results 
 
Figure 11. Comparison of dummy movements in drop test and simulation model 
 
Figure 12. Madymo models of the simulated harness systems 
 
Figure 13. Final positioning of the pilot airbag 
 
Figure 14(a). Comparison of final drop test injury curves with simulation results for 
pilot dummy 
 
Figure 14(b). Comparison of final drop test injury curves with simulation results for 
pilot dummy 
 
Figure 15. Comparison of predicted dummy kinematics with final drop test 
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