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Abstract:  
An approach is demonstrated to visualise overhead line failure rates and estimated wind power output during extreme wind 
events on transmission networks.  Reanalysis data is combined with network data and line failure models to illustrate 
spatially resolved line failure probability with data corrected for asset altitude and exposure. Wind output is estimated using 
a corrected power curve to account for high speed shutdown with wind speed corrected for altitude. Case studies 
demonstrate these methods’ application on representations of real networks of different scales. The proposed methods 
allow users to determine at-risk regions of overhead line networks and to estimate the impact on wind power output. Such 
techniques could equally be applied to forecasted weather conditions to aid in resilience planning. The methods are shown 
to be particularly sensitive to the weather data used, especially when modelling risk on overhead lines, but are still shown 
to be useful as an indicative representation of system risk. The techniques also provide a more robust method of representing 
weather-related failure rates on lines considerate of the altitude, voltage level, and their varying exposure to weather 
conditions than current techniques typically provide, which can be used to usefully represent failure probability of lines 
during storms. 
 

1. Introduction 

Extreme weather and climate change manifest as risks 

for the power system in multiple ways which are difficult to 

quantify, and challenging to productively address. Climate 

change itself will manifest as changing both the frequency 

and intensity of extreme weather events such as storms, 

droughts, hurricanes, and heatwaves [1]. 

In power systems, this means changing probabilities 

of weather-related outages on networks as well as changes to 

the availability and resilience of energy resources on which 

renewable energy vectors are reliant [2]. Further, 

climatological phenomena which drive wind may change, 

affecting wind resources in countries such as the UK [3].  

The above factors mean tools are needed to be able to 

quantify the effects of these phenomena on the power system 

in an understandable and productive way for system operators 

and planners- but these approaches also need to be robust and 

data-driven to reduce the risk of stranded assets and waste. 

Given the wide variety of natural hazards which can affect 

power systems, from floods to wildfires, such methodologies 

should also be portable to other sets of weather phenomena. 

This paper is primarily concerned with the impact extreme 

winds have on the operation of a power system.  

Wind can cause mechanical failure of conductors and 

connectors, or debris from vegetation can cause common-

mode faults disconnecting wide sections of the system for 

extended periods of time [4] – but this risk will vary not just 

across systems but between individual lines, particularly if 

they traverse mountainous or coastal regions. For example, in 

the UK, the tree-line varies from 530m to over 600m [5], 

subject to land use and local conditions. Therefore, if a 

network branch traverses regions above this elevation, it will 

not be so vulnerable to faults associated with collapsing 

vegetation- but that elevation could mean they are more 

exposed to hazardous weather conditions associated with e.g. 

lightning, which requires different forms of analysis [6]. 

Current methodologies cannot typically capture this variation. 

Conversely, low-lying regions in the UK are susceptible to 

flooding, with large-scale outages associated with 

inundations of distribution equipment  [7]. Southerly regions 

also tend to be less windy, due to complementary 

climatological patterns [8]. 

Understanding comprehensively risk associated with 

extreme weather is important because it affects the ability of 

companies and individuals to plan for resilience. An analysis 

of resilience and its definitions is carried out in [9], the 

general themes of which relate to the ability of a system to 

prevent, contain and recover from adverse impacts arising 

from unplanned or extreme events. Resilience analysis has to 

consider both the impact and probability of an event.  

Resilience impacts associated with extreme wind have 

been investigated in work such as [10], but the representations 

of risk on lines used have not been truly representative of 

localised wind impacts, but rather utilise homogenous 

representations of network branches. These are generally 

considerate only of wind speeds experienced at nodes rather 

than localised weather conditions, which can vary 

significantly across network branches. Wind power output, 

too, can also be significantly affected by extreme wind as 

storms pass across windfarms and regions [11]. Therefore, 

wind-related risk on overhead lines (OHL) and wind power 

output are intrinsically linked concepts but in order to fully 

understand the interaction between these elements there 

needs to be an appropriately disaggregated spatiotemporal 

analysis. 

This paper concentrates on how to represent and 

model wind-related failure rates on overhead line networks 
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and the potential links between system risk and wind power 

availability during storm events.  These methods also begin 

to take consideration of the impact of the different geographic 

conditions a network branch may cover and the diversity of 

weather it may be subject to in a way comparable studies have 

not. The proposed methodology therefore demonstrates an 

approach for quantifying the threats associated with adverse 

weather conditions which can be adapted for different natural 

hazards to understand how threats to OHL may vary 

regionally. Disaggregating such representations of network 

branches could allow operators and planners to determine not 

just which network branches are particularly at risk, but 

where on the network they are most likely to fault, allowing 

for more optimised placement of repair assets and teams. 

Different approaches for modelling OHL faults on 

systems are described in Section 2. Section 3 describes the 

methodology used to link wind speed to the failure rates on 

OHL; Section 4 concerns how to correct that wind data based 

on the given altitude of an asset with Section 5 relating this 

corrected wind speed to a projection of wind power output. 

