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Cost Minimization Control for Smart Electric
Vehicle Car Parks with Vehicle-to-Grid Technology
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Abstract—The high demand side cost of electric vehicles (EVs)
affects the wide use of EVs in practice. In this work, a electricity
cost model for EVs in a smart car park has been built up,
which includes key factors such as the charging and discharging
costs, the battery degradation cost, the driving probability, the
feed-in tariff (FIT), and the vehicle-to-grid (V2G) rebates. Each
EVs’ charging and discharging status are designed through an
optimization route so as to minimize the car park electricity cost.
Results from comprehensive simulation studies demonstrate the
potential of V2G benefits for a car park system with multiple
EVs subject to EV and battery characteristics, FIT and policy
support.

Keywords—electric vehicle (EV); demand side cost; battery
degradation; charging and discharging; vehicle-to-grid (V2G);
feed-in tariff (FIT); driving probability; optimization.

I. INTRODUCTION

A. Smart Car Park and Vehicle to Grid Technology

The use of electric vehicles (EVs) provides a feasible solu-
tion to reduce pollution to environment and improve transport
system energy efficiency [1]. The bidirectional power flow be-
tween EVs and the grid has enabled the vehicle to grid (V2G)
technology. A number of challenges in V2G are discussed in
[2] such as stress to power system and congestion in feeders,
which will lead to system overload and uncontrollable load
spikes. A smart EV car park is capable of controlling EVs’
charging and discharging activities, so as to facilitate power
flow and energy storage between vehicles and grid [3]. Private
vehicles are mostly under parking status during the daytime,
either at home or in public car parks [4]. Therefore, EVs can
be used as energy storage systems and virtual STATCOMs
[5], the latter provides a new option for transmission line
protection [6]. Large quantities of vehicles parking at public
car parks will also allow owners or managers of car parks
to gain additional benefits through V2G technologies from
various feed-in tariffs (FIT)/incentives.

The impacts of plug-in EVs on the grid have been studied
in the past decade. When EVs have adequate on-board power
electronics, intelligent connections to the grid, and interactive
charger hardware control, they can serve as stored energy
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resources and as a reserve against unexpected outages [7].
Connection to the grid, control and communication between
vehicles and grid operator, and on-board/off-board smart me-
tering are required for beneficial V2G operation [8]. The car
park costs, the emissions benefits, and the impact of EVs on
distribution system depend on vehicle and battery characteris-
tics, as well as on charging and discharging strategies. When
no smart charging or embedded controller is available, charge
of vehicles can only be taken as loads.

Coordinated smart charging and discharging to optimize
power demand appears to be the most beneficial and efficient
strategy for both the grid operator and the EV owners [9].
Recent researches [8–10] show that smart charging can min-
imize EV impact on the power grid, help to shift load and
avoid peaks, provided suitable choices are made for intelligent
controls. Direct coordination of charging and discharging can
be achieved by means of smart metering, control, and com-
munication. One strategy for getting a higher return for grid
operators is to offer real-time non-linear electricity pricing for
charging and discharging [11]. Each vehicle can be contracted
individually or as part of an aggregation. Aggregates with
EVs in a group can create a larger, more manageable load
for the utility [12]. These groups can act as distributed energy
resources to realize ancillary services and spinning reserves.
Cooperation between the grid operator and vehicle owners or
aggregates is crucial to achieve high net return.

When using smart car parks, replacing traditional vehicles
with EVs may impose stress to the power system and create
issues such as congestion in feeders, system overload, and
spikes in energy market prices if charging of EVs is not prop-
erly controlled [13]. However, the presence of EV aggregates
in an area distribution network can be beneficial to a local
distribution company, since aggregates can coordinate and
manage the charging time of their EVs fleet. In fact, aggregates
can attract EVs into their smart car parks by introducing a
variety of incentives to EV owners. Consequently, activities
of aggregates such as cooperating with local distribution
company or taking part in different power markets such as
energy, spinning reserve, and frequency regulation markets
can mitigate or remove the above mentioned problems, and
provide benefits to EV owners.

