
Information Gathering in Ad-Hoc Radio Networks
Marek Chrobak
Department of Computer Science
University of California at Riverside

Kevin P. Costello
Department of Mathematics
University of California at Riverside

Leszek Gąsieniec
Department of Computer Science
University of Liverpool

Abstract
In the ad-hoc radio network model, nodes communicate with their neighbors via radio signals,
without knowing the topology of the graph. We study the information gathering problem, where
each node has a piece of information called a rumor, and the objective is to transmit all rumors to
a designated target node. We provide an Õ(n1.5) deteministic protocol for information gathering
in ad-hoc radio networks, significantly improving the trivial bound of O(n2).

2012 ACM Subject Classification Discrete Mathematics→ Combinatorics • Combinatorial Op-
timization • Theory of Computation → Design and Analysis of Algorithms → Distributed Al-
gorithms • Networks → Ad-Hoc Networks

Keywords and phrases algorithms, radio networks, information dissemination

Digital Object Identifier 10.4230/LIPIcs...

Funding Research supported by NSF grant CCF-1536026.

1 Introduction

We address the problem of information gathering in ad-hoc radio networks. A radio network
is represented by a directed graph, where nodes represent radio transmitters/receivers, and
directed edges represent their transmission ranges; that is, an edge (u, v) is present in the
graph if and only if node v is within the range of node u. When a node u transmits a
message, this message is immediately sent out to all its out-neighbors. However, a message
may be prevented from reach some out-neighbors of u if it collides with messages from other
nodes. A collision occurs at a node v if two or more in-neighbors of v transmit at the same
time, in which case v will not receive any of their messages, and it will not even know that
they transmitted.

Radio networks, as defined above, constitute a useful abstract model for studying proto-
cols for information dissemination in networks where communication is achieved via broad-
cast channels, as opposed to one-to-one links. Such networks do not need to necessarily
utilize radio technology; for example, in local area networks based on the ethernet protocol
all nodes communicate by broadcasting information through a shared carrier. Different
variants of this model have been considered in the literature, depending on the assumptions
about the node labels, on the knowledge of the underlying topology, and on allowed message
size. In this work we assume that nodes are labelled 0, 1, ..., n − 1, where n is the network
size. We focus on the ad-hoc model, where the graph topology is uknown, and a protocol

© The copyright is retained by the authors;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

90
9.

03
63

6v
1

 [
cs

.D
S]

 9
 S

ep
 2

01
9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/228138556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Information Gathering in Ad-Hoc Radio Networks

needs to complete its task within a desired time bound, no matter what the topology is. We
also do not make any assumptions about message size; thus, at any time a node can as well
transmit all information it currently possesses.

Two most studied information dissemination primitives for this model are broadcast-
ing and gossiping. In broadcasting (or one-to-all communication), a single source node s
attempts to transmit its message to all nodes in the network. For broadcasting to be mean-
ingful, we need to assume that all nodes in G are reachable from s. In gossiping (or all-to-all
communication), each node has its own piece of information that we call a rumor. The ob-
jective is to distribute all rumors to all nodes in the network, under the assumption that
the graph is strongly connected. Both these primitives can be solved in time O(n2) by a
simple protocol called RoundRobin where all nodes transmit cyclically one at a time (see
Section 2). Past research on ad-hoc radio networks focussed on designing protocols that
improve this trivial bound.

For broadcasting, gradual improvements in the running time have been reported since
early 2000’s [6, 17, 2, 3, 12, 11], culminating in the upper bound of O(n logD log log(D∆/n))
in [10], where D denotes the diameter of G and ∆ its maximum in-degree. This is already
almost tight, as the lower bound of Ω(n logD) is known [9]. For randomized algorithms, the
gap between lower and upper bounds is also almost completely closed, see [1, 18, 11].

In case of gossiping, some major open problems remain. The upper bound of O(n2) was
improved to Õ(n3/2) in [6, 22] and then later to Õ(n4/3) in [16], and no better bound is
currently known1. No lower bound better than the Ω(n logn) bound that follows from [9])
is known. In contrast, in the randomized case it is possible to achieve gossiping in time
Õ(n) [11, 19, 7].

The reader is referred to a survey paper [14] that contains more information about
information dissemination protocols in different variants of radio networks.

In this paper we address the problem of information gathering (that is, all-to-one com-
munication). In this problem, similar to gossiping, each node v has its own rumor, and the
objective is to transmit these rumors to a designated target node t. (We assume that t is
reachable from all nodes in G.) As indicated earlier, we are not assuming any bound on
message size, so nodes are allowed to aggregate rumors; that is, they can combine all already
received rumors, possibly adding other information, and transmit it all as one message.

