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Abstract

Background: Understanding the relationship between serotype epidemiology and antimicrobial susceptibility of
Streptococcus pneumoniae is essential for the effective introduction of pneumococcal conjugate vaccines (PCVs) and
control of antimicrobial-resistant pneumococci.

Methods: We conducted a community-based study in Nha Trang, central Vietnam, to clarify the serotype
distribution and pattern of S. pneumoniae antimicrobial susceptibility in children under 5 years of age and to
identify risk factors for carrying antimicrobial-resistant strains. Nasopharyngeal swabs collected from children with
acute respiratory infections (ARIs) hospitalized between April 7, 2008, and March 30, 2009, and from healthy
children randomly selected in July 2008 were subjected to bacterial culture. Minimum inhibitory concentrations
(MICs) against S. pneumoniae were determined, and multiplex-polymerase chain reaction (PCR) serotyping assays
were performed. Logistic regression was applied to identify risk factors.

Results: We collected 883 samples from 331 healthy children and 552 ARI cases; S. pneumoniae was isolated from
95 (28.7%) healthy children and 202 (36.6%) ARI cases. Age and daycare attendance were significantly associated
with pneumococcal carriage. In total, 18.0, 25.8 and 75.6% of the isolates had high MICs for penicillin (≥4 μg/ml),
cefotaxime (≥2 μg/ml) and meropenem (≥0.5 μg/ml), respectively. The presence of pneumococci non-susceptible
to multiple beta-lactams was significantly associated with serotype 19F (Odds Ratio: 4.23) and daycare attendance
(Odds Ratio: 2.56) but not ARIs, age or prior antimicrobial use. The majority of isolates non-susceptible to multiple
beta-lactams (90%) were PCV13 vaccine serotypes.

Conclusions: S. pneumoniae serotype 19F isolates non-susceptible to multiple beta-lactams are widely prevalent
among Vietnamese children. Vaccine introduction is expected to significantly increase drug susceptibility.
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Background
Streptococcus pneumoniae causes an enormous global
disease burden, especially in developing countries [1].
Approximately 0.4 million deaths from pneumococcal
pneumonia in children younger than 5 years of age are
estimated to occur annually, of which approximately
80% occur in Africa and southeast Asia [1]. In the devel-
oped world, where the pneumococcal conjugate vaccine
(PCV) for infants has been introduced, both the inci-
dence of invasive pneumococcal disease (IPD) and the
hospitalization rate for IPD have decreased [2, 3]. In
addition to IPD, reductions in all-cause pneumonia,
pneumococcal pneumonia hospitalizations and inpatient
mortality have been observed [4, 5].
Several previous epidemiological studies in Vietnam

have shown that antimicrobial resistance, including
penicillin-resistant S. pneumoniae (PRSP), is quite com-
mon among both clinical and carriage isolates [6–10].
Multidrug-resistant, globally circulating clones (Spain23F-1
and Taiwan19F-14) and their related strains are primarily
responsible for resistance [7, 9]. Serogroups/serotypes 19,
23, 14 and 6 are predominant in Vietnam [6, 7]. However,
no previous studies using community-based surveys have
demonstrated the risk of carrying antimicrobial-resistant
S. pneumoniae among healthy children or increased resist-
ance to a wide range of beta-lactam antimicrobials,
including carbapenems.
The introduction of PCV in the USA reduced vaccine

serotype non-susceptible S. pneumoniae carriage and
disease [11, 12]. However, compensatory increases in less
susceptible non-vaccine types have been subsequently
observed [13, 14]. A recent double-blind study confirmed
that the 13-valent pneumococcal conjugate vaccine
(PCV-13) was superior to the 7-valent pneumococcal con-
jugate vaccine (PCV-7) in reducing the non-susceptible S.
pneumoniae carriage [15]. Understanding the serotype
distribution of colonized S. pneumoniae and how the dis-
tribution relates to antimicrobial susceptibility is essential
for the effective introduction of PCV and the control of
drug resistance.
The main objectives of the present study are to clarify

the serotype distribution and pattern of antimicrobial
susceptibility of S. pneumoniae isolates colonizing
children under 5 years of age in Nha Trang, central
Vietnam, and to determine the proportion of vaccine
serotypes among the resistant strains.