It has been reported that most private vehicles are parked
at parking lots in idle state for more than 90% of the time
during a day [14]. Therefore, these energy storage apparatuses
can bring a huge potential for the aggregates’ prosperity to
participate in various grid-related activities. A real-time load
management control strategy is proposed for coordinating the
charging time of EVs in order to minimize energy losses in
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a smart grid [15], in which the impact of battery degradation
to profit is not considered. A model for V2G performance
evaluation for micro grid energy management is presented in
[16]. A method is proposed to control EVs charging in quasi-
real-time for participation of EV aggregates in the energy
market [17]. In [18], coordinated charging/discharging of EVs
is investigated for voltage control and congestion management.
A method is developed in [19] for V2G along with capacitor
allocation for bus voltage improvement, loss reduction, and
congestion management using an artificial immune systems
based approach. In [20], EVs have been utilized to support
smart grids by offering ancillary service including frequency
regulation. In [21], aggregate’s self-scheduling problem for
participating in the spinning reserve market has been mod-
elled using an agent-based model. A probabilistic approach
is proposed in [22], based on the point estimate method, to
determine the optimal capacity and location of EV parking
lots in grid networks. Their work is focused on the users’
behaviours and the battery degradation cost is not considered.
The feasibility of V2G technology is discussed with the
analysis of energy efficiency for multi-port power converters
used in EVs [23]. A vehicle owner’s cost is estimated to be
halved by using V2G [24]. The opportunities and challenges of
V2G, vehicle to home and vehicle to vehicle are investigated
in [25]. A scheduling method is proposed to ensure adequate
charging condition of EVs, and that the power quality of the
regulation service can be stabilized [26].

The above works have provided understanding and support
to V2G activities for large-scale EV systems. One factor that
is lack of investigation is the impact of battery degradation
to the overall EV operational costs. Other factors such as
the customer behaviours and V2G rebate from the energy
company policy also need to be considered systematically in
an optimization framework.

B. Battery Degradation

Battery degradation cost may largely affect the use of V2G
in practice [27]. Adverse factors for batteries in plug-in hybrid
EVs and battery EVs include high current rates, deep discharge
conditions, low and high operating temperatures [28]. For the
energy storage system of any electrically propelled vehicles,
the energy capacity, the power for acceleration, regenerative
braking for efficiency and cycle life remain to be the critical
components [29].

The relevance of fast charging under different temperatures
to the battery lifetime is analysed in [30]. The main ageing
parameters such as internal resistance increase and capacity
fade in lithium-ion chemistries are discussed based on half-
cell levels [31]. The power fade during the cycle life is
studied at two different working temperatures, relating this
parameter to the state of health [32]. In [33], accelerated
cycle life tests are performed at different conditions on depth
of discharge and temperature. Accelerated lifetime tests are
performed at different working temperatures and different
levels of state-of-charge (SOC) to establish a mathematical
relationship between the storage time, temperature and volt-
age to battery ageing [34]. In another study on lithium-ion

phosphate based batteries, it is observed that the capacity fade
increases with the storage temperature [35]. The lithium loss
has also been identified as a main source of the capacity fade.
The capacity fade at high temperatures is found to be related
to the dissolution of Fe2+ from the LiFePO4 electrode and
subsequent deposition of the ions on the carbon electrode,
where the metal deposit tends to catalyse the formation of
the solid–electrolyte interface layer [36]. It is suggested that
the most relevant parameters for battery degradation are the
storage temperatures, depth of discharge, current rates and fast
charging [37]. Among the various factors that are identified
to affect battery degradation, in this work, the charging and
discharging will be investigated as they are most relevant to
EVs in a car park.