The method is demonstrated on different representations of 

the GB network (that is, the mainland UK interconnected 

transmission system) in storm conditions to demonstrate the 

principles in Section 6, and Section 7 discusses the potential 

significance of network elevation to system security. This 

shows a clear advancement in the representation of line faults 

in security assessments, while also demonstrating the varied 

strength of different levels of network and the need to 

distinguish between such networks in analysis.  

2. Approaches to Representing 
Failures on Overhead Lines  

 Modelling of line related failures due to weather-

events may typically fall into one of two different approaches. 

Historically and conventionally this has involved the use of 

different failure rates based on predefined “regimes” such as 

“normal”, “adverse/stormy”, or “extreme” failure rates 

representative of different weather states (such as in [12], 

[13]),  or the use of “fragility curves” which represent some 

link between a given weather parameter – in this case wind – 

and failure probability. The former approach has been used 

for some time, is relatively straightforward, and is codified in 

IEEE standards [14]- but has various flaws. These relate to 

how one actually defines when exactly a weather event goes 

from being “normal” to “adverse” or “extreme”, and how 

robust these distinctions are, particularly in the context of 

discussing extreme weather events and High Impact Low 

Probability (HILP) events. Furthermore, they also cannot 

capture regional variations across the system as in typical 

applications of this approach the same weather state is 

assumed to apply across the whole system. Whilst the use of 

such failure rates may be a simple approximation that is 

useful for reliability studies, in the context of resilience, more 

robust modelling of these kinds of risks is needed than is 

offered by such methods. 

Fragility curves are a more data-driven approach 

which rely on, for instance, the use of Bayesian methods to 

calculate the probability of a fault on a given system asset 

experiencing a given condition, but in this case the focus is 

particularly related to wind-related faults. This has been 

explored in some depth already in papers such as [15] [16] 

[17] with some investigation of, for instance, remediation 

strategies based on extensive Monte-Carlo simulation. An 

examination of different kinds of fragility curves and their 

derivations is also discussed in [18]. The curves used herein 

would fall under the category of being considered empirical 

fragility curves, according to the definitions offered therein. 

That is, based on real data. An example of the formulation of 

such a fragility curve is demonstrated in [19] based on an 

investigation of fault data pertaining to Northern Scotland. 

This shall be described further in Section 3.  

The strength of fragility curves is that they are 

versatile and can be easily applied computationally in Monte-

Carlo simulations, which are the prevalent form of reliability 

and resilience planning in more recent times. That is, the 

natural hazard being used to determine the failure probability 

of a given asset can simply be replaced to change the style of 

analysis; e.g. wind speed could be replaced with precipitation 

or some variable representative of lightning strike rates.  

Fragility curves, however, bring with them separate 

challenges and problems compared to more general “regimes” 

described before. The data required to derive them may be 

difficult to acquire or incomplete in nature. Further, at the 

long tail of the data, that is, at extreme values of e.g. wind 

speed, the data becomes incredibly sparse. This is a reason for 

the need for larger bins at extreme values of wind speed in 

[20] when classifying data at the long tail. They also assume 

a certain level of homogeneity of the assets being modelled 

and while, on average, the curve may be a reasonable 

approximation for the failure properties of a class of asset, the 

data can always be refined further. The data available for 

projections of future wind conditions may differ slightly from 

that used to derive them, requiring corrections to mitigate any 

systemic error introduced. 

Factors such as the age of an asset may affect its 

resistance to wind-related failure, as will factors such as 

proximal vegetation, the elevation of such lines, and wind 

direction – which is ignored in the generation of these 

fragility curves. For example, lines in areas above the natural 

tree-line of a region may be more susceptible to landslips 

following heavy rain due to the lack of trees; but 

incorporating such factors in the analysis again faces data 

collection challenges as discriminating in such a manner 

further limits the scale of data available. For the purposes 

considered here, such curves can be considered useful for 

giving indicative representations of failure probabilities of 

lines, even if their precision may remain open to question in 

the manner such as they are being applied here. This 

highlights a major challenge with any kind of large-scale 

power system resilience analysis – the collection and 

application of appropriate weather data is requires vigilance 

and solid understanding of the relationships between the 

output models and the incident data to ensure appropriateness. 

3. Modelling Relationships Between 
Weather and Line Outages 

The approach taken to modelling wind-related failure 

probability on lines in this paper uses fragility curves based 

on work from [19] and  [20]. In [19], a representative fragility 

curve was developed by analysing fault data in the SHETL 

(Scottish Hydro Electric Transmission Ltd.) region of the GB 

network, in the North of Scotland, and using it to develop a 

cumulative probability curve w.r.t wind speed. This is further 

developed in [20] to break the fragility curves down by 
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voltage level. The value of the work performed in [20] is not 

only in the derivation of the curves themselves but in that they 

are broken down per 100km, which allows failure rates to be 

determined when weighting according to exposure to 

different natural hazards. 

The curves in this study are taken from the data tables in 

[20] pertaining to wind-related faults only, but considering 

“132kV” lines and “275kV and 400kV” lines (the latter two 

of which are treated using the same fragility curve for the 

purposes of this study), based on the same bins as are used in 

the data tables. Given the sparsity of available data for faults 

on 275kV and 400kV lines, it is assumed the data for 275kV 

lines are broadly applicable to 400kV lines across GB. These 

fragility curves are shown in Figure 1. The “stepped” nature 

of the curves is due to the bins of data used in the source data. 