Methods
Study setting
A community-based S. pneumoniae colonization study
was conducted in Nha Trang city in central Vietnam.
Nha Trang, the capital city of Khanh Hoa province, is an
optimal geographic location for population-based sur-
veillance because the eastern side of the city is located

on the sea, and the other borders are surrounded by
mountains [16].
Nasopharyngeal swab samples were consecutively

collected from children under 5 years of age with acute
respiratory infections (ARIs) who were admitted to the
pediatric ward at Khanh Hoa General Hospital between
April 7, 2008, and March 30, 2009. This hospital has a
capacity of 1000 beds and is the only hospital providing
in-patient care in the city. Nasopharyngeal samples were
collected at the time of hospital admission before start-
ing antimicrobial treatment in the pediatric ward. The
inclusion criteria for these ARI cases were described
elsewhere [17]. To obtain population-representative
nasopharyngeal swab samples, we also recruited healthy
children under 5 years of age from two of the 16 com-
munes in the study catchment area in July 2008 using
census data [18]. The inclusion criteria for the healthy
children were a lack of fever, signs of respiratory infections
or history of taking antimicrobials within 1 month prior to
enrollment. The caregivers provided written informed
consent. Information about potential risk factors was
gathered using questionnaires (the questionnaire for data
collection was submitted as Additional file 1: Figure S1).
Nasopharyngeal swab samples were collected following

the standardized methods provided by the WHO work-
ing group [19]. Each normal saline (1 ml)-suspended
sample was divided into two aliquots. One aliquot was
used for bacterial culture and antimicrobial susceptibility
testing. The second aliquot was processed using molecu-
lar techniques, including identification of pneumococcus
by lytA or cpsA polymerase chain reaction (PCR) and
molecular serotyping. A PCR assay targeting lytA was
done as part of a multiplex PCR to detect three major
respiratory pathogens (S. pneumoniae, Haemophilus
influenaze and Moraxella catarrhalis). The PCR was
performed in 25 μl volume; each reaction tube contained
5 × PCR buffer, 200 μM of deoxynucleoside triphosphate,
1.5 mM of MgCl2, 1.0 U of Go Taq DNA polymerase
(Promega, Madison, WI) and 0 .5μM primers. 6 μl of
crude extract was used as the DNA template. Thermal
cycling was performed under the following condition:
94 °C for 5 min followed by 35 cycles of 94 °C for 30 s,
55 °C for 30 s, and 72 °C for 45 s. PCR assays targeting
cpsA were done as part of 9 multiplex PCR assays for
molecular serotyping. The first reaction contained
primers for serotypes 14, 6, 19F, 23F, 11A, and the uni-
versal capsular primers (cpsA-F and cpsA-R). This was
followed by the second reaction for serotypes 10F/10C/
33C, 34, 15B/C, 19A, and 23A. 3 μl of DNA template
was used. Thermal cycling was performed under the fol-
lowing condition: 94 °C for 3 min followed by 30 cycles
of 94 °C for 45 s, 54 °C for 45 s, and 72 °C for 60 s. The
primers used for the lytA and cpsA assays were lytA-F
5′-TCGTGCGTTTTAATTCCAGC, lytA-R 5′-TGAG
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GGACTACCGCCTTTAT, cpsA-F 5′-GCAGTACAG
CAGTTTGTTGGACTGACC and cpsA-R 5′-GAAT
ATTTTCATTATCAGTCCCAGTC. Details of the sam-
ple treatment were described elsewhere [20].