C. Main Contributions

The aim of this work is to investigate battery charging
and discharging strategies for EVs in smart car park so as to
minimize car park electricity cost. A model for smart EV car
park will be established considering battery degradation cost
as a major impact factor. Other factors such as EV battery
capacity, charging speed and car park size, FIT, income of
rebate, etc. will also be included in the model. With this car
park model, the EV charging and discharging operations can
be determined and described by on-off switching functions
through an optimization design. The constraints on SOC
requirements will be incorporated into the optimization.

The novelty of this work is mainly on the following two
aspects. (1) An energy consumption model is established for a
typical car park system with multiple EVs. In this model, both
the cost of battery degradation and the income of rebate have
been included, where in most previous works only one of them
is considered. This model is applicable for different car park
sizes and different charging methods. (2) The EV charging and
discharging status are determined through optimization design
with the use of an genetic algorithm (GA). New insights are
obtained from the results and discussions.

The remaining of the paper is organized as follow. A
smart car park model is proposed in Section II, where the
EV charging and discharging status are taken as the control
variables for the total electricity cost of the car park. Based on
the proposed model, a case study is performed in Section III,
and the discussions are made regarding the impacts of rebate,
FIT, battery degradation, battery capacity, charging speed and
car park size on the total electricity cost. Conclusions are made
in Section IV.

II. SMART CAR PARK ELECTRICITY COST MINIMIZATION

A. Electricity Cost Model

A smart car park system in connection to power grid with
and without EVs power transmission controller is illustrated
in Fig. 1. In a traditional connection mode, the grid is directly
connected to the charging slots and other loads. There is
no feed back from the charging slots to the grid. In the
controller mode, the grid and the charging slots are connected
via a power transmission controller which enables the V2G
activities. The EVs can not only receive power from the
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TABLE
NOMENCLATURE AND ACRONYMS

Nomenclature
N Number of vehicles
ui(t) Charging/discharging status
Ctotal Total cost (£)
Ccharging Cost of charging (£)
Cdischarging Cost of discharging (£)
Closs Battery degradation cost (£)
Crebate Rebate income (£)
t0 and t f Start and end time (h)
∆t Sampling time period (h)
PEV Power of EV charging and discharging (kW)
SOCmin Minimum state of charge
SOCmax Maximum state of charge
SOC f inal Final SOC requirement
SOC(t) SOC at time t
∆SOCconnect Change of SOC for EV plug-in at car park
cusable Battery usable capacity (kW)
ibat Current of battery (Ampere, A)
Dr Battery degradation rate (£/kWh)
p(t) Electricity price (£/kWh)
pr Rebate price (£/kWh)
q(t) Feed-in tariff (£/kWh )
dmax Maximum driving distance (mile, m)
dd Driving distance since fully charged (mile, m)
d̄ j Each travelled distance (mile, m)
p̄ j Probability for each travelled distance
P̄ Overall probability for EV driving outside
M Number of drivings
Acronyms
EV electric vehicle
FIT feed-in tariff
GA genetic algorithm
SOC state of charge
V2G vehicle to grid

grid, but also send stored energy back to the grid through
the charging slots. This bi-directional energy transmission can
potentially provide profit for the demand side and in the
meantime help to stabilize the power system.

Figure 1. EV car park with power transmission controller for grid connection

An EV in a car park can have three status: charging (G2V)
when the grid sells power to vehicle owners; discharging
(V2G) when the grid buy extra power from vehicle owners;
and disconnect when there is no power transmission between
the grid and vehicle. Denoting u(t) as the charging status at
time t, the EV battery status can be written as

u(t) =

 1, charging
−1, discharging
0, disconnect

(1)

The total electricity cost, Ctotal , is considered to include four
components, i.e.

Ctotal =Ccharging−Cdischarging +Closs−Crebate (2)

where Ccharging and Cdischarging are the costs of charging and
discharging, respectively; Closs is the cost due to battery
degradation during charging and discharging; and Crebate is the
rebate income. Here the devices investment and maintenance
fees are ignored.