The problem of information gathering for trees was introduced in [5], where an O(n)-
time algorithm was presented that uses message aggregation. Without aggregation (if each
message can contain only one rumor), information gathering on trees can be solved in time
O(n log logn) [4]. Several other results in [5, 4] involve other variants of the problem, for
example randomized algorithms or the model where message ackowledgements are provided
to senders.
Our results. Our main result is a deterministic protocol that solves the information gath-
ering problem in arbitrary ad-hoc networks in time Õ(n1.5). To our knowledge this is the
first such a protocol that achieves running time faster than the trivial O(n2) bound. The
key new contribution is in solving this problem in time Õ(n1.5) for acyclic graphs, where any
protocols developed earlier for gossiping, that rely on feedback (see the discussion below),
are not applicable. Our algorithm is based on careful application of combinatorial structures
called strong selectors, combined with a novel amortization technique to measure progress of
the algorithm. To extend this protocol to arbitrary graphs (with the target node t reachable

1 We use notation Õ(f(n)) to conceal poly-logarithmic factors; that is, g(n) = Õ(f(n)) iff g(n) =
O(f(n) logc n) for some constant c.

M. Chrobak, K. Costello, L. Gąsieniec XX:3

from all nodes), we integrate it with a gossiping protocol. Roughly, the protocol for acyclic
graphs is responsible for transferring information between strongly connected components,
while a gossiping protocol disseminates it within each strongly connected component.
Additional context and motivations. If G is strongly connected then information gath-
ering and gossiping are equivalent. Trivially, a gossiping algorithm gathers all rumors in t,
solving the information gathering problem. On the other hand, one can solve the gossiping
problem by running an information gathering protocol and then a broadcasting protocol
with source node t. Thus, counter-intuitively, information gathering can be thought of as
an extension of gossiping, since it applies to a broader class of graphs.

The crucial challenge in designing protocols for information gathering is lack of feed-
back, namely that the nodes in the network do not receive any information about the fate
of their transmissions. This should be contrasted with the gossiping problem where, due
to the assumption of strong connectivity, a node can eventually learn whether its earlier
transmissions were successful. In fact, the existing protocols for gossiping critically rely on
this feature, as they use it to identify nodes that have collected a large number of rumors,
and then to broadcast these rumors (as one message) to the whole network, thus removing
them from any further transmissions and reducing congestion.

Some evidence that feedback might help to speed up information gathering can be found
in [4], where the authors developed an O(n)-time protocol for trees if nodes receive (imme-
diate) acknowledgements of successful transmissions, while the best known upper bound for
this problem without feedback is O(n log logn).

Various forms of feedback have been studied in the past in the problem of contention
resolution for multiple-access channels (MAC), where a collection of nodes communicates
via a single shared challel (ethernet is one example of such networks). Depending on more
specific characteristics of this shared channel, one can model this problem as the information
gathering problem either on a complete graph or a star graph, which is a collection of n
nodes connected by directed edges to the target node t. (See [20, 21, 13] for information
about contention resolution protocols.) For instance, in [5] a tight bound of Θ(n logn) was
given for randomized information gathering on star graphs (or MACs) even if the nodes
have no labels (are indistinguishable) and receive no feedback.

Our algorithm relies critically on the rumor aggregation capability. This capability is
needed to beat the O(n2) upper bound, as without rumor aggregation it is quite easy to
show a lower bound of Ω(n2), for both gossiping and information gathering, and even for
randomized algorithms and with the topology known [15].

Interestingly, if we allow randomization, the randomized gossiping algorithms in [7, 19]
can be adapted to information gathering without increasing the running time. Thus ran-
domization can not only help to overcome collisions, but also lack of feedback.

2 Preliminaries

Graph terminology. Throughout the paper, we assume that the underlying radio network
is represented by a directed acyclic graph G with a distinguished target node t that is
reachable from all other nodes in G. By n we denote the number of nodes in G. We will
treat G both as a set of vertices and edges, and write u ∈ G if u is a node of G and (u, v) ∈ G
if (u, v) is an edge of G. If (u, v) ∈ G then we refer to u as the in-neighbor of v and to v as
the out-neighbor of u. For any node v, by N−(v) = {u ∈ G : (u, v) ∈ G} we denote the set
of its in-neighbors.

For brevity, we will refer to strongly connected components of G as sc-components. For

XX:4 Information Gathering in Ad-Hoc Radio Networks

each node v, the sc-component containing v will be denoted by C(v). We partition the
set of in-neighbors of v into those that belong to C(v) and those that do not: N−scc(v) =
N−(v) ∩ C(v) and N−acg(v) = N−(v) − C(v). If N−acg(v) = ∅, we refer to v’s connected
component C(v) as a source sc-component.

The extent of v in G, denoted G−(v), is the set of all nodes of G from which v is reachable
(via a directed path). We extend this definition in a natural way to sc-components of G; if
A is an sc-component then its extent is G−(v) = ∪v∈AG−(v).
Radio networks. As mentioned in the introduction we assume that each node of G has
a unique label from the set [n] = {0, 1, ..., n− 1}. For convenience, we will identify nodes
with their labels, so a “node u” really means the node with label u.

The time is divided into discrete units that we refer to as steps, numbered with non-
negative integers. We assume that all nodes start to execute the protocol simultaneously
at time step 0. In the formal model of radio networks, at each step each node can be
either in a transmitting state, when it can transmit a message (but it does not have to),
or receiving state, when it can only listen to transmissions from other nodes. We will show
below, however, that we can relax these restrictions and allow a node to simultaneously
listen and transmit at each step. Only one message can be transmitted at each step. This
is not an essential restriction because, as already mentioned in the introduction, we are not
imposing any restrictions on the size or format of messages transmitted by nodes. However,
a message transmited at a given step cannot depend on messages received in the same step.