3.1 Determining Line Exposure to Weather 
Conditions 

In order to determine the risk across a line given a set 

of weather data, the actual level of exposure a certain line has 

to a given set of weather conditions has to be known. Previous 

work on this has assumed that the wind speed experienced by 

a given line can be assumed to be, for instance, the highest 

wind speed at either end of a given line. That is, the wind 

speed measured at the buses on either side of a connection 

such as in [21]. Alternatively each  bus can be assigned to a 

weather “region” and lines are assumed to experience the 

wind speeds of the highest value for the region in which they 

fall [10].  

This is a reasonable first approximation, but for 

particularly long lines, which may traverse diverse 

geographical and meteorological conditions, this may not be 

an adequate approximation and may introduce significant 

error to failure rate calculations by either overestimating or 

underestimating the actual exposure of a line to a given 

weather condition. To address this, some link needs to be 

made between the weather data being used and the projection 

of lines through this weather data to determine what the actual 

nature of the exposure of a given line is to observed weather 

conditions. In this context, “exposure” refers to the length of 

OHL which is used as the value to correct the failure rate. The 

failure rate itself is taken from the fragility curve derived from 

the incident weather upon that line. For instance, an OHL 

going directly East for 100km in a grid with 50kmx50km 

resolution from the far West of the first block could be 

understood as constituting two blocks with 50km in each. 

Each of these blocks would have a weather parameter 

associated with it and then an associated failure rate derived 

thereof. Correspondingly, an underground cable would have 

0 exposure to wind in all blocks. This is again be dependent 

on the weather parameter being analysed; if the study 

pertained to, for instance, temperature data this exposure 

characteristic would be computed and applied differently. 

3.2 Converting Co-ordinate Set to 2-
Dimensional Data Table 

Determination of the exposure of each line in the 

system was achieved using a method created in python. Two, 

points at a given set of latitude and longitude are projected 

through 2-dimensional space, and given a consistent set of co-

ordinates in the latitudinal and longitudinal directions. It can 

then be determined how much of a “line” falls within the co-

ordinate boundaries of a given set. 

The co-ordinate data set used in this case is based on 

NASA MERRA-2 (Modern-Era Retrospective analysis for 

Research and Applications) [22] data, which resolves to 0.5 

in latitude by 0.625 in longitude, or approximately 

50kmx50km blocks. In order to determine how much “line” 

was in each block of data, for two given nodes and a 

connected line, the script takes the two co-ordinates, treats 

this as a vector, and iterates through the vector in 1,000 steps. 

The script then counts how many “steps” are recorded in each 

block of weather-grid based data, and, using Pythagoras’ 

theorem and the data resolution, converts this to a km length 

in each block – the “exposure”. This effectively converts the 

co-ordinate set into a 2d representation in a 2d dataframe [23] 

where each block for any given line represents the estimated 

amount of line in that area, information which can then be 

productively used.  

A visual representation of an arbitrary OHL 

connecting two points is shown in Figure 2. Each block 

represents how much of that “line” is in that given block. Two 

different weather datasets will be used in this paper for 

comparison, and will be described more fully in Section 6. 

Individual lines can be represented and analysed in this matter 

for power system simulations – that is, each block of a line 

can be sampled in turn to determine if a fault has occurred, 

and where- or such representations can be aggregated across 

the system to perform more gross analyses. 

 

3.3 Converting Failure Probability to Failure 
Rate to Correct for Length 

The fragility curves in the source data stipulate failure 

probability in terms of per 100km per hr, agnostic of direction. 

In each “block” of weather data a given line is treated as an 

aggregated, homogenous line exposed to the wind conditions 

which have been assigned to that “block” of data.  This means 

the given failure probability determined by the source 

Fig. 1. OHL fragility curves used in study Fig. 2. Example line exposure estimation for an OHL 
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fragility curves had to be corrected to the actual exposure of 

the line in any given block to weather. The primary difference 

between the application herein and that used to create the 

curves in [20] is that the weather data used to create the 

fragility curves was based on 3-hourly input resolution, on the 

assumption a fault would be caused by the maximum wind 

speed in that window. Conversely, as they were based on the 

wind speed at 10m, this may also be a systemic 

underestimation of what the wind speed that caused the fault 

on the OHL actually was due to the fact towers can be 

considerably taller than 10m. The projection of failure rates 

herein uses hourly-resolved wind data at various different 

heights with different corrections. This made comparison 

across datasets important to determine potential sensitivity to 

changes in input data. 

Similarly, using an averaged rather than a maximum 

value of wind may also constitute a systematic 

underestimation of incident wind speeds. Were features such 

as wind direction to be considered this could become even 

more problematic as the fragility curves as defined are 

agnostic of direction and thus to cross-utilise the curves may 

not be appropriate. While the implementation herein differs 

slightly from the derivation of the curves themselves, the data 

is deemed to be appropriate enough to provide an acceptable 

relative representation of system risk, as the models are 

applied consistently around the system. 