Define
sgn+(x) =

{
1, i f x > 0
0, i f x≤ 0 (3)

From the starting time t0 to the finishing time t f , the EV
charging cost can be calculated by

Ccharging =
∫ t f

t0
p(t) · sgn+(u(t)) ·PEV dt (4)

where p(t) is the price of electricity, PEV is the power rate
of charging and discharging. For simplicity, in this work, it is
assumed that the electricity price is constant and PEV is the
same for all EVs in the car park.

Similarly, for EV discharging, u(t) = −1, the income over
review period is calculated by

Cdischarging =
∫ t f

t0
q(t) · sgn+(−u(t)) ·PEV dt (5)

where q(t) is the FIT from grid. A fixed FIT is considered in
this work.

The battery degradation cost occurs during both charging
and discharging. A fixed degradation rate, Dr, is used in this
model for both charging and discharging processes.

Closs =
∫ t f

t0
Dr · (sgn+(u(t))+ sgn+(−u(t))) ·PEV dt (6)

The rebate depends on the electricity sold to the grid via
V2G, which is calculated by

Crebate =
∫ t f

t0
pr ·PEV · sgn+(−u(t))dt (7)

where pr is the rebate price.
Substituting equations (4) - (7) to (2), the final cost model

can be calculated as

Ctotal = PEV ·
∫ t f

t0 {p · sgn+(u(t))−q · sgn+(−u(t))
+Dr · (sgn+(u(t))+ sgn+(−u(t)))
−pr · sgn+(−u(t))}dt

(8)

B. Considering Plug-in Probability

We now consider the practical situation that a vehicle drives
outside for several times during the review period, and the
probability of plug-in to car park slots is less than 1. For a
fully charged EV after driving over a distance, its battery SOC
is calculated by [38],

SOC = 1− dd

dmax
(9)
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where dd is the driving distance since the fully charged status;
dmax is the maximum range that the EV can travel. For an
EV taking several drives during the monitoring period, the
decrease of SOC can be calculated by considering the travel
probabilities for each drive, which is given as

∆SOCdriving =
P̄

dmax

M

∑
j=0

d̄ j p̄ j (10)

where d̄ j is the j-th distance travelled; p̄ j is the probability
corresponding to d̄ j; M is the number of drivings during the
review period; ∑

M
j=0 p̄ j = 1, and P̄ is the probability of EV

driving out of the car park. It means the time probability of
EV staying inside the car park is 1− P̄.

The change of SOC after EV battery charging or discharging
is calculated by [39]

∆SOCconnect =
1− P̄
cusable

∫ t f

t0
ibat(τ)dτ (11)

where cusable is the battery usable capacity; ibat is the battery
current.

Therefore, the SOC of EV battery at the end of the review
period can be calculated by the following function:

SOC f inal = SOCin± 1−P̄
cusable

∫ t f
t0 ibat(τ)dτ− P̄

dmax
∑

M
j=1 d̄ j p̄ j

(12)
where SOCin is the initial SOC at t0, the sign for SOC change
by charging is ′+′ and ′−′ for discharging.

By considering the probability of EV staying in the car park
and driving outside, the total cost in (8) becomes

Ctotal = (1− P̄) ·PEV ·
∫ t f

t0 {p · sgn+(u(t))
−q · sgn+(−u(t))
+Dr · (sgn+(u(t))+ sgn+(−u(t)))}dt
−PEV ·

∫ t f
t0 pr · sgn+(−u(t))dt

(13)

The above model is developed to calculate the electricity cost
for one EV. When multiple EVs are considered in a car park,
the total cost will be the sum of costs for each EV, i.e.,

Ctotal =
N

∑
i=1

Ci
total(ui). (14)

C. Optimization Problem

Several constraints need to be considered for practical car
park EV operations. For an EV battery, its SOC needs to stay
between the required lower and upper bounds at any time, i.e.,

SOCmin ≤ SOC(t)≤ SOCmax (15)

where SOC(t) is the SOC at time t; SOCmin and SOCmax are the
lower and upper bounds for SOC. In this work, the boundary
constraints are considered to be the same for all EVs in the car
park. The required SOC after the last drive each day, SOC f inal ,
should satisfy

SOC f inal ≥ a (16)

where a is a given threshold value.