If a node u transmits a message at a time τ , this message reaches all out-neighbors of
u in the same step. If v is one of these out-neighbors, and if u is the only in-neighor of
v that transmits at time τ , then v will receive this message. However, if there are two
or more in-neighbors of v that transmit at time τ then a collision occurs, and v does not
receive any information. In other words, for v, collisions are indistinguishable from absence
of transmissions. There is no feedback mechanism available in this model, that is a sender of
a message does not receive any information from the system as to whether the transmission
was successful or not. (But it might learn this information later, indirectly, if there happens
to be a path from the recipient to the sender in the graph.)
Selectors. A strong (n, k)-selector is a sequence of label sets (S0, S1, ..., S`−1) (that is,
Si ⊆ [n] for each i) that “singles out” each label from each subset of at most k labels, in the
following sense: for each X ⊆ [n] with |X| ≤ k and each x ∈ X there is an index i such that
Si ∩X = {x}. It is known [8] that there exist strong (n, k)-selectors of size ` = O(k2 logn).

Such selectors are often used for designing protocols for ad-hoc radio networks. The
intuition is this: Consider a protocol that cyclically “runs” a strong (n, k)-selector; that is,
each node u transmits in a step τ if and only if u ∈ Sτ mod `. Suppose that u follows this
protocol and starts transmitting its message at some time step. If v is an out-neighbor of
u and v’s in-degree is at most k, then v will successfully receive u’s message in at most
O(k2 logn) steps, independently of the label assignment. Another basic protocol that is
often used is called RoundRobin. In this protocol all nodes transmit cyclically one by one;
that is each node u transmits in a step τ if and only if u = τ mod n. In RoundRobin there
are no collisions so, in the setting above, node u will successfully transmit its message to v
in at most n time steps. Note that a protocol based on a strong (n, k)-selector can be faster
than RoundRobin only when k = O(

√
n/ logn).

Let θ = 1
2 (logn−log logn)+2. For all i = 0, 1, ..., θ−2, by 2i-Select = (Si0, Si1, ..., Si`i−1)

we will denote a strong (n, 2i)-selector of size `i = O(4i logn). Without loss of generality
we can assume that `i+1 = 4`i for all i ≤ θ − 3.

Note: To avoid clutter, in the paragraph above, as well as later throghout the paper,

M. Chrobak, K. Costello, L. Gąsieniec XX:5

we omit the notation for rounding and assume that in all formulas representing integer
quantities (the number of nodes, steps, etc.) their values are appropriately rounded. This
will not affect asymptotic running time estimates.
Simplifying assumptions. To simplify presentation, in the paper we will assume a relaxed
communication model with two additional features:
(A) We assume that some number κ of radio frequency channels is available for commu-
nication. In a single step, a node can use all frequencies simultaneously. Further, for
each frequency, it can also receive and transmit at this frequency in a single step. The
restriction is that, for each step, the messages transmitted at all frequencies in a given
step do not depend on the messages received in this step.

Below we explain how this relaxed model can be simulated using the standard radio
network model.
Simulating multiple frequencies. We first explain how we can convert a protocol A that uses
κ frequencies and runs in time O(T) into a protocol A′ that uses only one frequency and
runs in time O(κT). This can be done by straightforward time multiplexing. In more detail:
A′ organizes all time steps 0, 1, 2, ... into rounds. Each round r = 0, 1, 2, ... consists of κ
consecutive steps rκ, rκ+ 1, ..., rκ+ κ− 1. Each step s of A is simulated by round s of A′.
For each frequency i, the message transmitted at frequency i by A is transmitted by A′ in
step i of round s. At the end of round s, A′ will know all messages received in this round,
so it will know what messages would A receive in step s, and therefore it knows the state of
A and can determine the transmissions of A in the next step.

0 1 i 90 1 i 9 0 1 i 9.

round 0 round 1 round r

frequency i

Figure 1 Partition of A′’s time steps into rounds, for κ = 10 frequencies.

Simulating simultaneous receiving/transmitting. By the argument above, we can assume
that we have only one frequency channel. We claim that we can disallow simultaneous
receiving and transmitting at the cost of only adding a logarithmic factor to the running
time. To see this, suppose that B is some transmission protocol where nodes can transmit
and listen at the same time. (Recall that the transmission of B at any step does not depend
on the information it receives in the same step.) We use a strong (n, 2)-selector 2-Select
of size `1 = Õ(1). We replace each step τ of B by a time segment Iτ of length `1. For
any node u and any j = 0, 1, ..., |Iτ | − 1, if v is in the set of 2-Select with index j then
at the jth step of segment Iτ node v transmits whatever message it would transmit in B
at time τ ; otherwise v is in the receiving state. Then, for any edge (u, v), there will be a
time step within Iτ at which u is in the transmitting state and v is be in the receiving state,
guaranteeing that u’s message will reach v. This way we convert B into a protocol B′ where
nodes do not transmit and receive at the same time.