To determine the actual failure probability of a given 

line in a given block of data, an exponential distribution of 

faults was assumed. The failure probability stipulated by the 

source fragility curve can then be converted to a failure rate 

in terms of per 100km, then corrected for the actual length of 

line present in each block, then converted back into a failure 

probability- this is why Figure 1 is shown w.r.t failure rate 

rather than probability, as fragility curves typically are. 

It is assumed that the failure probability for a given 

line is represented by the standard equation for an exponential 

failure probability distribution shown in (1). 

 

 𝑝(𝑓𝑎𝑢𝑙𝑡) = 1 − 𝑒−𝜆𝑡  (1) 

 

Here, p(fault) refers to the fault probability within a 

given time-step, λ is a failure rate, and 𝑡 is the given time 

step. 𝑡 is assumed to be 1 (i.e. 1 hour) and failure rate is 

given in per-hour terms. This can be rearranged to solve for λ 

for the given fragility curve to form an equivalent failure rate-

wind-speed conversion. This rate is then linearly scaled to 

correct for the actual exposure of a line in each block of data, 

and then can converted back to failure probability. 

The demonstrated combination of approaches can be 

used to create a representation of line risk across a network in 

given weather conditions both individually and, if 

representative dataframes representing different lines are 

aggregated, at a system-level. However, the robustness of the 

weather data on which our failure probabilities are based still 

needs to be considered. Two datasets will be used to 

demonstrate the sensitivity of models to incident wind data. 

4. Correcting Spatial Wind Speed Data 
for Various Applications 

MERRA-2 data takes various different forms but in 

general is reanalysis – or hindcasted – data which represents 

an estimation of the weather conditions at a point in space and 

time. MERRA-2 was chosen for its excellent balance between 

completeness, temporal and spatial resolution. Even then, 

selecting the specific subset of data to use introduces its own 

technical challenges.  

Two different subsets are used, one which was based 

on u (East-West) and v (North-South) components of wind 

speed at 2m, 10m, and 50m heights [24] (referred to herein as 

the “three level” data), and the other which provides only a 

value for “single level” maximum wind speed  [25].  

It is also useful to understand the geographic 

conditions which a line experience as this will affect the ways 

in which a line may fault. For comparison, and to understand 

the geographic diversity of the test networks, the elevation of 

the test network is also investigated. As an example, this 

allows distinction between areas which may be at risk from 

large vegetation faults to be distinguished from more low-

lying regions which may be more susceptible to flooding. 

4.1 Determining Elevation at Given Co-
ordinate Sets 

MERRA-2 data assumes a “smoothed” terrain with a 

given horizontal displacement. For wind speeds, particularly 

in geographically diverse regions like Highland Scotland, this 

may not be an appropriate approximation given the variable 

topological conditions and the corresponding impact on wind 

speeds and failure mechanics, particularly if one is only using 

homogenous representations of OHL. The mechanisms by 

which wind causes an OHL failure will be sensitive to the 

environment in which a line exists; above the tree line, for 

instance, the probability of a vegetation-related fault may 

differ significantly from an OHL which passes through an 

urban or forested region. 

A method is therefore needed to quickly determine the 

elevation of a given point given a latitude-longitude co-

ordinate pair. This was done using NASA Shuttle Radar 

Topographic Mission (SRTM) elevation data taken from [26]. 

This provided elevation data in the format of .tif images, 

which were then referenced using an API (application 

programming interface) provided by [27] which simply 

converted data from the associated .tif images to an elevation 

value for a given co-ordinate pair. 

When creating the route dataframes for the line 

projections, the elevation at every co-ordinate point can then 

be determined simply by calling the API at each point. This 

in itself introduces its own challenges – given a series of 

elevations within a block, an assumption still needs to be 

made to decide which values to use. As the context is one of 

resilience and reliability, it was deemed that it would be most 

appropriate to be conservative and treat each block as 

travelling through the highest observed elevation within that 

block.  

4.2 Correcting Wind Speed for Altitude of Asset 
The MERRA-2 data can then be corrected for the asset 

height of a given tower or turbine. For the case studies in 

question, wind turbine hub heights are assumed to be 100m, 

with 132kV OHL 30m and 275kV and 400kV OHL 

approximated to 50m, based on typical values of wind 

turbines and towers in the SHETL system - but in reality OHL 

heights and hub heights of turbine can vary significantly. This 

in itself carries various assumptions, given the diversity of 

wind turbine hub heights and OHL tower types, but was 

deemed an acceptable assumption for the purposes here. 
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An approach similar to that defined in [28] is used to 

correct wind speeds on various assets. That is, at each point, 

the (2+d)m, (10+d)m, and 50m u and v components are found, 

and Pythagoras’ theorem is used to resolve to resultant wind 

speed w, where d is the horizontal displacement of the 

MERRA-2 data in the given block. These values are then 

regressed against the log of their altitude. The wind speed at 

height h can then be estimated using (2). 