To minimize the total electricity cost by considering con-
straints on EV batteries, the optimization problem can be
formulated as follows.

u∗(t) = argminCtotal (u(t))
sub ject to : SOCmin ≤ SOC(t)≤ SOCmax

SOC f inal ≥ a
(17)

This optimization problem can be solved by using a heuris-
tic global optimization method, Genetic Algorithm (GA), to
find the best charging and discharging conditions of each
vehicles over the monitoring period.

III. SIMULATION AND DISCUSSION

A. System Description

A car park in a typical office area with 50 EV charging slots
is selected for the case study. Use of electricity is assessed
for working hours from 9am to 5pm, divided into 32 time
slots with 15 minutes each. Taking Tesla as an example, it is
known to be the best sold EV in the world, with the maximum
driving distance of 120 miles, the maximum SOC of 0.9 and
the minimum SOC of 0.2. It is required that the SOC is no
less than 0.7 at the end of day.

There are three major types of charging stations. The first
one is called ‘Level 1’ device, often referred to as low power
charging or residential charging. EVs are plugged in to low
voltage receptacles with a very slow recharging rate. It takes
around 15 hours or more for an average full charge. The
second type is termed as ‘Level 2’ device which operates
faster than Level 1 station by using industrial voltage power
to fully charge an EV in less than 5 hours. The third type
is called ‘Level 3’ charging station, or fast charging station,
which is only available for public charging services other than
residential car parks. In this work, the ‘Level 2’ charging, also
called the industrial charging, is used as the baseline, in which
the voltage is 380 volts and the charging/discharging power is
13.2 kW .

The rebate price is selected to be 0.4 £/kWh and the FIT
is chosen to be 0.0485 £/kWh. According to [40], the battery
degradation cost is 0.3 £/kWh. The price of power from grid is
0.28 £/kWh. These parameters are listed in Table II. The data
for EV driving behaviours are taken from a survey, in which
the number of drivings for each EV is either 0, 1 or 2, the
five possible driving distances are [1,2,3,4,5] miles, and the
probabilities associated with these five driving distances are
[0.47,0.23,0.13,0.12,0.05]. In this simulation, it is assumed
that probability of EV driving outside is the same for all EVs,
the value is calculated from the survey data using an averaged
level of P̄ = 0.21.

B. Baseline Optimization

First the optimization of charging and discharging without
rebate is studied. The 50 EVs are considered to have different
initial SOCs, the values are randomly generated within the
range of 0.2 to 0.9. The initial SOCs and the optimized costs
for 50 EVs are listed in TableIII, and illustrated in Fig. 2.

In Fig. 2, the horizontal axis is the initial SOC; the vertical
axis shows the minimum costs of each vehicle. The green
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TABLE II
PARAMETER SETTING

Quantity Value Comment
N 50 Number of vehicles
nx 50*32 Number of variables
a 0.7 Threshold for SOC f inal
∆t 0.25h sampling period
PEV 13.2kw Charging/discharging power
SOCmin 0.2 Minimum SOC
SOCmax 0.9 Maximum SOC
V 380V Industrial electric voltage
cusable 85 kW EV battery usable capacity
pr 0.4 £/kWh Rebate price
Dr 0.3 £/kWh Battery degradation rate
p(t) 0.28 £/kWh Power price
q(t) 0.0485 £/kWh FIT fixed rate
M 0, 1 or 2 Number of travels for each EV
dmax 120 miles Maximum driving distance
P̄ 0.21 Probability of EV outside
d̄ j [1,2,3,4,5] miles Distance of each EV travelled
p̄ j [0.47,0.23,0.13,0.12,0.05] Probabilities for each distance