Susceptibility testing [21]
Nasopharyngeal swab samples were subjected to bacter-
ial culture on site. A bacterial culture was performed on
trypticase soy agar (Becton Dickinson and Company,
Sparks, NV) with 7% defibrinated rabbit blood. Serial
dilution (1:102 to 107) was performed before streaking to
obtain single colonies. The plates were incubated in CO2

incubators at the microbiology laboratory at the study
hospital. Potential S. pneumoniae colonies were selected
based on colony morphology (alpha-hemolytic soft
colonies with a central dimple [22]) and confirmed by
optochin susceptibility. A bile solubility test was used if
the optochin test was inconclusive.
Susceptibility testing was performed subsequently in a

research laboratory. The minimum inhibitory concentra-
tions (MICs) of 20 antimicrobial agents against S. pneu-
moniae isolates were determined using the agar dilution
method with Mueller-Hinton agar (Becton Dickinson
and Company, Sparks, NV) supplemented with 5% defi-
brinated horse blood. The antimicrobials used in the
present study were penicillin (PEN) (Meiji Seika, Tokyo,
Japan), amoxicillin (Sigma-Aldrich, St. Louis, MO),
ampicillin, amoxicillin/clavulanate (Wako, Osaka, Japan),
cefaclor (Shionogi, Osaka, Japan), cefuroxime (Shin Nihon
Jitsugyo, Tokyo, Japan), cefotaxime (CTX) (Sigma-Aldrich,
St. Louis, MO), cefepime (U.S. Pharmacopeia, Rockville,
MD), imipenem, meropenem (MEM), erythromycin
(Wako, Osaka, Japan), azithromycin (LKT Laboratories,
St. Paul, MN), clarithromycin (Taisho Pharmaceutical,
Tokyo, Japan), clindamycin, tetracycline, chloramphenicol
(Wako, Osaka, Japan), trimethoprim/sulfamethoxazole
(Sigma-Aldrich, St. Louis, MO), ofloxacin, rifampicin
(Daiichi Pharmaceutical, Tokyo, Japan), and vancomycin
(Shionogi, Osaka, Japan). For PEN and CTX, doubling
dilutions over the concentration range of 0.004 to 128 μg/
ml. For the other antimicrobials, appropriate breakpoint
concentrations were used. The results were interpreted
according to the breakpoints of the Clinical and La-
boratory Standards Institute (CLSI) criteria (2016) [23].
S. pneumoniae ATCC® 49619 was used as the quality
control strain.

Serotyping
A multiplex-PCR method that was described elsewhere
[24, 25] was applied to confirm the pneumococcal sero-
types. A non-typeable (NT) status was assigned for
lytA-positive samples that were cpsA negative.

Genotyping of antimicrobial resistance genes
To identify PEN and other beta-lactam resistance genes
in the pneumococcal culture-positive samples, we per-
formed PCR with three primer sets (pbp1A, pbp2b and
pbp2x) designed for PEN susceptible strains (Wakunaga
Pharmaceutical, Osaka, Japan) according to the manu-
facturer’s instructions [26]. Macrolide-resistant genes
(mefA and ermB) were also amplified [27].

Analysis
S. pneumoniae carriage was defined as a nasopharyngeal
sample that was culture positive for S. pneumoniae and
lytA positive, or culture positive for S. pneumoniae and
cpsA positive. Logistic regression analyses were per-
formed to identify risk factors for pneumococcal carriage
and carriage of non-susceptible isolates.

Results
Pneumococcal carriage
In total, 883 nasopharyngeal samples were collected
from 552 ARI cases and 331 healthy children. Potential
S. pneumoniae isolates were obtained in 343 cases (223
ARI cases and 120 healthy children). Of those cases, lytA
and cpsA positive results were observed in 266 (77.6%)
and 277 (80.8%), respectively. In 31 cases (9.0%), lytA
positive results were not obtained but cpsA genes were
amplified; consequently, S. pneumoniae carriage was
confirmed by the detection of the lytA or cpsA genes in
297 cases (33.6%, 95% confidence interval (CI) 30.6–
36.8). Of those cases, 202 (36.6%, 32.7–40.7) were ARI
cases, and 95 (28.7%, 24.1–33.8) were healthy children.
Table 1 shows the baseline characteristics of children