 

 𝑤(ℎ) = 𝐴 log(ℎ − 𝑑) − 𝐴 log (𝑧) (2) 

 

In this equation, w(h) is the wind speed w(ms-1) at 

height h (m), or the asset anemometer height at which wind 

speed is measured A is determined by the slope of this 

regression, and z is calculated via 

 

 𝑧 = 𝑒−𝑐/𝐴 (3) 

   

In (3), c is the intercept of the given regression. Now 

the estimated wind speed experienced by an asset, and a 

relationship between this wind speed and the probability of 

failure of that asset, are known. The failure risk of a line can 

then be determined spatially, or aggregated across a system. 

Such findings can then be compared between the single-level 

results and 3-level results corrected for height in this way. 

 

4.3 Interpolation of Weather Data Grid 
To improve the granularity of the data an interpolation 

algorithm was used. This was taken from the python library 

SciPy [29], and is called griddata. This was used as it was 

accessible and usefully fast and efficient, adding little 

computational burden to the process. Where interpolation 

was used, the initial grid derived from the utilised weather 

data was linearly interpolated for five incremental blocks 

within each larger block. This differs from [28], where 

LOESS regression, specifically a “non-parametric locally 

weighted scatterplot smoother”, was used instead. 

It was deemed in this work that only limited 

interpolation was needed to demonstrate what was happening, 

and so an algorithm which could be easily incorporated into 

the model was chosen, particularly given the more intense 

computational expense associated with increasing granularity. 

This interpolation does not fully account for topological 

variation, which in Scotland can be significant and is not 

captured by MERRA-2. This is effectively an extension of the 

Virtual Wind Farm model, described in [28], extended to 

apply to both wind farms and OHL. 

5. Effects of Wind Speed on Wind 
Power Output 

High Wind Speed Shutdown (HWSS) of wind farms 

can cause significant loss of infeed across geographic regions 

and has to be considered, and can be difficult to quantify 

given the diversity of conditions experienced across 

windfarms and diversity of wind turbine types and capacities. 

Individual turbines may experience different weather 

conditions on a given site, and even though the same turbines 

will have the same, or similar, cut-off and re-connect schemes 

for extremes of wind, this aggregated impact of this across 

windfarms, never mind on regional, national, or supranational 

scales, can be challenging to quantify. 

5.1 Example Methods for Determining Wind 
Power Output 

Various different approaches have been tried, but scarcity of 

data remains a challenge when it comes to modelling wind 

farm output in adverse conditions. Examples of work 

completed in this area can be seen in [11] and [30]. In the 

former, data analysis studied the availability of a windfarm as 

storm-fronts passed across it to determine the impact of 

HWSS, whereas in the latter, HWSS was evaluated by 

generating a power curve from wind speed data compared to 

aggregated wind power outputs in GB; due to the scarcity of 

wind speed/output data at high speeds, a Gaussian filter was 

fitted by inspection to the tail of the data to represent HWSS. 

This produced a power curve comparable to those described 

in [31] back in 2009, which discriminated between different 

types of wind-farm (e.g. onshore, offshore). More ideally 

representing these phenomena was deemed beyond the scope 

of this paper. A simple proxy which represents an 

amalgamation of these and the methods described in [3], [28], 

and [32] is considered.  
 

5.2 Converting Wind Speed to Power Output 
with Fitted Sigmoidal Curve 

A curve was fitted to a raw power curve provided by 

D. Brayshaw from source code referenced in [32] and similar 

to that deployed in [28], of the following form: 

 

 𝑦 =  
𝑎

1 +  𝑒(−𝑓(𝑤)(𝑥−𝑤+ ))
 

(4) 

 

 a is  a normalisation factor set at the value of the 

maximum of the power curve, and w, f(w) is the power curve 

represented as an x, y co-ordinate set to which the curve is 

fitted, with  a shift in the x direction. 

Due to the sparsity of data available and the diversity 

of methods with which to model HWSS, and the nature of the 

approximations made in similar studies, a proxy was used to 

represent HWSS based on this curve. A complementary curve 

was subtracted from the original curve and shifted to change 

when the curve tends to zero by inspection to match curves 

produced in similar studies. In effect this assumes the cut-off 

mechanisms for wind farms operate in a manner similar to 

that of the cut-in mechanisms. This produces the curves 

shown in Figure 3 with a = 0.9128 and  = -15. Wind power 

for given wind speeds can then be estimated and visualised in 

a similar manner to OHL risk. This curve is, by inspection, 

suitably similar to those used in [30] and in [31] and was 

Fig. 3. Wind farm power curve considering HWSS 
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deemed appropriate for the applications being used within 

this work as an indicator of the impact of extreme weather.  

6. Case Study – GB and SHETL 
Networks 

Now that all the data processing methods have been 

put in place, weather data can be used to visualise risk across 

the network to help aid planning decisions or resilience 

studies. This is because the methods shown allow users to 

target areas of the network either with high probabilities of 

failure due to extreme wind, or where there would be 

particularly acute impacts from network outages. A 

representation of the SHETL region of the GB network was 

developed using data and input provided by J. Kelly 

synthesised with network data from the National Grid 

Electricity Ten Year Statement (ETYS) 2017 [33] and 2018 

[34]. The python library basemap [35] was used with 

matplotlib [36] and NetworkX  [37] to visualise the networks 

and data shown hence. Pyomo was also used, but only for data 

formatting   [38].  