In fact, for the type of protocols presented in the paper, allowing simultaneous reception
and transmisison does not affect the asymptotic running time at all. Our protocols are
based on strong selectors and RoundRobin. In case of RoundRobin, the simultaneous
reception and transmisison capability is (trivially) not needed. For selector-based protocols,

XX:6 Information Gathering in Ad-Hoc Radio Networks

the argument how this capability can be removed was given in [4]. Roughly, the idea is that
whenever a protocol uses a strong (n, k)-selector, this selector can be replaced by a strong
(n, k + 1)-selector (whose size is asymptotically the same). This guarantees that for any
node v with k in-neighbors and any v’s in-neighbor u there will be a step when v is in the
receiving state and u is the only in-neighbor in the transmitting state.

3 Deterministic Õ(n1.5)-Time Protocol for Acyclic Graphs

We first consider ad-hoc radio networks whose underlying graph G is acyclic and has one
designated target node t that is reachable from all other nodes in G. We will give an
information gathering protocol that will transmit all rumors to the target node t in time
Õ(n1.5) independently of the topology of G.

In the algorithm we will assume that each vertex knows the labels of its in-neighbors.
This can be easily achieved in time O(n) by pre-processing that consists of one cycle of
RoundRobin, where each node transmits only its own label. As explained in Section 2,
we also make Assumption (A), namely that the protocol has multiple frequency channels
available and on each frequency it can simultaneously receive and transmit messages at each
step.

In the description of the algorithm below we use a sequence of θ+ 1 values β0, β1, ..., βθ,
defined as follows: β0 = 0, βi =

∑
g<i `g for i = 1, ..., θ − 1, and βθ =

∑
g<θ `g + n.

Protocol AccGather. The algorithm uses θ frequencies, where θ = 1
2 (logn− log logn)+2,

as defined in Section 2. The intuition is that each frequency i < θ− 1 will be used to “run”
selector 2i-Select, while frequency θ − 1 will be used to run RoundRobin.

At each step, a node could be dormant or active. Dormant nodes do not transmit; active
nodes may or may not transmit. A node v is active during its activity period [α(v), α(v)+βθ),
where α(v) is referred to as the activation step of v, and is defined below.

If v is a source node (that is, its in-degree is 0), then α(v) = 0. Otherwise α(v) is
determined by the messages received by v, as follows. Each message transmitted by a node
u contains the following information: (i) all rumors collected by u, including its own, (ii) the
label of u, and (iii) another value called recommended wake-up step and denoted rwsu, to
be defined shortly. For a non-source node v and its in-neighbor u, denote by rws1

u,v the first
rwsu value received by v from u. (Note that this may not be the first rwsu value transmitted
by u, since these earlier transmissions might have failed.) Node v waits until it receives
messages from all its in-neighbors, and, as soon as this happens, if u is the last in-neighbor
of v that successfully transmitted to v, then v sets α(v) = rws1

u,v.
The activity period [α(v), α(v) + βθ) of v is divided into θ activity stages, where, for

i = 0, 1, ..., θ− 1, the ith activity stage consists of the time interval [α(v) + βi, α(v) + βi+1).
(See Figure 2.) During its ith activity stage, for i < θ − 1, node v transmits according
to selector 2i-Select using frequency i. During the (θ − 1)th activity stage, the protocol
transmits using RoundRobin on frequency θ − 1. The recommended wake-up step value
included in v’s message is rwsv = α(v) + βi+1. At all other times v does not transmit.
Correctness. We first note that the algorithm is correct, in the sense that each rumor will
eventually reach the target node t. This is true because once a node becomes active, it is
guaranteed to successfully transmit its message using the RoundRobin protocol during its
last activity stage.
Running time. Next, we derive an estimate of the completion time of AccGather. We
claim that this protocol completes information gathering in time Õ(n3/2). To establish this
bound, we choose in the graph G a critical path P = (v0, v1, ..., vp = t), defined as follows:

M. Chrobak, K. Costello, L. Gąsieniec XX:7

αv αv +β1

v receives
last message

αv +β2 αv +β3time steps:

v active

3rd activity stage
�3 steps

αv +β4

0
1
2
3
4

fre
qu

en
cy

αv +β5

Figure 2 Illustration of activity stages. (The picture is not up to scale. In reality the length
of activity stages increases at rate 4.) Shaded regions show frequencies used in different activity
stages.

for each a = p − 1, p − 2, ..., 0, va is the in-neighbor of va+1 whose message was received
last by va+1 (formally, va is chosen so that α(va+1) = rws1

va,va+1
), and v0 is a source node.

(Note that, since we define this path in the backwards order, the indexing of the nodes va
can be determined only after we determine the whole path). Since vp−1’s message is the last
message received by t, it suffices to bound the time it takes for the algorithm to complete
P .

v0 t=vp
P

va

va+1

U

Figure 3 Illustration of the time analysis for acyclic graphs.

If at a current step a node v is in its i-th activity stage (that is, the current step is in
the interval [α(v) + βi, α(v) + βi+1)) then we refer to i as v’s stage index. We extend this
(artificially) to dormant nodes as follows: if v has not yet started its activity period then its
stage index is −1, and if v has already completed its activity period then its stage index is
θ. The stage index of each node is incremented O(logn) times, so the total number of these
increments, over all nodes and over the whole computation, is O(n logn) = Õ(n).