TABLE III
OPTIMIZED COSTS AND INITIAL SOCS

SOCin 0.61 0.6 0.86 0.25 0.65
Cost (£) 1.8 1.8 0 7.3 0.9
SOCin 0.55 0.52 0.24 0.29 0.23
Cost (£) 2.7 3.7 7.3 6.4 7.7
SOCin 0.35 0.36 0.75 0.38 0.59
Cost (£) 4.45 5.5 0 5.45 1.8
SOCin 0.42 0.5 0.66 0.84 0.57
Cost (£) 4.5 3.6 0.9 0 2.7
SOCin 0.58 0.82 0.46 0.81 0.85
Cost (£) 2.7 0 4.5 0 0
SOCin 0.64 0.21 0.68 0.22 0.32
Cost (£) 1.8 8.2 0.9 8.4 6.35
SOCin 0.76 0.54 0.88 0.51 0.37
Cost (£) 0 2.7 0 3.6 5.6
SOCin 0.74 0.43 0.79 0.53 0.31
Cost (£) 0 4.5 0 2.7 6.4
SOCin 0.67 0.87 0.77 0.3 0.28
Cost (£) 0.9 0 0 6.4 7.2
SOCin 0.48 0.78 0.81 0.71 0.26
Cost (£) 3.6 0 0 0 7.3

Figure 2. Comparison of total costs with and without transmission control

TABLE IV
IMPACT OF FIT AND Dr TO THE MINIMUM COST

FIT

Cost (£) Dr
0.3 0.25 0.20 0.15 0.10 0.05

0.06 190.2 191.4 190.2 190.2 190.2 160.4
0.08 191.4 190.0 188.4 191.4 191.4 150.0
0.10 194.0 188.4 192.2 193.4 152.4 139.4
0.12 190.0 193.4 188.4 192.2 140.0 126.5
0.14 188.4 192.2 190.0 193.4 125.4 111.1
0.16 193.4 191.0 192.1 149.9 109.0 106.4
0.20 192.2 193.4 168.0 136.3 97.0 90.4
0.24 191.0 190.4 152.2 120.4 81.0 80.0
0.26 190.4 164.4 138.8 103.7 69.1 67.8
0.28 188.4 155.0 125.9 91.1 68.0 64.3
0.30 168.0 144.3 119.4 77.4 58.0 52.2
0.32 159.4 136.8 105.4 50.0 44.4 41.4

solid line is the cost without optimization control. The brown
dashed line is the final SOC requirement which is set to be
70%. The black diamond markers show the minimized costs
for each EVs. It can be observed that the cost by using the
optimal controlled charging/discharging strategy is lower than
the cost without control, especially when the initial SOC is
higher than 70%. It can also be found that there are no active
V2G activities when no rebate is introduced (see Table V). For
those EVs with initial SOC levels higher than 70%, they are
disconnected from the grid, and no charging and discharging
activities take place. This is because the battery degradation
cost is higher than the fixed FIT. Hence, individuals or small
scale car park cannot get the profit from V2G. When the initial
SOCs are close to each other among EVs, their optimized final
costs also stay close, which can be clearly seen in Fig.2 and
Table III.

C. Impacts of FIT and Degradation Rate without Rebate

In principle, under a given rebate price, the lower rate of
degradation cost, and/or higher level of the FIT will increase
the cost benefit for EV users. When the impact of battery
degradation cost is more prominent compared to that of FIT,
no V2G activities will take place. In the next simulation, the
FIT is increased by a step of 0.02 £/kWh from its initial setting
of 0.0485 £/kWh to 0.32 £/kWh, and the battery degradation
cost is reduced by a step of 0.05 £/kWh from the initial value
of 0.3 £/kWh to 0.05 £/kWh. The results of the optimized costs
under different levels of FIT and degradation costs are shown
in Table IV and Fig. 3.

