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Abstract
The problem of uniformly placing N points onto a sphere finds applications in many areas. An
online version of this problem was recently studied with respect to the gap ratio as a measure
of uniformity. The proposed online algorithm of Chen et al. is upper-bounded by 5.99, which is
achieved by considering a circumscribed dodecahedron followed by a recursive decomposition of
each face. We analyse a simple tessellation technique based on the regular icosahedron, which
decreases the upper-bound for the online version of this problem to around 2.84. Moreover, we
show that the lower bound for the gap ratio of placing up to three points is 1+

√
5

2 ≈ 1.618.
The uniform distribution of points on a sphere also corresponds to uniform distribution of unit
quaternions which represent rotations in 3D space and has numerous applications in many areas.

2012 ACM Subject Classification “Theory of Computation→ Online algorithms”. “Randomness,
geometry and discrete structures → Computational geometry”.

Keywords and phrases Online algorithms; Spherical trigonometry; Uniform point placement

1 Introduction

One of the central problems of classical discrepancy theory is to maximize the uniformity of
distributing a set of n points into some metric space [5,11]. For example, this includes questions
about arranging points over a unit cube in a d-dimensional space, a polyhedral region, a sphere,
a torus or even over a hyperbolic plane, etc. Measures of irregularity for a given set can
be studied by defining some object, moving the object over the space, and considering the
intersection of the object with the point set. Applications of modern day discrepancy theory
include those in number theory (Ramsey theory), problems in numerical integration, financial
calculations, computer graphics and computational physics [12].

Some motivations and applications of this problem when restricted to the 2-sphere stretch
from the classical Thompson problem of determining a configuration of N electrons on the
surface of a unit sphere that minimizes the electrostatic potential energy [13, 18], to search
and rescue/exploration problems (assigning an a-priori unknown number of agents) as well as
problems related to extremal energy, crystallography and computational chemistry [14]. There
is also a strong connection between discrepancy theory and the study of tessellations, important
in Computer Science, Mathematics and other areas [9]. In the original offline version of the
problem of distributing points over some space, the number of points is predetermined and the
goal is to distribute all points as uniformly as possible at the end of the process.

In this paper, we consider the problem of inserting points onto a sphere in the online setting.
In this case the points should be dynamically inserted one at a time on the surface of a sphere,
and the objective is to distribute the points as uniformly as possible at every instance of inserting
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a point. Once a point has been placed it cannot be later moved. We measure the discrepancy
from uniformity following the standard metrics introduced by Teramoto et al. [17] for analysing
dynamic discrepancy, and known as the gap ratio, i.e. the ratio between the maximum and
minimal gap, where the maximum gap is the diameter of the largest empty circle on the sphere
and the minimal gap is just the minimum pairwise distance between inserted points.

One might consider defining uniformity of a point set by measuring the closest two points
within the given sample, however this does not take into account large gaps that may be
present in the point set and in certain scenarios we wish to avoid such gaps, for example in
the case of spreading volunteers so that no person can be too far away from a rescuer and
in problems related to extremal energy. Alternatively we may use the standard measure from
discrepancy theory, where we define some fixed geometric shape R and count the number of
inserted points that are contained in R, whilst moving it all over the sphere. This measure has
two main disadvantages for our scenario – that of computational hardness of calculating the
discrepancy at each stage and also that we must decide upon a given shape R, each of which
may give different results [17]. It was also noted in [4] that an advantage of using the gap
ratio is that the space requires only a metric, unlike discrepancy that depends on the notion of
a range space and its volume. We therefore utilize the gap ratio as our metric in this paper.

In [4], a generalized definition of the gap ratio has been studied considering both discrete and
continuous metric spaces, also showing connections to picking uniform samples with clustering,
packing and covering problems. The problem of generating a point set on spheres which
minimizes criteria such as energy functions, discrepancy, dispersion and mutual distances has
been extensively studied in the offline setting [7, 10,14–16,20,21].

The online variant of such problems has begun to attract a lot of attention from the
algorithmic community and has been already studied in different settings. The online problem
has been studied for inserting integral points on a line [1] or on a grid [22], inserting real
points over a unit cube [17] and also recently as a more complex version of inserting real points
on a surface of a sphere [6]. In [21], the authors study the problem of generating uniform
deterministic samples over the rotation group SO(3), which they point out “is fundamental
to computational biology, chemistry, physics and numerous branches of computer science”.
The online version of inserting points on a spherical surface brings new kinds of geometrical
obstacles and constraints for solving the problem, but it also provides new perspectives to a
wide range of applications which satisfy the rules of spherical geometry.

A good strategy for online distribution of points on the plane has been found in [2, 17]
based on the Voronoi insertion, where the gap ratio is proved to be at most 2. For insertion
on a two-dimensional grid, algorithms with a maximal gap ratio 2

√
2 ≈ 2.828 were shown

in [22]. The same authors showed that the lower bound for the maximal gap ratio is 2.5 in
this context. The other important direction was to solve the problem in a one-dimensional line
and an insertion strategy with a uniformity of 2 has been found in [1]. An approach of using
generalised spiral points was discussed in [13,14], which performs well for minimizing extremal
energy, but this approach is strictly offline (number of points N known in advance).