with and without S. pneumoniae carriage and the risk
factors for carriage. S. pneumoniae carriage varied sig-
nificantly by age group; carriage was significantly higher
in ARI cases than in healthy children in the 1–2 yr.
and ≥ 3 yr. age groups but not among infants (6–11 m)
(Additional file 2: Figure S2). In the multiple logistic re-
gression analysis, the age group and daycare attendance
were significantly associated with S. pneumoniae
carriage. Although fluctuation of the carriage rate was
observed throughout the year [28], the carriage rates
were not significantly different between the four periods
(Apr-Jun 2008, Jul-Sep 2008, Oct-Dec 2008 and Jan-Mar
2009) among children with ARIs in this study. The car-
riage rates were also not significantly different between 3
months (Apr 2008, Mar 2009 and Jul 2009). Conse-
quently, we performed analyses using data obtained from
healthy children in July 2008 and ARI cases throughout
the entire year.

Antimicrobial susceptibility testing
The susceptibility patterns and the MIC50 and MIC90

values against the S. pneumoniae isolates from the study
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participants for 20 antimicrobials were interpreted
according to the CLSI breakpoints (Table 2, Additional
file 3: Table S1, and Additional file 4: Table S2). Alarm-
ingly high MIC values for multiple beta-lactam antimi-
crobials, including carbapenems, were found among the
S. pneumoniae isolates from both the ARI cases and
healthy children. The percentages of S. pneumoniae
isolates non-susceptible to PEN (non-meningitis break-
point: ≥4 μg/ml), CTX (non-meningitis breakpoint:
≥2 μg/ml) and MEM (≥0.5 μg/ml) were 18.0, 25.8 and
75.6%, respectively. A high rate of non-susceptibility to
the other antibiotic groups was also observed. S. pneu-
moniae isolates fully resistant to three or more antibiotic
groups (multidrug-resistant) accounted for 94.9% of the
total isolates if resistance to PEN was defined as an MIC
≥8 μg/ml.
To confirm our results of antimicrobial susceptibility

using the agar dilution method, 43 samples were selected
from our study, and the microdilution method was
performed according to the CLSI guidelines [23, 29]. The

percentages of S. pneumoniae isolates non-susceptible to
PEN, CTX and MEM among the 43 isolates were 30.2%
vs 32.6, 41.9% vs 62.8 and 86.0% vs 86.0% (agar dilution vs
microdilution), respectively.

Risk of carrying isolates non-susceptible to multiple beta-
lactams
A considerable number of the isolates had high MICs
against multiple beta-lactam antimicrobials. An isolate
that was non-susceptible to multiple beta-lactam antimi-
crobials was defined as an isolate with a PEN MIC
≥4 μg/ml, CTX MIC ≥2 μg/ml and MEM MIC ≥0.5 μg/
ml; these isolates were further analyzed. These isolates
accounted for 13.6% (95% CI: 10.1–17.9) of all isolates,
and almost all of the isolates (38/40 isolates, 95.0%) were
also non-susceptible to all of the macrolides (erythro-
mycin, clarithromycin, and azithromycin), clindamycin,
tetracycline and trimethoprim/sulfamethoxazole. We an-
alyzed the risk or relevant factors for carriage of isolates
non-susceptible to multiple beta-lactam antimicrobials

Table 1 Univariate and Multiple Logistic Regression Analyses of S. pneumoniae Detection in the Nasopharynx by Explanatory
Variables

Variables Pneumococcal
carriage (+)

Pneumococcal
carriage (−)

Subtotal Odds ratio (95% CI)
(univariate)

P Odds ratio (95% CI)
(multiple)

P

Gender

Male 161 (34.1%) 311 472 0.92 (0.69–1.23) 0.5874 0.85 (0.63–1.14) 0.2725

Female 124 (35.9%) 221 345

Age group

6–11 m 74 (39.8%) 112 186 Reference 0.63 (0.43–0.93)* 0.0203

1–2 yr 175 (37.1%) 297 472 0.89 (0.63–1.26) 0.5189

≥ 3 yr 36 (22.6%) 123 159 0.44 (0.28–0.71) 0.0007

Daycare attendance

Yes 156 (37.9%) 256 412 1.30 (0.98–1.74) 0.0714 1.56 (1.13–2.17) 0.0073

No 129 (31.9%) 276 405

Situation

ARI 190 (39.1%) 296 486 1.59 (1.18–2.15) 0.0022 1.33 (0.93–1.90) 0.1137

Healthy children 95 (28.7%) 236 331

Living in a large family (≥ 5 persons)