Now consider some node va on P . (See Figure 4.) Our argument is based on the following
key claim.
I Claim 1. There are Ω̃(n−1/2(α(va+1)−α(va))) stage index increments in the time interval
[α(va), α(va+1)).

Before we prove Claim 1, we argue that this claim is sufficient to establish our upper
bound. Let T be the running time. Since α(v0) = 0 and T ≤ α(vp), we can bound the
running time as T ≤

∑p−1
a=0(α(va+1)− α(va)). Then Claim 1 implies that the total number

of stage index increments during the computation is Ω(n−1/2T). Since this number is also
Õ(n), it gives us that T = Õ(n3/2).

Next, we prove Claim 1. Suppose that va succeeds first time in transmitting its message
to va+1 during its h-th activity stage.

XX:8 Information Gathering in Ad-Hoc Radio Networks

I Observation 1. For a < p and h < θ − 1 we have α(va+1)− α(va) = Õ(4h).

This observation follows from the definition of P , as α(va+1) = rws1
va,va+1

= α(va)+βh+1,
and βh+1 =

∑
g<h `g = O(4h logn).

We now consider three cases, depending on the value of h. First, if h = 0, then there is
at least one stage increment in [α(va), α(va+1)) (namely the increment of the stage index of
va from −1 to 0) and α(v1)− α(v0) = `0 = O(logn), so the claim holds trivially.

Next, suppose that 0 < h < θ − 1. By the choice of h, va has not succeeded in its
(h− 1)th activity stage [α(va) + βh−1, α(va) + βh). Let U be the set of in-neighbors of va+1
(including va) whose (h− 1)th activity stage overlapped that of v.

I Observation 2. |U | > 2h−1.

To justify Observation 2, we argue by contradiction. Suppose that |U | ≤ 2h−1. During
this activity stage va transmitted according to 2h−1-Select using only frequency h − 1.
Further, by the definition of the protocol, at each step of this stage the in-neighbors of va+1
with stage index other than h − 1 did not use frequency h − 1 for transmissions. So the
transmissions from va to va+1 can only conflict with transmissions from U to va+1. The
definition of strong selectors and the assumption that |U | ≤ 2h−1 imply that then va would
have successfully transmitted to va+1 during its (h − 1)th activity stage, contradicting the
definition of h. Thus Observation 2 is indeed true.

The (h−1)th activity stage lasts `h−1 rounds so all these (h−1)th activity stages of the
nodes in U end before time α(va) + βh + `h−1 < α(va) + βh+1 = α(va+1). This implies that
in the interval [α(va), α(va+1)) the number of stage index increments is at least

|U | ≥ 2h−1 = 1
2 · 2

−h · 4h = Ω̃(n−1/2(α(va+1)− α(va))),

because h ≤ 1
2 logn and α(va+1)− α(va) = O(4h).

Finally, consider the case when h = θ−1. Then α(va+1)−α(va) = n. But, by the choice
of h, va has not succeeded in its (h− 1)th activity stage, where h− 1 = 1

2 (logn− log logn).
A similar argument as above gives us that the number of stage index increments during va’s
(h− 1)th activity stage is Ω(n1/2), implying the Claim 1.
More precise time bound. We have established that Algorithm AccGather runs in
time Õ(n1.5) on acyclic graphs. For a more precise bound, let us now determine the exponent
of the logarithmic factor in this bound: one factor O(logn) is needed to simulate multiple
frequencies with one, one factor O(logn) appears in the bound for the length of selectors,
and we have another factor O(logn) that we ignored in the amortized analysis, since the
number of stage index increments is O(n logn) (while we used the bound of Õ(n)). This
gives us the main result of this section:

I Theorem 1. Let G be an acyclic directed graph with n vertices and a designated target node
reachable from all other nodes. Algorithm AccGather completes information gathering on
G in time O(n1.5 log3 n).

4 Deterministic Õ(n1.5)-Time Protocol for Arbitrary Graphs

We now extend our information gathering protocol AccGather from Section 3 to an arbit-
rary n-vertex directed graph G, achieving running time Õ(n1.5). By t we denote the target
node in G, and we assume that t is reachable from all other nodes in G.

The main obstacle we need to overcome is that protocol AccGather depends critically
on the graph being acyclic to coordinate the activity periods of different nodes. For instance,

M. Chrobak, K. Costello, L. Gąsieniec XX:9

in this protocol each node must wait until it receives messages from all its in-neighbors.
If cycles are present, this leads to a deadlock, when each node in a cycle waits for its
predecessor. On the other hand, as explained in the introduction, gossiping protocols from [6,
22, 16] do not work correctly if the graph is not strongly connected, because they rely on
broadcasting to periodically flush out some rumors from the system and on leader election to
synchronize computation. The idea behind our solution is to combine protocol AccGather
with the gossiping protocol from [16], using AccGather to transmit information between
different strongly connected components of G and using gossiping to disseminate information
within strongly connected components. We also use gossiping to identify these strongly
connected components.
Protocol GRXGossip for gossiping. We will refer to the gossiping algorithm from [16]
as GRXGossip. This protocol will be used as a black box, but we do exploit some properties
of that algorithm, mainly the following two:
(grx1) If the input graph is strongly connected and has k vertices, with the node labels

from the set [K] = {0, 1, ...,K − 1}, then algorithm GRXGossip completes gossiping in
time O(k4/3 logK log10/3 k).