A severe weather event is chosen – known as 

“Cyclone Friedhelm” internationally but known colloquially 

by a variety of other names within Scotland [39].  

First, interpolation was performed on the raw data to 

improve the granularity of the simulations involved. The data 

was interpolated linearly to increase the granularity by a 

factor of 5. The resultant weather grid can be compared with 

the incident weather in Figure 4, taken from values in the 

dataset in [24] – the 3 level data which allows extrapolation 

of wind speeds at asset altitudes.  

A graphical representation of the developed SHETL 

network is shown in Figure 5. It can be observed that much 

of the network is concentrated in the North and East of 

Scotland, where much of Scotland’s wind production is 

concentrated. Scotland’s wind generation can be seen in 

Figure 6, which is generated using data from the Renewables 

Planning Database (Dec. 2018) [40] with location data 

converted to latitude-longitude pairs using [41]. Scotland’s 

wind resource can be seen to be distributed, particularly 

around coastal regions and the borders – much like the 

a b 

Fig. 4. Incident weather used in case study (a) Before interpolation (b) After interpolation, granularity increased by factor of 5 

Fig. 6. Operational wind farm capacities in Scotland, 

December 2018 Fig. 5. Node-branch representation of SHETL network 
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transmission network. Using the methods described, the 

specific weather event can then be investigated.  

In order to attain a system-level aggregation of failure 

probability, a Monte-Carlo simulation is performed using the 

failure probabilities derived from the weather data, corrected 

for the altitudes of the assets and the exposure of the line at 

given points. However many trials the user desires can be 

performed depending on the desired balance between 

computational expense and precision, but 100,000 were 

chosen for the 132kV and 275kV/400kV networks. For each 

trial in the simulation, every section of every line is sampled 

individually, in turn, assuming an exponential model of 

failure probability as described in Section 3.2. All lines are 

assumed in service at the start of each simulation. 

Theoretically a line could be found to fault in multiple 

sections simultaneously in each sample hour, or none, hence 

why it is necessary to sample every section of the line, so 

these locations are also recorded. The count of total faults 

recorded in each block across the whole simulation is divided 

by the sample size to get the probability of a fault happening 

in each block across the system. This is again an improvement 

in terms of detail compared to current typical methodologies 

which, by considering lines as homogenous branches, cannot 

directly capture this.  

A projection of the failure rates corrected for wind 

speed w.r.t altitude on the 132kV and 275kV/400kV 

networks are shown in Figures 7(a), 7(b). Estimated wind 

production at this time is shown in 7(d). Using this data, an 

estimation of the aggregated line failure probability can be 

made. This can simply be done by repeating the above 

process but considering the whole combination of networks, 

rather than either separately. The mean of the latitude and 

longitude values at locations at which faults occur are taken 

to produce a value representative of the expected location of 

a fault. This is performed using a quicker, 10,000 sample size 

due to the increasing magnitude of the simulation. This 

produces the results shown in Figure 7(c). The expected fault 

location (EFL) in this instance is (56.72, -3.72). The total 

estimated wind power output is 2.1GW in this simulation for 

the test region. 

 It can be observed that the 132kV network, as one 

would expect, has more extreme values of failure probability 

than that of the 275kV/400kV networks in this case. Further, 

significant amounts of wind generation, due to HWSS, have 

zero output, particularly in the South of Scotland, and the 

highest outputs are barely 50% of the maximum capacities 

reported in Figure 6.   

Fig. 7. Output results for SHETL network. (a) OHL failure probability on 132kV Network, (b) OHL failure probability 

on 275kV & 400kV networks, (c) Estimated total line failure probability, (d) Estimated wind production output 

a b 

d c 
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The methods described are also applied to a 

representation of the mainland GB network developed at the 

University of Strathclyde based on principles described in 

[42]. A particular feature of this model is that, unlike 

conventional numerical reductions of larger networks, it 

attempts to retain details of main transmission routes and of 

thermal ratings of lines. This was done through keeping lines 

known by experience to be significant for operation of the 

whole system explicitly in the model and collapsing others 

and the connected generation and demand into equivalents.  

The results from the SHETL study can then be compared to 

those for the Reduced GB Network model shown in Figure 8. 

A comparison can also be made across the two different 

datasets- i.e. the three level set from [25] versus the surface 

wind speeds uncorrected for altitude taken from the [24] set. 

Figure 8(a), (b) compare the failure probabilities associated 

with the different datasets. Figure 8(c) shows the distribution 

of wind power output across GB for the corrected data. Figure 

8(d) shows the single level incident weather data. The 

projected wind output map for the single-level data is omitted 

as it was visually indistinguishable from the corrected wind 

data map. The EFL for the single level model is (56.00, -

3.40), and (56.03, -3.26) for the corrected three-level set. 