Recently, the authors of [6] showed that for point insertion on the sphere the simple greedy
approach fails and they suggest a two phase algorithm with an overall upper bound of 5.99.
In the first phase they use an circumscribed dodecahedron to place the first twenty vertices,
achieving a maximal gap ratio 2.618. After that, each of the twelve pentagonal faces can be
recursively divided according to a defined procedure by having different approaches for isosceles
acute triangles and isosceles obtuse triangles. Since each face is identical, this procedure is
efficiently described and leads to a gap ratio of no more than 5.99 in the second phase and
overall for the whole approach.
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One may consider whether such two phase algorithms may perform well for this problem by
either modifying the initial shape used in the first phase of the algorithm (such as using initial
points derived from other Platonic solids, e.g. a tetrahedron, octahedron, icosahedron, etc.)
or else whether the recursive procedure used in phase two to tessellate each regular shape may
be improved. We may readily identify an advantage to choosing a Platonic solid for which each
face is a triangle (the tetrahedron, octahedron and icosahedron), since in this case at least two
procedures for tessellating each triangle immediately spring to mind – namely to recursively
place a new point at the centre of each edge, denoted triangular dissection (creating four
subtriangles, see Fig. 2), or else the Delaunay tessellation, which is to place a new point at the
centre of each triangle (creating three new triangles, see Fig. 1).

Figure 1 Delauney triangu-
lation applied twice

Figure 2 Recursive spher-
ical triangle dissection applied
twice

Figure 3 Deformation of
tessellation in spherical projec-
tion

It can be readily seen that the Delaunay tessellation of each spherical triangle rapidly gives
a poor gap ratio, since points start to become dense around the centre of edges of the initial
tessellation. Regarding the second recursive tessellation strategy (Fig. 2), it was conjectured
in [6], “If we split the icosahedron into four congruent sub-triangles regularly, the gap ratio will
be larger since the newly inserted points are on the side of the icosahedron [...] if points are
inserted on the side of some configuration, the ratio might be not good”. This intuition seems
reasonable, since as we recursively decompose each spherical triangle by this strategy the gap
ratio increases as for such a triangle this decomposition deforms with each recursive step as
can be seen in Fig. 3. It can also be seen that the gap ratio at each level of the triangular
dissection is increasing (see Lemma 7). Nevertheless, we show in this paper that as long as the
initial tessellation (stage 1) does not create ‘large’ spherical triangles (with high curvature),
then the gap ratio of stage 2 has an upper limit, i.e. can be bounded from above, and performs
much better than the tessellation of the regular dodecahedron proposed in [6].

Of the other Platonic solids with triangular faces, one finds that there is a trade-off between
the stage 1 and stage 2 effect upon the gap ratio. We performed theoretical analysis and
computational simulations of these regular Platonic solids and the results are shown in Table 2
in the conclusion which indicate that of all the Platonic solids, it is the icosahedron which has
the best trade off between these two stages. In this paper, we utilise such an circumscribed
regular icosahedron and the recursive triangular dissection procedure to reduce the bound of
5.99 derived in [6] to π

arccos
(

1√
5

) ≈ 2.8376. Apart from a significantly better upper bound, an

advantage of our triangular tessellation procedure is its generalisability and simpler principle of
tessellation as we only need to compute the spherical median between two locally introduced
points at every step. Note that if we consider the parallel version of the problem i.e. all
points at each round of tessellation will be placed simultaneously, the gap ratio of the parallel
procedure is π

2 arccos
(

1√
5

) ≈ 1.419.
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The problem of distributing points on a sphere can also be seen as online version of dis-
tributing unit quaternions [8] which is important as unit quaternions represent rotations of
objects in three dimensions [3] and have various applications in computer graphics, robotics,
navigation, and crystallographic texture analysis.

The paper is organized as follows. First we define some notation from spherical trigono-
metry in Section 2, to make the paper self-contained and as a starting point for continuing
research. In Section 3 we provide an overview of the two-stage algorithm, the first of which
places points at the vertices of the icosahedron and the second places points following a spher-
ical triangle dissection. Then we present a formal analysis of the tessellation procedure. In
Section 4 we show that the gap ratio for the tessellation of an equilateral spherical triangle has
a limit and converges to a particular value. This fact is used in Section 5 to prove that the
gap ratio of the second stage of our algorithm is bounded by approximately 2.760 and the first
stage is bounded by approximately 2.8376. We provide an analysis for inserting the first three
points on a sphere which gives the first nontrivial lower bound of 1+

√
5

2 ≈ 1.6180, so no online
algorithm can achieve a lower gap ratio. This approach can be extended by considering more
points, however we leave this direction for further research. Finally we conclude with some
experimental results matching our theoretical bounds.