(grx2) For arbitrary graphs (not necessarily strongly connected), after running algorithm
GRXGossip for time O(k4/3 logK log10/3 k) the rumor from each node v will reach all
nodes in the sc-component containing v.

Our algorithm will sometimes execute GRXGossip on its sc-components, and we now
give a more precise explanation of this process. Let A be an sc-component of G. To
execute GRXGossip on A means this: Starting at the same time, all nodes in A execute an
instance of GRXGossip in which the node labels are assumed to be from [n] and the graph
is assumed to be the subgraph of G induced by A. In particular, this means that this instance
of GRXGossip uses the value nA as the graph size. Assuming that there is no intereference
from the nodes outside A, let TGRX(A) denote the running time of protocol GRXGossip on
A. By property (grx2), where k = nA and K = n, we have TGRX(A) = Õ(n4/3

A).
Executions of GRXGossip for sc-components within predefined time intervals, that

may be different for different sc-components. At time 0, each node v of an sc-component A
partitions all time steps into disjoint GRX-frames, where the sth GRX-frame, for s ≥ 0, is
the time interval [sTGRX(A), (s+ 1)TGRX(A)). The “rumors” to be disseminated throughout
A during this process will not be the original rumors from the instance, and will be specified
in the algorithm’s description below.
Pre-processing. For convenience, we will assume that prior to the execution of the core
algorithm, we will run a simple protocol, described below, that will identify sc-connected
components in G. We start with one round of RoundRobin, after which each node knows
the labels of all its in-neighbors. This set of in-neighbors of a node v will be denoted N−(v).
Next, we run the complete protocol GRXGossip (on the whole graph), but instead of
their original rumors, the nodes transmit their own labels. By property (grx2) above, after
completing gossiping, each node will v receive a set Zv of labels that includes the labels of
all nodes in v’s sc-connected component C(v). We follow this with yet another execution
of GRXGossip, with each node u transmitting a pair consisting of its own label and set Zu.
When this is completed, each node v determines the labels of the nodes in C(v) as follows:
u ∈ C(v) if and only if Zu contains the label of v. Each node v now lets the identifier of C(v)
be the smallest label in C(v). To complete the pre-processing we run RoundRobin again,
transmitting these identifiers. At this point each node v of G has the following information:

The identifier and size nC(v) of its sc-connected component C(v), as well as the list of
all nodes in C(v), and

XX:10 Information Gathering in Ad-Hoc Radio Networks

The list N−(v) of its in-neighbors, including their labels and the identifiers of their
sc-connected components. We partition N−(v) into two types of nodes depending on
whether they belong or not to C(v): N−scc(v) = N−(v)∩C(v) andN−acg(v) = N−(v)−C(v).

Algorithm ArbGather. Recall that protocol AccGather used θ = O(logn) frequencies
for communication. We will use the same frequencies to simulate AccGather and we
will refer to them as ACG-frequencies. One additional frequency, called the SCC-frequency,
will be used to simulate protocol GRXGossip. The important thing to remember at this
point is that, due to using different frequencies, these two protocols will never interfere
with each other. As indicated earlier, GRXGossip will be used to disseminate information
within sc-components, so only messages from N−scc(v) that are received by v on the SCC-
frequency are used by the algorithm. Similarly, only messages from N−acg(v) that are received
by v on the ACG-frequencies are used. It may happen that v will receive messages on a
“wrong” frequency, say a message from N−scc(v) on some ACG-frequency or vice versa, but
such messages are simply ignored by v.

It is convenient to think of the algorithm as running two subroutines, the SCC-subroutine
and the ACG-subroutine, that interact with each other. Roughly, the completion of the ACG-
subroutine by all nodes within an sc-component A triggers the SCC-subroutine for A, which
runs GRXGossip on A. If this SCC-subroutine completes, it triggers in turn the execution
of ACG-subroutine for the nodes in A. In reality this is a bit more subtle, as we explain
below.

The SCC-subroutine. Unline in AccGather, with each node v we now associate two ac-
tivation times. The one relevant to the SCC-subroutine will be denoted αscc(v) and called
v’s SCC-activation. It is defined analogously to the activation time in AccGather: If
N−acg(v) = ∅ then αscc(v) = 0. Otherwise, αscc(v) is the last-received value rws1(u, v) for
u ∈ N−acg(v), where rws1(u, v) denotes the first rwsu value received by v from u. (As ex-
plained earlier, these values will be received on the ACG-frequency.)

During the execution of this module, starting at time αscc(v), v will be transmitting at
the SCC-frequency. Let A = C(v) and let sv be the smallest s for which svTGRX(A) ≥ αscc(v).
Define the A-rumor of v to be a message that encapsulates all rumors received by v by time
αscc(v), plus the label of v itself. Node v repeatedly does the following: for s = sv, sv + 1, ...,
it executes GRXGossip for A in the GRX-frame [sTGRX(A), (s + 1)TGRX(A)), using its A-
rumor as the rumor that needs to be disseminated by this execution of GRXGossip. This
process stops at time αacg(A), which is equal to the beginning of the first GRX-frame after
v receives A-rumors from all nodes in A.