Yes 153 (34.9%) 286 439 1.00 (0.75–1.33) 0.9836

No 132 (34.9%) 246 378

Prior antibiotic use

Yes 100 (43.7%) 129 229 1.69 (1.23–2.31) 0.0010 1.42 (0.98–2.05) 0.0621

No or unknown 185 (31.5%) 403 588

Season

Apr-Jun 2008 41 (38.3%) 66 107 Reference

Jul-Sept 2008 142 (31.8%) 305 447 0.75 (0.48–1.16) 0.1956

Oct-Dec 2008 54 (41.2%) 77 131 1.13 (0.67–1.90) 0.6491

Jan-Mar 2009 48 (36.4%) 84 132 0.92 (0.54–1.56) 0.7560

This analysis was performed after exclusion of ARI cases in children under 6m of age. *: ≥ 1 yr. vs < 1 yr
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(Table 3) and found that daycare attendance was the
only significant risk factor. None of the other factors,
including ARI hospitalization, age group, or prior anti-
microbial use, were significantly associated.

Serotyping
Serotyping results were available for 92 healthy children
and 202 ARI cases. Serogroup 6 was most common in
both groups, followed by 19F (Additional file 5: Figure
S3). The PCV-13 serotypes accounted for 80.4 and
72.3% of the isolates from the healthy children and ARI
cases, respectively.
The proportions of S. pneumoniae isolates non-suscep-

tible to PEN, CTX, MEM and all these three beta-lactam
antimicrobials by serotypes/serogroups are shown in
Fig. 1a-d and Additional file 6: Table S3. Serotype 19F
was significantly associated with the carriage of S. pneu-
moniae non-susceptible to PEN (p < 0.0001), CTX (p =
0.0002), MEM (p = 0.0005) and all three beta-lactam
antimicrobials (p < 0.0001), and serogroup 6 was signifi-
cantly associated with the carriage of S. pneumoniae

non-susceptible to CTX (p = 0.0468) and MEM (p =
0.0187). The detection of pneumococcal isolates
non-susceptible to MEM was also significantly associ-
ated with serotypes 23F (p = 0.0029) and 11A (p = 0.0397).
Of the S. pneumoniae isolates non-susceptible to all three
beta-lactam antimicrobials, the majority (90.0%) were of the
PCV13-vaccine serotype.

Genotyping of antimicrobial resistance genes
The majority of the S. pneumoniae-positive samples
(265/290, 91.4%: 95% CI 87.6–94.1) were also positive
for genotypic penicillin-resistant S. pneumoniae (gPRSP)
(pbp1a + 2x + 2b). The genotypic penicillin-sensitive S.
pneumoniae (gPSSP) samples accounted for only 2.4%
(95% CI: 1.17–4.90) of the isolates. A total of 282 sam-
ples (97.2%: 95% CI 94.7–98.6) were positive for either
ermB or mefA. Details are shown in Additional file 7:
Table S4 and Additional file 8: Table S5.

The impact of pneumococci non-susceptible to multiple
beta-lactam antimicrobials on clinical indices
Clinical indices were evaluated for ARI cases where
pneumococci were detected (n = 202). The detection of
pneumococci non-susceptible to multiple beta-lactam
antimicrobials (n = 18) among the ARI cases did not lead
to significant prolongation of hospitalization and did not
affect the type of antimicrobials administered during the
hospital stay.