2 Notations

2.1 Spherical trigonometry

Given a set P , we denote by 2P the power set of P (the set of all subsets). Let S denote
the 3-dimensional unit sphere. We will deal almost exclusively with unit spheres, since for our
purposes the gap ratio (introduced formally later) is not affected by the spherical radius. Let
u1, u2, u3 ∈ R3 be three unit length vectors, then T = 〈u1, u2, u3〉 denotes the spherical triangle
on S with vertices u1, u2 and u3. Given some set of points {u1, u2, u3} ∪ {vj |1 ≤ j ≤ k}, a
spherical triangle T = 〈u1, u2, u3〉 is called minimal over that set of points if no vj for 1 ≤ j ≤ k
lies on the interior or boundary of T . As an example, in Fig. 5, triangle 〈u1, u113, u112〉 is
minimal, but 〈u1, u13, u12〉 is not, since points u113 and u112 lie on the boundary of that
triangle.

The edges of a spherical triangle are arcs of great circles. A great circle is the intersection
of S with a central plane, i.e one which goes through the centre of S. We denote the length
of a path connecting two points u1, u2 on the unit sphere by ζ(u1, u2) (the spherical length).

Given a non-degenerate spherical triangle (i.e. one with positive area, defined later) with
two edges e1 and e2 which intersect at a point P , then we say that the angle of P is the
angle of P measured when projected to the plane tangent at P . We constrain all spherical
triangles to have edge lengths strictly between 0 and π, which avoids issues with antipodal
triangles. Two points on the unit sphere are called antipodal if the angle between them is
π (i.e. they lie on opposite sides of the unit sphere) and an antipodal triangle contains two
antipodal points. Several results in spherical trigonometry (and in this paper) are derived by
working with projections of points and edges to planes tangent to a point on the sphere; in all
such cases the projection is from the centre of the sphere.

The following results are all standard from spherical trigonometry, see [19] for proofs and
further details. The length of an arc belonging to a great circle corresponds with the angle
of the arc, see Fig. 4. Furthermore, given an arc between two points u1 and u2 on S, the
length of the line connecting u1 and the projection of u2 to the plane tangent to u1 is given
by tan(ζ(u1, u2)), see Fig. 4.
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tan(α)

sec(α)1
α

α

u1

u2

α = ζ(u1, u2)

Figure 4 Angular calculations in the
plane intersecting the great circle con-
taining (u1, u2)
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Figure 5 σ tessellations

I Lemma 1 (The Spherical Laws of Cosines). Given a spherical triangle with sides a, b, c and
angles A,B,C opposite to side a, b, c respectively, then:

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C) (1)

cos(C) = − cos(A) cos(B) + sin(A) sin(B) cos(c) (2)

We shall also require the related spherical sine law.

I Lemma 2 (The Spherical Sine Law). Given a spherical triangle with sides a, b and angles
A,B opposite to sides a, b respectively, then:

sin(a)
sin(A) = sin(b)

sin(B) .

It is known that the sum of angles within a spherical triangle is between π (as the volume
approaches zero) and 3π (as the triangle fills the whole sphere). We may define a notion of
spherical excess, which is the sum of its angles minus π radians. Girard’s theorem shows a
relation between the area and angles of a spherical triangle.

I Theorem 3 (Girard’s theorem). The area of a spherical triangle is equal to its spherical
excess.

2.2 Online point placing on the unit sphere

Our aim is to insert a sequence of ‘uniformly distributed’ points onto S in an online manner.
After placing a point, it cannot be moved in the future. Let pi be the i’th point thus inserted
and let Si = {p1, p2, . . . , pi} be the configuration after inserting the i’th point. Teramoto et
al. introduced the gap ratio [17], which defines a measure of uniformity for point samples
and we use this metric to evaluate equidistant spacing of points on the unit sphere (similarly
to [6]). Let ρmin : 2S → R denote the minimal gap ratio of a set of points, defined by
ρmin(Si) = minp,q∈Si,p6=q ζ(p, q). Recall that notation 2S means the set of all points lying on
the 2-sphere S. Let ρS

′

max : 2S → R denote the maximal spherical diameter of the largest
empty circle centered at some point of S ′ ⊆ S avoiding a given set of points, defined by

ρS
′

max(Si) = maxp∈S′ minq∈Si 2 · ζ(p, q). We then define ρS
′(Si) = ρS′

max(Si)
ρmin(Si) to be the gap ratio

of Si over S ′. When S ′ = S (i.e. when points can be placed anywhere on the sphere), we
define that ρ(Si) = ρS(Si).
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We denote an equilateral spherical triangle as one for which each side has the same length.
By Lemma 1 (the spherical law of cosines), having three equal length edges implies that an
equilateral spherical triangle has the same three angles. By Theorem 3 (Girard’s theorem),
each such angle is greater than π

3 (for an equilateral triangle of positive volume). Let ∆ ⊆ S
denote the set of all spherical triangles on the unit sphere.