The ACG-subroutine. We refer to the value αacg(v) defined above as v’s ACG-activation
time. This value now plays the role of v’s activation time in protocol AccGather. In
this subroutine v will transmit at the ACG-frequencies and v simply executes AccGather,
starting at time αacg(v), in its activity period [αacg(v), αacg(v) + βθ). The activity stages
and the transmissions of each node are defined in exactly the same way as in protocol
AccGather (except that we use αacg(v) instead of α(v)).

Correctness. We justify correctness first. The following properties can be established by
straightfoward induction:

First, a node v starts its SCC-subroutine, at time αscc(v), only after it has received
messages from all nodes in N−acg(v), so when it starts, it will have all rumors from all
nodes in G−(v). Thus at time αscc(A), each rumor from G−(A) will already reach at
least one node in A.

M. Chrobak, K. Costello, L. Gąsieniec XX:11

Two, v will not receive all A-rumors from A before time svTGRX(A), because before time
time not all nodes in A yet started the execution of GRXGossip in A.
Three, as all nodes in A do a complete execution of GRXGossip in A in the GRX-frame
[sTGRX(A), (s+1)TGRX(A)), and no nodes interfere with this execution, GRXGossip will
successfully complete in time TGRX(A). This implies that αacg(A) = αscc(A) + TGRX(A),
and that at time αacg(A), v and all nodes in A know all rumors from G−(A).
Four, v is guaranteed to successfully transmit during the ACG-subroutine because this
subroutine involves a round of RoundRobin.

Running time. Next, we estimate the running time. The main idea is this: When a
node v starts its ACG-subroutine at time αacg(v), the SCC-subroutine in A = C(v) has
already completed. By applying this property to the nodes in N−acg(v), we obtain that
when v starts its SCC-subroutine at time αscc(v), the SCC-subroutines in all sc-components
that are predecessors of v have already completed. Let αscc(A) = maxu∈A αscc(u). By the
earlier observation, all nodes in A will already have all rumors from A and the preceding
sc-components at time αscc(A), and therefore the execution of GRXGossip in A will be
successful in the GRX-frame starting at αscc(A). This implies that αacg(A) ≤ αscc(A) + 2.
(It might take two executions of AccGather to complete the SCC-subroutine – one to
distribute all gossips in A, and one more to distribute the success acknowledgements.)

The above paragraph implies that, for the nodes in A, the contribution per node of
the SCC-subroutine to the overall running time is at most 2TGRX(A)/nA = Õ(n1/3). The
analysis of the ACG-subroutine is the same as for protocol AccGather.

To make this argument more precise, we extend the definition of a critical path from
Section 3. In this section, the critical path is a sequence of nodes v0w0v1w1...vpwp = t

defined as follows:
For each a = p, p−1, ..., 0, suppose that wa has already been defined, and let Ca = C(wa).
If

⋃
u∈Ca

N−acg(u) 6= ∅, then let va ∈ A be the node for which αscc(va) = αscc(Ca). In
other words, va is the node in Ca for which αscc(va) is maximum. (It could happen
that va = wa.) On the other hand, if

⋃
u∈Ca

N−acg(u) = ∅ (that is, Ca is a source sc-
component), then a = 0 and v0 ∈ Ca is arbitrary, for example we can take v0 = w0.
For each a = p− 1, p− 2, ..., 0, suppose that va+1 has already been defined. Then wa is
the node in N−acg(va+1) whose message was received last by va+1 (formally, wa is chosen
so that αscc(va+1) = rws1(wa, va+1)).

v0
t=wp

P

va+1

U

w0

v1

wa+1
va

wa

w1

vp

C0

C1

Ca
Ca+1 Cp

Figure 4 Illustration of the time analysis for arbitrary graphs.

XX:12 Information Gathering in Ad-Hoc Radio Networks

Denote by T the running time of protocol ArbGather. We have T = αacg(Cp) and
αscc(C0) = 0, so we can the express T as

T =
p∑
a=0

[αacg(Ca)− αscc(Ca)] +
p−1∑
a=0

[αscc(Ca+1)− αacg(Ca)]

We estimate the two terms separately. As explained earlier, we have αacg(Ca) = αscc(Ca) +
TGRX(Ca), so the first term is at most

p∑
a=0

[αacg(Ca)− αscc(Ca)] =
p∑
a=0

TGRX(Ca)

= Õ(n4/3
Ca

) = Õ(n4/3),

because the
∑p
a=0 nCa

≤ n. To estimate the second term, note that the definition of va+1
implies that αscc(Ca+1) = αscc(va). Further, in the execution of AccGather, node wa gets
activated at time αacg(Ca). Then the analysis identical to that in Section 3 yields that we
can estimate the second term by Õ(n1.5). We thus obtain the main result of this paper:

I Theorem 2. Let G be an arbitrary directed graph with n vertices and a designated tar-
get node reachable from all other nodes. Algorithm ArbGather completes information
gathering in G in time O(n1.5 log3 n).