When the car park system has a sufficiently high FIT and
low battery degradation cost, V2G happens for those cars with
higher initial SOCs. In this study, the 50 EVs are divided into
two groups (see Table III), one group includes EVs which have
initial SOCs higher than 70% (15 EVs, entries with bold font
and underline highlight), and another one including EVs with
initial SOCs lower than or equal to 70% (35 EVs). For the first
group, the EV battery power can be sold to the grid in order
to get overall profit, i.e., the benefit from grid is larger than
the cost of battery degradation loss. For the second group, the
EV batteries only get charged from the grid, and there are no
discharging activities.
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Figure 3. The change of minimum costs with respect to the FIT under different
battery degradation rate

TABLE V
OPTIMIZED COSTS AND CHARGING/DISCHARGING NUMBERS WITH/OUT

REBATE

No rebate With rebate
Minimum cost (£) 190.28 66.67
Number of -1 (discharging) 0 28
Number of 1 (charging) 142 144
Number of no transmission 1458 1428

In Fig. 3, the horizontal axis is the FIT ranged from 0.06
to 0.32 £/kWh, and the vertical axis is the minimum costs
from the controlled EV charging/discharging operations. Six
curves corresponding to 6 levels of degradation rates are shown
in the figure, from which it can be seen that before each
curve reaches the point of FIT = Dr, the optimized cost is
mostly maintained at a constant level. This indicates there is
no V2G occurred when the FIT is lower than the EV battery
degradation rate. Once FIT ≥ Dr, a decrease in the costs can
be clearly seen, which means V2G takes place and helps to
reduce the overall electricity cost for the car park. Those data
with V2G cost reduction when FIT ≥ Dr are highlighted in
Table IV with bold font and underline mark.

D. Impact of Rebate

The rebate is included to discuss the conditions enabling
V2G benefits. In this simulation, a £200 cash is paid to the
car park once the total V2G power reaches 500 kWh, i.e., the
rebate price is pr = 0.4/kWh. The results for the numbers of
different charging status and the optimized costs for the car
park are listed in Table V. Fig.4 and Fig.5 show the charging
and discharging status with and without rebate. The horizontal
axis is the index for all 50 EVs at 32 time slots, which is
1600 in total. The vertical axis is the charging/discharging
status where ’1’ is charging, ’-1’ discharging, and ’0’ no
transmission of power between EVs and the grid. When the
rebate is introduced, V2G operations take place for those EVs
which have higher initial SOCs.

TABLE VI
REBATE AND MINIMUM COST

Rebate (£/kWh) Cost (£) Rebate (£/kWh) Cost (£)
0.04 190.27 0.18 188.17
0.06 191.41 0.20 190.31
0.08 190.17 0.22 190.27
0.12 188.77 0.24 189.41
0.14 194.41 0.26 175.09
0.16 193.14 0.28 169.02

TABLE VII
IMPACT OF BATTERY CAPACITY AND CHARGING STYLE TO COSTS

Cusable

Cost (£) mode
Residential
charging

Industrial
charging

Fast
charging

60 kW 179.00 180.35 180.35
80 kW 186.00 187.55 187.55

100 kW 195.37 195.37 195.37
120 kW 200.10 201.4 201.4

The rebate price also influences the cost benefits. In the
following, the rebate rate is increased from 0.04 £/kWh to 0.28
£/kWh, with an incremental step of 0.02 £/kWh, as shown in
Table VI. It shows from Table VI that there is clear decrease of
costs when the rebate price reaches 0.26 £/kWh, where V2G
occurs and the overall cost is reduced.

E. Impacts of Battery Capacity and Charging Style

In this section, the impacts of EV battery capacity and
charging types to car park electricity cost is discussed.