Consider a spherical triangle T ∈ ∆. We define a triangular dissection function σ : ∆→ 2∆

in the following way. If T ∈ ∆ is defined by T = 〈u1, u2, u3〉, then σ(T ) = {T1, T2, T3, T4} ⊂ ∆,
where T1 = 〈u1, u12, u13〉, T2 = 〈u12, u2, u23〉, T3 = 〈u3, u13, u23〉 and T4 = 〈u12, u13, u23〉,
with uij being the midpoints (on the unit sphere) of the arc connecting ui and uj (see Fig. 5).
Define σE(T ) as the set of nine induced edges:

{(u1, u12), (u12, u2), (u2, u23), (u23, u3), (u3, u13), (u13, u1), (u13, u23), (u23, u12), (u12, u13)}

Wemay extend the domain of σ to sets of spherical triangles, such that σ({T1, T2, . . . , Tk}) =
{σ(T1), σ(T2), . . . , σ(Tk)}; thus σ : 2∆ → 2∆. Given a spherical triangle T ∈ ∆, we then define
that σ1(T ) = σ(T ) and σk(T ) = σ(σk−1(T )) for k > 1. For notational convenience, we also
define that σ0(T ) = T (the identity tessellation). We may also extend σE(T ) to a set of
triangles such that σE({T1, T2, . . . , Tk}) = {σE(T1), σE(T2), . . . , σE(Tk)}. See Fig. 5 for an
example showing the tessellation of T to depth 2 (e.g. σ2(T )) and the set of edges σ2

E(T ).
Let µ : ∆→ 2S be a function which, for an input spherical triangle, returns the (unique) set

of three points defining that triangle. For example, given a spherical triangle T = 〈p1, p2, p3〉,
then µ(T ) = {p1, p2, p3}. Clearly µ may be extended to sets of triangles by defining that
µ({T1, T2, . . . , Tk}) = {µ(T1), µ(T2), . . . , µ(Tk)}; thus µ : 2∆ → 2S . When there is no danger
of confusion, by abuse of notation, we sometimes write T rather than µ(T ). This allows us to
write ρ(T ) (or ρ(σk(T ))) for example, as the gap ratio of the three points defining spherical
triangle T (resp. the set of points in the k-fold triangular dissection σk(T )).

We will also require an ordering on the set of points generated by a tessellation σk(T ).
Essentially, we wish to order the points as those of σ0(T ) = T first (in any order), then
those of σ1(T ) in any order but omitting the points of σ0(T ) = T , then the points of σ2(T ),
omitting points in triangles of σ0(T ) or σ1(T ) etc. To capture this notion, we introduce a
function τ : ∆× Z+ → 2S defined thus:

τ(T, k) =
{
µ(σk(T ))− µ(σk−1(T )) ; if k ≥ 1
µ(T ) ; if k = 0

As an example, consider Fig. 5, then τ(T, 0) = {u1, u2, u3}, τ(T, 1) = {u12, u13, u23},
τ(T, 2) = {u112, u122, u232, u323, u133, u113, u1323, u1213, u1223}. By abuse of notation, we re-
define σk(T ) then so that σk(T ) = τ(T, 0) ∪ τ(T, 1) ∪ · · · ∪ τ(T, k) is an ordered set.

3 Overview of Online Spherical Vertex Insertion Algorithm

As pointed out in [6], a natural strategy for online point insertion is the greedy approach, i.e.
to place the next point at the spherical centre of the largest empty spherical surface area. This
strategy begins reasonably, with a gap ratio of 2 after placing three points, but the tessellations
which are generated after a few iterations become computationally difficult to determine.

Our algorithm is a two stage strategy. In stage one, we project the 12 vertices of the regular
icosahedron onto the unit sphere (see Fig. 9). The first two such points inserted should be
opposite each other (antipodal points), but the remaining 10 points can be inserted in any
order. We show that the gap ratio during stage one of our algorithm is π

arccos
(

1√
5

) ≈ 2.8376.
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In the second stage, we treat each of the 20 equilateral spherical triangles of the regular
icosahedron in isolation. We show in Lemma 7 that the gap ratio for our tessellation is ‘local’
and depends only on the local configuration of vertices around a given point. This allows us to
consider each triangle separately. During stage two, we use the fact that these twenty spherical
triangles are equilateral and apply Lemma 7 to independently tesselate each triangle recursively
in order to derive an upper bound of the gap ratio in stage two of 2(3−

√
5)

arcsin
(

1
2

√
2− 2√

5

) ≈ 2.760.

We note here that the radius of the sphere does not affect the gap ratio of the point
insertion problem, and thus we assume a unit sphere throughout.

The algorithmic procedure to generate an infinite set of points is shown in Algorithm 1.
To generate a set of k points {p1, p2, . . . , pk}, we choose the first k points generated by the
algorithm. Recall that a minimal triangle in a set of triangles is essentially the smallest possible
triangle, i.e. a triangle containing exactly three vertices and no others.

Stage one: Project 12 vertices of the regular icosahedron to the unit sphere:
Place two antipodal points on the unit sphere.
Place the remaining ten points in any order.
Arbitrarily label the 20 minimal spherical triangles T = {T1, . . . , T20}.

Stage two: Recursively tessellate minimal triangles
Let T ′ ← T

while TRUE do
for all minimal spherical triangles R ∈ T do

Let T ′ ← (T ′ ∪ σ(R))−R
end for
Let T ← T ′

end while
Algorithm 1: Placing infinitely many points on the unit sphere using our recursive tessellation
procedure on the regular icosahedron.