The estimated total wind power is 10.8GW for the corrected 

dataset, and 11.2GW for the single level dataset. If the raw 

power curve from Figure 3 without the correction for HWSS 

is used, in both cases the estimated wind output across the 

system is 17.7GW 

7. Links between Elevation, Line Risk 
and Wind Power Output 

A benefit of disaggregated spatially resolved 

representations of lines is that more information about local 

conditions experienced by the system can be ascertained. An 

example is demonstrated here, pertaining to the estimated 

local elevation of the grid. Further, as the calculation of 

“exposure” thus far has relied on solely 2-dimensional point-

to-point representation of lines, this has not thus far 

considered the fact that a line going up and down hills will 

have more exposure to weather conditions than an equivalent 

line on a flat surface due to fundamental principles of 

trigonometry. For example, assuming an ideal, gradual 

incline from 0 to 1km elevation on a line going directly East-

Fig. 8. Simulation results for representation of GB network considering different datasets (a) estimated fault probability with 

weather data corrected for asset altitude (b) estimated wind generation output for weather data corrected for asset altitude (c) 

estimated line failure probability using single-level, uncorrected data (d) incident single level maximum wind gust speed data 

a 

c 

b 

d 
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West in a grid of 5kmx5km resolution suggests a 2d 

representation of that line will underestimate the length of 

line by ~2% in that block, assuming the OHL is taut. This was 

not directly considered in the calculations of line exposure 

previously. 

A plot of the highest sampled elevation in each block 

is shown in Figure 9 of the SHETL network model. From this, 

one can observe that the SHETL network shows significant 

variation in grid elevation. Presuming the tree-line in the UK 

is ~530m to 600m, as suggested by [5], significant portions 

of the network traverse areas both above and below this 

boundary. Above the tree-line, the lack of trees paired with 

high wind and heavy rain could contribute to increased risk 

of landslips. In low-lying areas, substations will be at 

increased risk of inundation from floodwaters even in urban 

areas which may have more undergrounding of assets (hence 

a reduced risk associated with debris or vegetation-related 

outages on OHL): these may be driven by the same storms.  

Between the highest elevation of 1,099m and an adjacent 

block was recorded a difference of 971m; a 971m incline over 

10km could mean at least a  ~0.5% difference in estimated 

exposure between 2d and 3d representation of an OHL on a 

10kmx10km grid. In-situ tracking of this may therefore be 

necessary in future work, particularly for steeper gradients. 

Storms associated with wind not only come with 

extreme winds, but may bring with them heavy rain and 

flooding conditions. There will therefore be risk of flooding 

in Southerly, low-lying regions with less wind, compounding 

risk associated with OHL at higher elevations, exacerbated by 

variability in wind power associated with HWSS.  

8. Results and Discussion 

Considering the elevation and spatial distribution of 

assets and the altitude of those assets has a minor effect on 

wind generation output across the network in the given test 

cases, but has a significant impact on the observed 

distribution of failure probabilities of OHL on the grid. So too 

does the depth of model and the network reduction used. Of 

the 19.5GW of connected wind in GB, derived from [40], 

8.1GW is connected in Scotland. The estimations of wind 

power from Scotland in the test case suggest an aggregated 

output of 2.1GW (if using the 3-level data) or 2.3GW of wind 

infeed on the system (if the simulations represented in Figure 

7 are repeated with single level data). Loss of infeed is 

planned for by system operators, but the risk of HWSS will 

be compounded by the risk associated with loss of OHL. In 

Scotland this could affect access to nuclear power from 

Hunterston and Torness, or hydroelectric generation across 

the Highlands, with significant consequences for wider GB 

system operability.  

“Reduced” network models are common in resilience 

and reliability studies involving, but not exclusive to, GB, 

largely due to computational necessity- however, given the 

complexity of the transmission system and the significantly 

weaker nature of the 132kV network compared to the 

275kV/400kV network, and the tendency of wind power to 

be connected to distribution networks, such approximations 

may be inappropriate for some studies and may significantly 

overestimate the robustness of such networks. However, such 

Reduction models were not specifically designed for the kind 

of analyses carried out in this report; rather, the main 

motivation was to use the network model to explore 

phenomena and possible innovations to help manage them. 

The sensitivity of such models to the weather data emphasises 

the need for spatiotemporally precise data for use in power 

system simulations as such data affects both projections about 

future wind power generation capability, and estimations 

about system resilience. 

While storm conditions may cause windfarms in some 

areas to have high power in-feeds to the grid, as has been 

demonstrated here, that is very sensitive to the weather 

conditions and HWSS may cause significant power loss over 

large geographic areas at times when network capacity is 

constrained or compromised due to security conditions. 

Further, since the Scottish network in particular may be a net 

exporter in such conditions, should network degradation 

reduce export capacity to demand centres in the South, this 

will have significant impacts well away from the weather 

system itself. While there may be impacts on Scotland with 

lost load from weakly-integrated parts of the network, the loss 

of cross-boundary infeed to the remaining GB network could 

have major implications. This will be exacerbated given the 

loss of infeed will simultaneously be at a time of reduced 

system inertia due to wind power displacing synchronous 

machines, incurring costs associated either with increased 

need for frequency reserve or curtailment costs on wind farms. 

Failure to prepare for such conditions could lead to major 

outages, cascades, or even widespread blackouts.  