The battery capacity parameter, Cusable, is changed from
60 kW to 120 kW with the incremental step of 20 kW. The
impact of Cusable towards the overall cost is compared under
three charging styles: residential charging, industrial charging
and fast charging. Results are listed in Table VII and Fig. 6.
It can be seen that the overall cost is mostly determined by
the battery capacity regardless of the charging styles. When
the battery capacity is increased, the overall cost is always
increased. When vehicles are charged at residential power level
(low speed charging), the costs are slightly lower than the other
two charging modes. This is because the assessment length is
8 hours in this work, which is not long enough to fully charge
an EV using the low speed charging.

By fixing other factors as in Section III-A, the number
of EVs is changed from 20 to 100, the minimum costs
are calculated and listed in Table VIII. It can be seen that
the increase of car park size will increase the overall costs.
However, the V2G activities are not affected by the change of
car park size.

F. Simulation Studies on Weekly Data

In the above simulations, an 8-hour review period for one
working day is considered. The initial SOC is not affected

TABLE VIII
IMPACT OF SMART CAR PARK SIZE

Number of vehicles 20 40 60 80 100
Total cost (£) 77.30 154.33 230.41 300.00 379.52
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Figure 4. Charging status without rebate

Figure 5. Charging status with rebate

Figure 6. Impact of battery capacity to costs under three charging styles

by the final SOC in the previous day. In this section, the
simulation is made on a longer time period over one week,
for the same monitoring period of 9am to 5pm each day. The
rebate is set to £400 when system sells 1,000kWh power to
the grid. All other factors are kept as the same in Section
III-A. The results in Table IX show that, there are fewer V2G
activities on the first day; the smart car park needs to charge
the vehicles to satisfy the SOC f inal requirement. the other days,
the system takes V2G activities to make profit.

TABLE IX
ASSESSMENT OF COSTS OVER WEEKLY PERIOD

date costs w/o rebate (£) costs with rebate (£) V2G times
Sun 191.4 174.3 6
Mon 81.2 -4.2 37
Tue 80.0 -6.1 38
Wed 83.4 -4.2 37
Thu 79.8 -4.2 37
Fri 81.2 -4.2 37
Sat 80.4 -4.2 37

IV. CONCLUSION

In this work, a control method for EV charging and dis-
charging is proposed for smart EV car park systems. The
purpose is to minimize the car park electricity cost by ma-
nipulating the charging and discharging status during a review
period. Results from comprehensive simulation studies suggest
the potential of V2G benefits, this however, is subject to many
factors such as the battery degradation cost, the rebate price,
the FIT, and the initial SOC. To provide appealing FIT to EV
users and improve battery performance are considered to be
the main factors that would encourage V2G. The government
policy such as grid company rebates will also influence EV
users’ participation in V2G.

One challenge in modelling smart car park system with
multiple EVs is that the EVs have different characteristics such
as batteries, the SOC requirement, the users driving patterns,
etc. The impacts of these factors need to be further discussed
under the proposed framework in the future work.
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TABLE A1
EV USAGE PROBABILITIES

number probabilities
Drive outside 30 0.21

Stay inside car park 114 0.79

TABLE A2
PROBABILITIES FOR DIFFERENT DRIVING DISTANCES

Driving distance number probabilities
Drive about 1 mile 68 0.47
Drive about 2 miles 33 0.23
Drive about 3 miles 19 0.13
Drive about 4 miles 17 0.12
Drive about 5 miles 7 0.05

APPENDIX - SURVEY DATA PROBABILITIES CALCULATION

A survey was taken to collect data from 144 EV users
working in an office building from 9am to 5pm. The online
survey service provides data between the period of December
2016 to January 2017. All EV users responded the survey
through online submission. The average results from 144
answers are listed in the appendix.

Table A1 shows the probability of EV driving out of car
park. Table A2 shows the probabilities for different driving
distances. The probabilities for different driving time periods
are listed in Table A3, and the probabilities for driving
out time points are listed in Table A4. According to the
probabilities from the survey, the probabilities for different
travelling distance can be calculated and shown in Table A5.
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