Discussion
This study is the first to report that an alarmingly high
proportion of children in Vietnam carry S. pneumoniae
isolates non-susceptible to multiple beta-lactam antimi-
crobials, including carbapenems. These high levels of
non-susceptibility were observed regardless of whether
the child was sick with an ARI in the hospital or healthy
in the community. These results were obtained using a
population-based study at a site in central Vietnam. The
proportions of non-susceptible pneumococcal isolates
with high MICs (cefotaxime or ceftriaxone MIC ≥2 μg/
ml) were 0–4.4% in previous studies conducted in
Vietnam, even among clinical isolates [6–10]. Although
a few studies demonstrated significant increases in
pneumococci non-susceptible to cefotaxime among
nasopharyngeal carriage isolates, the target populations
of these studies were daycare attendees or children who
visited a clinic (including health check visits) [30–32],
who were not necessarily representative of healthy chil-
dren living in the community. The present study clearly
showed that S. pneumoniae strains non-susceptible to
multiple beta-lactam antimicrobials were circulating
deep in the community of central Vietnam.
The proportion of pneumococcal isolates non-susceptible

to multiple beta-lactam antimicrobials was not affected by

Table 2 Susceptibility of S. pneumoniae Isolates to Antimicrobial
Agents

Susceptible Non-susceptible

Penicillin parenteral
(non-meningitis)

242 (82.0%) 53 (18.0%)

Penicillin parenteral
(meningitis)

10 (3.4%) 285 (96.6%)

Penicillin (oral penicillin) 10 (3.4%) 285 (96.6%)

Amoxicillin (non-meningitis) 226 (76.6%) 69 (23.4%)

Amoxicillin-clavulanic acid
(non-meningitis)

258 (87.5%) 37 (12.5%)

Cefaclor 38 (12.9%) 257 (87.1%)

Cefuroxime (oral) 90 (30.5%) 205 (69.5%)

Cefotaxime (non-meningitis) 219 (74.2%) 76 (25.8%)

Cefotaxime (meningitis) 139 (47.1%) 156 (52.9%)

Cefepime (non-meningitis) 220 (74.6%) 75 (25.4%)

Cefepime (meningitis) 100 (33.9%) 195 (66.1%)

Imipenem 85 (28.8%) 210 (71.2%)

Meropenem 72 (24.4%) 223 (75.6%)

Erythromycin 38 (12.9%) 257 (87.1%)

Azithromycin 32 (10.8%) 263 (89.2%)

Clarithromycin 41 (13.9%) 254 (86.1%)

Clindamycin 52 (17.6%) 243 (82.4%)

Tetracycline 32 (10.8%) 263 (89.2%)

Chloramphenicol 166 (56.3%) 129 (43.7%)

Trimethoprim-sulfamethoxazole 26 (8.8%) 269 (91.2%)

Ofloxacin 226 (76.6%) 69 (23.4%)

Rifampicin 293 (99.3%) 2 (0.7%)

Vancomycin 295 (100%) –
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prior antimicrobial use. The association between resistant
pneumococci (both colonization and clinical samples) and
the area of consumption of antimicrobials has been
described in an ecological study [33], a cross-sectional study
[34] and a cluster-randomized trial [35], suggesting the
importance of antibiotic selection pressure in the commu-
nity. The relationship between resistance and individual
consumption of antimicrobials has also been reported in a
cross-sectional study [34], a non-randomized observational
study [36], and a case-controlled study [37]. In these study
designs, bias is a matter of concern. The impact of macro-
lide therapy on pharyngeal carriage of macrolide-resistant
oral streptococci was investigated in a randomized,
double-blind, placebo-controlled study in which healthy
volunteers were treated with azithromycin and clarithromy-
cin [38], but no such studies have been performed for S.
pneumoniae. Once resistant clones become predomin-
ant in a community and account for most of the circu-
lating isolates, healthy children most likely acquire
resistant isolates even without taking antimicrobials.
This process may occur in daycare centers, as shown in
the current study. Indeed, Bartoloni et al. reported the
dissemination of antimicrobial-resistant commensal
Escherichia coli without heavy exposure to antimicro-
bials in a remote Bolivian area [39].