4 Gap ratio of equilateral spherical triangles

We will require several lemmata regarding tessellations of spherical triangles.

I Lemma 4. Let T ∈ ∆ be an equilateral triangle. Then the central triangle in the tessellation
σ(T ) is also equilateral.

Proof. Consider Fig. 5. The lemma claims that if 〈u1, u2, u3〉 is equilateral, then so is
〈u12, u13, u23〉 (and therefore also 〈u1213, u1223, u1323〉).

As a consequence of the spherical cosine rule, an equilateral spherical triangle will have
three equal interior angles, each of which is larger than π

3 (otherwise, by Girard’s theorem, it
has zero area). Since the edge lengths of T are identical, then the central triangle of σ(T )
also has equal length edges, again by the spherical cosine rule. J

It is worth again noting in Lemma 4 that the other three triangles in the triangular dissection
of an equilateral triangle are not equilateral, and indeed they have a strictly smaller area than
the central triangle. This deformation of the recursive triangular dissection makes the analysis
of the algorithm nontrivial. The following lemma equates the distance from the centroid of an
equilateral spherical triangle to a vertex of that triangle.
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I Lemma 5. Let T = 〈u1, u2, u3〉 ∈ ∆ be an equilateral triangle with centroid uc and edge

length ζ(u1, u2) = α. Then ζ(u1, uc) = ζ(u2, uc) = ζ(u3, uc) = arcsin
(

2 sin(α2 )√
3

)
.

Proof. Consider Fig. 7. The centroid of T is, as for standard triangles, the unique point uc
of T from which the (spherical) distance satisfies ζ(uc, u1) = ζ(uc, u2) = ζ(uc, u3). Let then
x = ζ(uc, u1). By the sine rule of spherical trigonometry:

sin(x)
sin(π/2) = sin(α/2)

sin(2π/6) ,

and since sin
(
π
3
)

=
√

3
2 , then x = arcsin

(
2 sin(α2 )√

3

)
. J

Given an equilateral spherical triangle T , we will also need to determine the maximal and
minimal edge lengths in σkE(T ) for k ≥ 1. The following lemma identifies which edges will have
minimal and maximal lengths.

I Lemma 6. Let T = 〈u1, u2, u3〉 ∈ ∆ be an equilateral triangle such that α = ζ(u1, u2) ∈
(0, π2 ] and k ≥ 1. Then the minimal length edge in σkE(T ) is given by any edge lying on the
boundary of T . The maximal length edge of σkE(T ) is any of the edges of the central equilateral
triangle of σk(T ).

Proof. Consider Fig. 4. The lemma states that in σ2(T ) shown, the shortest length edge of
σ2
E(T ) is (u1, u113), or indeed any such edge on the boundary of triangle 〈u1, u2, u3〉. The

lemma similarly states that the longest edge of σ2
E(T ) is edge (u1213, u1223), or indeed any

edge of the central equilateral triangle 〈u1213, u1223, u1323〉.
Consider now Fig. 6 illustrating T = 〈u1, u2, u3〉. Point u12 (resp. u13) is at the midpoint

of spherical edge (u1, u2) (resp. (u1, u3)). Let α = ζ(u1, u2) = ζ(u2, u3) = ζ(u1, u3) be the
edge length. The intersection of spherical edges (u2, u13) and (u1, u3) forms a spherical right
angle. We denote y = ζ(u13, u12), thus y is the edge length of the central equilateral triangle
of σ(T ) (and α

2 = ζ(u1, u13) is the edge length of the minimal length edge of one of the
non-central triangles in σ(T ); note that this is the same for each such triangle).

u12

α
u13

u1
u2

u3

γ

y

α
2

α
2

γ
2γ

2

y
2

X

Y

Z

Figure 6 Max and min lengths of σ
tessellations of an equilateral triangle.

u23u13

β
x

β

u1
u2

u3

u12

uc

γ
2

2π
6

X

Y

Z

Figure 7 Centroid calculations

By the spherical sine rule, sin
(
γ
2
)

= sin α
2

sinα , which is illustrated by triangle 〈u2, u13, u3〉.

Therefore sin(γ2 ) = 1
2 sec

(
α
2
)
. Here we used the identity that

sin ( x2 )
sin x = 1

2 sec
(
x
2
)
. Further-
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more, one can see by the spherical sine rule that

sin
(y

2

)
= sin

(α
2

)
· sin

(γ
2

)
= 1

2
sin
(
α
2
)

cos
(
α
2
) = 1

2 tan
(α

2

)
This implies that ζ(u13, u12) = y = 2 arcsin

( 1
2 tan α

2
)
which is larger than α

2 for α ∈ (0, π2 ].
To prove this, let f(α) = 2 arcsin( 1

2 tan α
2 ) then df

dα = 2
cos2 (α2 )

√
4−tan2(α2 )

as is not difficult

to prove. Noting that if α ∈ (0, π2 ], then cos2 (α
2
)
∈ [ 1

2 , 1] and
√

4− tan2(α2 ) ∈ [
√

3, 2], then
df
dα >

1
2 = dα2

dα and therefore since f(α) = 0 = α
2 when α = 0, then y > α

2 for α ∈ (0, π2 ].
For any depth k-tessellation σk(T ), the maximal edge length of σkE(T ) will thus be given

by the length of the edges of the central equilateral triangle and the minimal length edges will
be located on the boundary of T as required. J

Given an equilateral spherical triangle T = 〈u1, u2, u3〉, we will now consider the gap ratio
implied by the restriction of points to those of T . The first part of this lemma shows that
the gap ratio of a depth-k tessellation is lower than the gap ratio of a depth-k+ 1 tessellation
(when restricted to points of T ), and the second part shows that in the limit, the upper bound
converges.