5 Final Comments

In this paper we provided an Õ(n1.5) protocol for information gathering in ad-hoc radio
networks, improving the trivial upper bound of O(n2).

Many open problems remain. The two most intriguing problems are about the time
complexity of gossiping and of information gathering, as for both problems the best known
lower bounds are only Ω(n logn), the same as for broadcasting.

We hope that some ideas behind our algorithm will shed some light on these problems and
help in further improvements. One idea that is particularly promising is the amortization
technique in Section 3, where a failure of a node in transmitting its message is charged to
the exponent in the size of the selectors used by the interfering nodes (that is, to stage index
increments).

References
1 Noga Alon, Amotz Bar-Noy, Nathan Linial, and David Peleg. A lower bound for radio

broadcast. J. Comput. Syst. Sci., 43(2):290–298, 1991.
2 Danilo Bruschi and Massimiliano Del Pinto. Lower bounds for the broadcast problem in

mobile radio networks. Distributed Computing, 10(3):129–135, 1997.
3 Bogdan S. Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej Pelc, and Wojciech Rytter.

Deterministic broadcasting in ad hoc radio networks. Distributed Computing, 15(1):27–38,
2002.

4 Marek Chrobak and Kevin P. Costello. Faster information gathering in ad-hoc radio tree
networks. Algorithmica, 80(3):1013–1040, 2018.

5 Marek Chrobak, Kevin P. Costello, Leszek Gasieniec, and Dariusz R. Kowalski. Information
gathering in ad-hoc radio networks with tree topology. Information and Computation,
258:1–27, 2018.

M. Chrobak, K. Costello, L. Gąsieniec XX:13

6 Marek Chrobak, Leszek Gasieniec, and Wojciech Rytter. Fast broadcasting and gossiping
in radio networks. Journal of Algorithms, 43(2):177–189, 2002.

7 Marek Chrobak, Leszek Gasieniec, and Wojciech Rytter. A randomized algorithm for
gossiping in radio networks. Networks, 43(2):119–124, 2004.

8 Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Selective families, superim-
posed codes, and broadcasting on unknown radio networks. In Proc. 12th Annual Sym-
posium on Discrete Algorithms (SODA’01), pages 709–718, 2001.

9 Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Distributed broadcast in
radio networks of unknown topology. Theor. Comput. Sci., 302(1-3):337–364, 2003.

10 Artur Czumaj and Peter Davies. Faster deterministic communication in radio networks. In
43rd International Colloquium on Automata, Languages, and Programming (ICALP’16),
pages 139:1–139:14, 2016.

11 Artur Czumaj and Wojciech Rytter. Broadcasting algorithms in radio networks with un-
known topology. Journal of Algorithms, 60(2):115 – 143, 2006.

12 Gianluca De Marco. Distributed broadcast in unknown radio networks. In 19th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’08), pages 208–217, 2008.

13 Antonio Fernández Anta, Miguel A. Mosteiro, and Jorge Ramón Muñoz. Unbounded
contention resolution in multiple-access channels. Algorithmica, 67(3):295–314, 2013.

14 Leszek Gasieniec. On efficient gossiping in radio networks. In 16th Int. Colloquium on
Structural Information and Communication Complexity (SIROCCO’09), pages 2–14, 2009.

15 Leszek Gasieniec and Igor Potapov. Gossiping with unit messages in known radio networks.
In Foundations of Information Technology in the Era of Networking and Mobile Computing,
IFIP 17th World Computer Congress - TC1 Stream / 2nd IFIP International Conference
on Theoretical Computer Science (TCS’02), pages 193–205, 2002.

16 Leszek Gasieniec, Tomasz Radzik, and Qin Xin. Faster deterministic gossiping in directed
ad hoc radio networks. In Scandinavian Workshop on Algorithm Theory (SWAT’04), pages
397–407, 2004.

17 Dariusz R. Kowalski and Andrzej Pelc. Faster deterministic broadcasting in ad hoc radio
networks. SIAM J. Discrete Math., 18(2):332–346, 2004.

18 Eyal Kushilevitz and Yishay Mansour. An Ω(D log(N/D) lower bound for broadcast in
radio networks. SIAM J. Computg., 27(3):702–712, 1998.

19 Ding Liu and Manoj Prabhakaran. On randomized broadcasting and gossiping in radio
networks. In 8th Annual Int. Conference on Computing and Combinatorics (COCOON’02),
pages 340–349, 2002.

20 Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized
multiple access channel. In Proc. of the 27th Int. Symposium on Parallel Distributed Pro-
cessing (IPDPS), pages 525–533, 2013.

21 Gianluca De Marco and Dariusz R. Kowalski. Fast nonadaptive deterministic algorithm
for conflict resolution in a dynamic multiple-access channel. SIAM Journal on Computing,
44(3):868–888, 2015.

22 Ying Xu. An O(n1.5) deterministic gossiping algorithm for radio networks. Algorithmica,
36(1):93–96, 2003.

	1 Introduction
	2 Preliminaries
	3 Deterministic (n1.5)-Time Protocol for Acyclic Graphs
	4 Deterministic (n1.5)-Time Protocol for Arbitrary Graphs
	5 Final Comments