Our data demonstrated that a specific serotype (19F)
was primarily responsible for non-susceptibility. The
disproportionate distribution of serotypes among non-
susceptible isolates was consistent with previous obser-
vations of the emergence of globally distributed resistant
clones [40–42]. Spain23F-1, Taiwan19F-14 and their
related strains have been described in Vietnam [7, 9].
Further molecular analysis using multi-locus sequence
typing (MLST) [43] will demonstrate the presence of
globally circulating resistant clones. Molecular analysis
will also be a clue to the mystery: why were S. pneumo-
niae strains non-susceptible to carbapenems circulating
in Vietnam without the overuse of carbapenems. In a
small-scale hospital-based study conducted at the study
site in 2011, third generation cephalosporins were fre-
quently used for pneumonia, whereas oral second-gener-
ation cephalosporins and penicillins were prescribed for
milder cases; carbapenems were not selected at all (Toi-
zumi M, et al. unpublished data).
One solution for the high rate of antimicrobial resist-

ance is the introduction of vaccines. The proportion of
PCV-13 serotypes among the carriage isolates was
greater than 70% for both the healthy children and the
ARI cases, similar to reports from developed countries
in the pre-PCV era [14, 44]. Furthermore, PCV13

Table 3 Univariate and Multiple Logistic Regression Risk Analyses of the Presence of Multiple Beta-lactam Non-Susceptible Isolates*
by Explanatory Variables

Variables Multiple beta-lactam
non-susceptible
isolates (n = 40)

Other pneumococcal
isolates (n = 234)

Subtotal Odds ratio
(95% CI) (univariate)

P Odds ratio
(95% CI) (multiple)

P

Gender

Male 22 (14.2%) 133 (85.8%) 155 (100%) Reference

Female 18 (15.1%) 101 (84.9%) 119 (100%) 1.08 (0.55–2.11) 0.8285

Age group

6–11 m 11 (15.3%) 61 (84.7%) 72 (100%) Reference

1–2 yr 26 (15.5%) 142 (84.5%) 168 (100%) 1.02 (0.47–2.18) 0.9689

≥ 3 yr 3 (8.8%) 31 (91.2%) 34 (100%) 0.54 (0.14–2.07) 0.3596

Daycare attendance

Yes 29 (19.2%) 122 (80.8%) 151 (100%) 2.42 (1.15–5.07) 0.0167 2.56 (1.22–5.73) 0.0123

No 11 (8.9%) 112 (91.1%) 123 (100%) Reference

Situation

ARI 18 (9.9%) 164 (90.1%) 182 (100%) 0.35 (0.18–0.69) 0.0019 0.48 (0.20–1.08) 0.0764

Healthy children 22 (23.9%) 70 (76.1%) 92 (100%) Reference

Living in a large family (≥ 5 persons)

Yes 26 (17.7%) 121 (82.3%) 147 (100%) 1.73 (0.86–3.49) 0.1193 1.72 (0.84–3.65) 0.1423

No 14 (11.0%) 113 (88.9%) 127 (100%) Reference

Prior antibiotic use

Yes 8 (8.3%) 89 (91.8%) 97 (100%) 0.41 (0.18–0.92) 0.0275 0.65 (0.23–1.76) 0.3975

No or unknown 32 (18.1%) 145 (81.9%) 177 (100%) Reference

This analysis was performed for cases with pneumococcal isolates that contained a single serotype (n = 274) after exclusion of ARI cases in children < 6m
*PEN MIC ≥4 μg/mL, CTX MIC ≥2 μg/mL and MEM MIC ≥0.5 μg/mL
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vaccine serotypes accounted for 90% of the pneumococ-
cal isolates non-susceptible to multiple beta-lactam anti-
microbials. Introduction of a vaccine is expected to
increase the susceptibility of the circulating strains.
Genotypic analysis revealed that gPSSP expression
accounted for less than 3% of the pneumococcal isolates
and that 97.6% of the isolates possessed at least one
resistant pbp gene. Relatively drug-susceptible pneumo-
cocci with non-vaccine serotypes may exchange resist-
ance genes through genetic recombination and acquire
higher levels of resistance unless appropriate regulation
of antimicrobials (reduction of the area of consumption
of antimicrobials) is implemented. In a surveillance
study of healthcare utilization conducted in the study
area in 2006, approximately 40% of 1355 caregivers of
ARI children visited a pharmacy for their first choice of
healthcare provider and slightly less than 60% of them
purchased antimicrobials (Toizumi M, et al. unpublished
data). PCV-13 is expected to reduce the non-susceptible
S. pneumoniae carriage to a greater extent than PCV-7
[15]. However, careful monitoring of emerging mutants
(serotype switching or acquisition of drug resistance
genes) is required [45, 46].
We did not detect a clinical impact of the carriage of