I Lemma 7. Let T = 〈u1, u2, u3〉 be an equilateral spherical triangle with spherical edge length
α. Then:
i) ρT (µ(σk(T ))) < ρT (µ(σk+1(T )));
ii) limk→∞ ρT (µ(σk(T ))) = 4 sin (α2 )

α
√

3−4 sin2 (α2 )
.

Proof. Consider Fig. 7 and let α = ζ(u1, u2) = ζ(u2, u3) = ζ(u1, u3) be the edge length of the
equilateral triangle T = 〈u1, u2, u3〉. Let us calculate ρT (σ0(T )) = ρT (T ). Note by abuse of
notation that we write ρT (T ) rather than the more formal ρT (µ(T )), as explained previously.
Recall then that ρT (T ) denotes the gap ratio of point set µ(T ) when the maximal gap ratio
calculation is restricted to points of T .

We see that ρmin(T ) = α since all edge lengths of T are identical. Clearly ρTmax(T ) = 2x;
in other words the maximal spherical diameter of the largest empty circle centered inside T
should be placed at the centroid uc of T . This follows since if the circle is centered at any
other point of T , then it will be closer to at least one vertex of T and therefore the maximal
ratio would only decrease. Thus ρT (σ0(T )) = 2x

α .
By Lemma 4, triangle 〈u12, u23, u13〉 in the decomposition σ(T ) is also equilateral. It is

clear that β > α/2 in Fig. 7 by the spherical sine rule, since γ > π/3 (by Girard’s theorem).
Therefore, ρmin(σ1(T )) = α

2 , ρ
T
max(σ1(T )) = 2β and thus ρT (σ1(T )) = 4β

α . We now show that
2x
α < 4β

α , which is true if x < 2β.
Let us consider the projection of equilateral spherical triangle 〈u1, u2, u3〉 from the cen-

ter of the unit sphere to a tangent plane at the point uc. The point uc is the centroid of
spherical triangle 〈u1, u2, u3〉, as well its projection to the plane P , given by the planar triangle
〈u′1, u′2, u′3〉.

The median of spherical triangle 〈u1, u2, u3〉 has length x + β. The range of x is from β

to 2β. This follows from the fact that in the maximal equilateral spherical triangle case (i.e.
when each angle is π and the triangle forms a half sphere) β = x = π

2 and when the area of the
spherical triangle converges to zero, the median of the spherical triangle 〈u1, u2, u3〉 converges
to the median of the triangle projection 〈u′1, u′2, u′3〉, and x converges to 2β as the centroid of
a Euclidean triangle divides each median in the ratio 2 : 1.
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We thus see that the gap ratio of the (six) points of σ1(T ) is greater than the gap ratio
of the (three) points of σ0(T ), when restricted to points of T . Since the maximal ratio is
calculated by using a circle centered at the centroid of the triangle T , this argument applies
recursively and for each tessellation σk(T ), the maximal ratio is given by twice the distance of
the centroid to the vertices of the central equilateral triangle of the tesselation by Lemma 6,
and therefore the gap ratio increases at each depth of the tessellation, which proves statement
one of the lemma. We will now determine limk→∞ ρT (σk(T )) to prove the second statement.

We may observe that ρmin(σk(T )) = α
2k , since the outer edges of triangle T (with length

α) are subdivided into two k times under σk(T ) and all interior edges have greater length. As
explained above, the maximal diameter circle which may be placed on a point of T which does
not intersect points of σk(T ) will be centered at the centroid uc of T and have a diameter
twice the distance from uc to a vertex of that triangle.

Construct a plane Puc tangent to the point uc (the centroid of T ). In Fig. 7, note that

x = ζ(u1, uc) = arcsin
(

2 sin(α2 )√
3

)
by Lemma 5. The distance1 from the centroid point to a

vertex projected by points u1, u2 or u3 is given by tan x (see Fig. 4 and Section 2.1), thus
the edges of the projection of triangle T have length y =

√
3 tan x since the projection of

an equilateral triangle about its centroid from the origin to Puc is equilateral, with the same
centroid (and the distance from the centroid of a Euclidean triangle to any vertex is of course
given by e√

3 , where e is the edge length of the triangle). The central tessellated triangle thus

has edges whose length starts to approximate
√

3 tan x
2k in the limit, since as k →∞, then this

triangle lies on the plane tangent at uc (i.e. the difference between the edge length of the
spherical triangle and its projection decreases to zero). This implies that the maximal spherical
diameter of the largest empty circle centered at uc is the distance from uc to one of these
vertices, which approaches 2 tan x

2k in the limit as k →∞. Therefore,

lim
k→∞

ρT (σk(T )) = ρTmax(σk(T ))
ρmin(σk(T )) = 2 tan x/2k

α/2k =
2 tan

(
arcsin

(
2 sin(α2 )√

3

))
α

(3)

=
4 sin (α2 )

α
√

3− 4 sin2 (α2 )
(4)

Moving from (3) to (4), we used the identity tan (arcsin x) = x√
1−x2 . J

5 Regular icosahedral tessellation

As explained in Section 3 and Algorithm 1, our algorithm consists of two stages. Using the
lemmata of the previous section, we are now ready to show that the stage one gap ra-
tio is no more than π

arccos
(

1√
5

) ≈ 2.8376 and the second stage gap ratio is no more than

2(3−
√

5)
arcsin

(
1
2

√
2− 2√

5

) ≈ 2.760.

I Lemma 8. The gap ratio of stage one is no more than π

arccos
(

1√
5

) ≈ 2.8376.

Proof. Consult Fig. 9. The points of a regular icosahedron can be defined by taking circular
permutations of (0,±1,±φ), where φ = 1+

√
5

2 is the golden ratio. Let V ′ be the set of the

1 Note that here we refer to the Euclidean distance between the points, rather than the spherical distance,
since the projected points are not on the sphere
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Figure 8 Octahedral tessellation
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Figure 9 Icosahedral tessellation

twelve such vertices. Normalising each element of V ′ gives a set V . Note that the area of
each spherical triangle is given by π

5 since we have a unit sphere and twenty identical spherical
triangles forming a tessellation. By Girard’s theorem (Theorem 3), this implies that 3γ−π = π

5 ,
where γ is the interior angle of the equilateral triangle and thus γ = 2π

5 . By the second spherical
law of cosines (Lemma 1), this implies that the spherical distance between adjacent vertices,
α, is thus given by

cos(α) =
cos( 2π

5 ) + cos2( 2π
5 )

sin2( 2π
5 )

=
1
4 (
√

5− 1) + 3
8 + (

√
5

8 )
5
8 +

√
5

8

=
1
8 (1 +

√
5)

1
8 (5 +

√
5)

= 1√
5

(5)

and therefore α ≈ 1.1071. The first two points are placed opposite to other, for example
u2 ≈ (0,−0.5257, 0.8507) and u3 ≈ (0, 0.5257,−0.8507) in Fig. 9. At this stage, the gap ratio
is 1, since the largest circle may be placed on the equator (with u2 and u3 at the poles) with
a diameter of π, whereas the spherical distance between u2 and u3 can be calculated as π.
The remaining ten vertices of the normalised regular icosahedron are placed in any order. The
minimal distance between them is given by α above, and thus the gap ratio during stage one
is no more than π

arccos
(

1√
5

) ≈ 2.8376, as required. J

As explained in Section 3 and Algorithm 1, we start with the eight equilateral spherical
triangles produced in stage one, denoted the depth-0 tessellation of S. We apply σ to each
such triangle to generate 8 ∗ 4 = 32 smaller triangles (note that not all such triangles are
equilateral, in fact only eight triangles at each depth tessellation are equilateral). At this stage
we have the depth-1 tessellation of S. We recursively apply σ to each spherical triangle at
depth-k to generate the depth-k + 1 tessellation, which contains 8 ∗ 4k+1 spherical triangles.

I Lemma 9. The gap ratio of stage two is no more than 12−4
√

5
arccos

(
1√
5

) ≈ 2.760.

Proof. At the start of stage two, we have twenty equilateral spherical triangles, T1, . . . , T20
which are identical (up to rotation). Note that moving from depth-k tessellation to depth-k+1,
each edge of σkE(Ti) will be split at its midpoint, therefore applying σ to any spherical triangle
will only ‘locally’ change the gap ratio of at most two adjacent triangles. Thus the order in
which σ is applied to each triangle at depth k is irrelevant.

Assume that we have a (complete) depth-k tessellation with 20 ∗ 4k triangles. Lemma 7
tell us that the gap ratio increases from the depth-k to the depth-k + 1 tessellations for all
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k ≥ 0 and in the limit, the gap ratio of the depth-k tessellation of each Ti is given by:

lim
k→∞

ρT (σk(Ti)) =
4 sin (α2 )

α
√

3− 4 sin2 (α2 )
(6)

where α is the length of the edges of Ti (i.e. the length of those triangles produced by stage 1
via the circumscribed icosahedron). When we start to tessellate the depth-k spherical triangles,
until we have a complete depth-k + 1 tessellation, applying σ to each of the triangles, may
decrease the minimal gap ratio at most by a factor up to 2 overall (since we split each edge
at its midpoint). The maximal gap ratio cannot increase, but decreases upon completing the
depth k + 1 tessellation. Therefore, we multiply Eq. (6) by 2 to obtain an upper bound of the
gap ratio for the entire sequence, not only when some depth-k tessellation is complete.