pneumococcal isolates non-susceptible to multiple

beta-lactam antimicrobials. The detection of these
non-susceptible pneumococcal isolates in the ARI cases
did not lead to significant prolongation of hospitalization.
One possible reason was that our study population did
not include severe cases who were admitted to the
pediatric intensive care unit. Feikin et al. described the
positive association between mortality from invasive
pneumococcal pneumonia and PEN MICs ≥4 μg/ml
(Odds Ratio: 7.1) or cefotaxime MICs ≥2 μg/ml (Odds
Ratio: 5.9) after the first 4 hospital days [47].
The current study has some limitations. Information

on sibling health conditions was not obtained from the
questionnaires; therefore, whether the siblings of the
healthy children took antimicrobials during the study
period and whether intra-familial transmission occurred
were unknown. A previous study in isolated, rural Utah
communities demonstrated an association between the
detection of non-susceptible S. pneumoniae and having a
sibling colonized with resistant pneumococci as evidence
of intra-familial transmission based on pulsed field gel
electrophoresis [48].
Our method of pneumococcal isolation (based upon

colony morphology on a non-selective medium) and
identification (optochin susceptibility and a bile solubil-
ity test) could underestimate NT pneumococcal carriage

Fig. 1 The proportions of S. pneumoniae isolates non-susceptible to beta-lactam antimicrobials by serotypes/serogroups (a: PEN, b: CTX, c: MEM,
d: multiple beta-lactam antimicrobials). Non-susceptible isolates (PEN MIC ≥4 μg/ml, CTX MIC ≥2 μg/ml, MEM MIC ≥0.5 μg/ml and multiple beta-
lactams) are shown in red. *: includes serotypes 23A, 29, and 34. The analysis was performed using pneumococcal isolates with a single serotype
by multiplex-PCR (n = 285). #1: p < 0.0001, #2: p = 0.0002, #3: p = 0.0468, #4: p = 0.0005, #5: p = 0.0187, #6: p = 0.0029, #7: p = 0.0397
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status because of their morphological differences (less
conspicuous dimples of the colonies) from serotypeable
S. pneumoniae. We considered only bile soluble isolates
as pneumococci, which may also lead to the underesti-
mation of NT pneumococcal carriage. Some other
members of the viridans group of streptococci might be
optochin susceptible which lead to false positive results;
to avoid the problem, we defined S. pneumoniae carriage
as a nasopharyngeal sample was culture positive for S.
pneumoniae and lytA positive, or culture positive for S.
pneumoniae and cpsA positive.
The agar dilution method used for MIC testing may not

be the standard method used in many laboratories. How-
ever, we found good concordance between the agar dilu-
tion method and the microdilution method. Therefore, we
believe that the significant increase in non-susceptibility
to PEN and other beta-lactam antimicrobials in the
present study is a reliable finding.
In Vietnam, the PCV has not been introduced yet

and irrational use of antimicrobials is a great issue.
Thus data from this study will give us background
information to compare with the ongoing study on
current situation of antibiotic resistance pattern, sero-
type predominance, and sequence type distribution of
pneumococci in Vietnam.

Conclusion
S. pneumoniae serotype 19F isolates non-susceptible to
multiple beta-lactam antimicrobials are widely circulat-
ing among children living in central Vietnam. The intro-
duction of a PCV is expected to improve antimicrobial
susceptibility.
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