We must now solve Eq. (6), after multiplication by 2, by substituting α = arccos
(

1√
5

)
≈

1.1071. This is somewhat laborious, but by noting that sin(α2 ) =
√

1
10 (5−

√
5) and sin2(α2 ) =

1
10 (5−

√
5), then:

8 sin (α2 )

α
√

3− 4 sin2 (α2 )
=

8
√

1
10 (5−

√
5)

arccos
(

1√
5

)√
1 + 2√

5

= 12− 4
√

5
arccos

(
1√
5

) ≈ 2.760 (7)

Therefore, the gap ratio during stage two is upper bounded by 2.76 as required. J

I Theorem 10. The gap ratio of the icosahedral triangular dissection is π

arccos
(

1√
5

) ≈ 2.8376.

Proof. This is a corollary of Lemma 8 and Lemma 9. Stage one of the algorithm has a larger
gap ratio than stage two in this case. J

We can now prove the first nontrivial lower bound when we have only 2 or 3 points on the
sphere in this online version of the problem.

I Theorem 11. The gap ratio for the problem of placing points on the sphere cannot be less
than 1+

√
5

2 ≈ 1.6180.

Proof. Let us first estimate the ratio with only two points when one point will be located on
the north pole of a sphere and another one will be shifted by a distance x from the south pole.
The gap ratio in this case will be defined as π+x

π−x , which is increasing from 1 to∞ when x ≥ 0.
Let us now consider the case with three points. If we place the third point on the plane

P defined by the center of the sphere and the other two points, then the gap ratio will be
π
π+x

2
= 2π
π+x as in this case the maximal diameter of an empty circle is π regardless of the

position of the third point on P . Note that the diameter of a largest circle will be on the
orthogonal plane to P and the smallest function for the gap ratio in terms of x can be defined
by positioning the third point at the largest distance from initial two points which is π+x

2 .
If the third point is not on the plane P then the ratio would be equal to some value a

b that
is larger than 2π

π+x . This follows from the fact that the value a which is the maximal gap would
be greater than π and the minimal gap b would be less than π+x

2 . So the minimal gap ratio
that can be achieved for the three points will be represented by the expression 2π

π+x .
By solving the equation where the left hand side represents the gap ratio in the case of

3 points (decreasing function) and the right hand side representing the case with 2 points
(increasing function), we find a positive value of the one unknown x: 2π

π+x = π+x
π−x .

The only positive value x satisfying the above equation has the value π(
√

5 − 2) and the
gap ratio for this value x is equal to 1+

√
5

2 . J
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6 Conclusion

In order to illustrate the rate of convergence of the gap ratio for various depths of tessellations
starting from a single equilateral triangle of the regular icosahedron T , we wrote a program
to perform recursive triangular dissection and to measure the minimum and maximum ratios.
The results are shown in Table 1.

The table shows that starting from T , the gap ratio of the complete depth-k tessellation
of T quickly approaches 1.38. The next point inserted after reaching a complete depth-k
tessellation (with 12 ∗ 4k minimal triangles), requires us to split one of the edges in half
according to Algorithm 1. This decreases the minimum gap ratio by a factor of 1

2 which
increases the gap ratio by a factor of 2. Therefore 2 · ρT (σk(T )) shows the maximal gap ratio
at any point, not only restricted to complete depth-k tessellations.

Depth of ρT
min(σk(T )) ρT

max(σk(T )) ρT (σk(T )) 2 · ρT (σk(T ))
Tessellation

0 1.1071 1.3047 1.1784 2.3568
1 0.5536 0.7297 1.3182 2.6364
2 0.2768 0.3774 1.3636 2.7272
...

...
...

...
...

7 0.0086 0.0119 1.3800 2.7600

Table 1 The gap ratio of the depth-k tessellation of the regular icosahedron when isolated to an
equilateral spherical triangle T .

To evaluate the most appropriate initial shape for our algorithm, we derived (both theoretic-
ally and with a computational simulation) the gap ratios of the stage 1 and stage 2 tessellations
of various Platonic solids, shown in Table 2. The results for the dodecahedron are from [6]
using a different tessellation (the dodecahedron has non triangular faces).

Tetrahedron Octahedron Dodecahedron Icosahedron
Stage 1 2.289 2.0 2.618 2.8376
Stage 2 5.921 3.601 5.995 2.760

Table 2 The gap ratio of stage one and two of various regular Platonic solids. Italic elements show
which value defines the overall gap ratio in each case.

The results match our intuition, that a finer grained initial tessellation such as that from
an icosahedron performs much better in stage 2 than a more coarse grained initial tessellation
such as that from a tetrahedron. This is illustrated by Fig. 3 which shows that for a large
initial equilateral spherical triangle, the recursive triangular dissection procedure deforms the
four triangle by a larger margin. The regular icosahedron thus has the essential criteria that
we require; it has a low stage 1 and stage 2 gap ratio, and it is a regular tessellation into
equilateral spherical triangles. It would be interesting to consider modifications of the stage 2
procedure which may allow the octahedron to be utilised, given its low stage 1 gap ratio. This
may require some a modification of Lemma 7 which works also with non equilateral spherical
triangles.
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