The simulations in Figure 7(c) are repeated with a 

10,000 sample size. The wind capacity of farms in Scotland 

from Figure 6 are overlain as shown in Figure 10, with node 

sizes representing wind farm capacity normalised w.r.t to the 

largest single windfarm. It can be observed that the greatest 

line risk overlaps with an important route down which wind 

power can be transmitted from the North and East of Scotland 

and in the Southwest.  The North-South line in the Centre-

West then has increased importance– but it also traverses a 

significant range of elevations w.r.t Figure 9, meaning it may 

be difficult to repair should a fault occur. 

It is also worth noting the impact using the single-level 

data has in comparison to the three-level wind dataset. The 

single level data has more extreme values throughout the 

Scottish test area at the 10m level, but the data is already in 

the extreme end of wind speed values w.r.t the models being 

used. That is, around 30ms-1, the wind power factor is already 

tailing to zero, concurrently with the failure rate of OHL 

Fig. 9. Estimated maximum elevation of SHETL network  
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being severely sensitive to any minor change in wind speed – 

between 30ms-1 and 40ms-1 the failure rate/100km/hr shifts by 

approximately an order of magnitude. This is why the two 

datasets can show significantly different results, even if the 

general trend remains consistent – that of a high probability 

of faults in the East Coast and South of Scotland. Therefore, 

in the case study here the failure rate is far more sensitive to 

changes in the wind speed data - presuming variation is 

around 25-40ms-1 – as evidenced by the projected wind 

output changing only by ~4% between the two datasets for 

the GB test case compared to the change in failure rate, which 

almost doubles in regions in the South of Scotland.  

Further, it is worth noting that the wind data, while 

similar, is not a direct comparator with the data on which the 

fragility curves were formulated. Nevertheless, while being 

useful for producing a representative indication of risk in this 

context, the curve as applied here is an imperfect absolute 

measurement and likely underestimates the true failure risk. 

There is only a limited change in the projected wind 

output because for the most severely affected regions in 

Scotland wind generation is already a small percentage of its 

nominal output. This is because of HWSS effects at a time 

when OHL risk in these areas is concurrently rapidly 

increasing. Two thresholds then become ostensibly 

significant in any analysis– circa 20ms-1, and the tree-line of 

any region. Beyond 20ms-1 both the models of wind farm 

output and failure rate on OHLs begin to rapidly change, 

making them increasingly sensitive to changes in the input 

data or the corrections made upon it, thus affecting the 

probability of any outage event and the potential impacts 

thereof- of course notwithstanding the simplistic 

representation of HWSS used here. Understanding the 

elevation of these assets then becomes important because it 

also shifts the potential mechanics which can cause the 

failures of assets and the potential error in calculation of OHL 

exposure to weather. 

Simulating the exact same incident event, just using 

different weather corrections, results in as much as a factor of 

2 increase in failure rate on the network and ~4% change in 

projected wind output. System risk during extreme wind 

events, therefore, seems more directly tied to the 

representation of risk associated with OHL than that linked to 

HWSS. The two are clearly related, however, though they 

may manifest differently; HWSS can occur over periods of 

minutes to hours, whereas network faults can cascade as 

quickly as protection systems operate. In this case the storm 

is relatively localised to Scotland – but wind power across GB 

is distributed, so though there is significant, localised, risk in 

Scotland, the projections of wind power in England are not so 

severely impacted by HWSS or OHL risk. 

Resilience analyses have to be extremely careful when 

examining weather events and using such tools, because 

anything from rounding error to assumptions about asset 

heights could have profound impacts on the outputs of such 

models. Similarly, the fragility curves do not account for the 

potential impact of the direction of wind on the failure 

mechanisms on lines. It is reasonable to assume that 

vegetation related failures could be agnostic of wind direction 

– a tree falling over on a line or tower could do so from any 

direction – but it is also reasonable to assume that the failure 

mechanics associated with a wind direction perpendicular to 

the bearing of an OHL will differ from that of a gust parallel 

to it- the fragility curves as implemented cannot yet capture 

that, and examples were not found in the literature which 

directly do. It is also likely that, at a distribution level, system 

assets will be even more vulnerable to high wind speeds than 

transmission assets- but that remains an area for further study. 

Another factor is the granularity and interpolation of 

the data used. Interpolation of the data can improve the 

resolution of the maps used to visualise e.g. estimated failure 

probability, but this still does not account for local 

topological effects, nor does it account for e.g. coastal effects.  

The case study examines 1 test hour based on hourly-

resolved data, making projections about wind power and 

failure rates within that hour. For inter-annual or annual 

simulations, this necessitates a signification increase in 

computational expense to quantify potential inter-annual 

variability of failure rates across systems- but these could be 

particularly targeted, for extreme case studies, at situations 

where wind speeds approach the values discussed here 

(particularly beyond 25ms-1). 

Another concern is with the ramping up and down of 

supply that can occur as storm cycles move across regions, as 

discussed in detail in [8], which describes potential hourly 

ramping events of as much as 15GW by 2030. This infers 

significant minute-on-minute variations which are not 

captured by hourly resolved models such as this but which 

may need to be captured in resilience studies. The 3-level data 

used here differs more from the data used in the formulation 

of the fragility curves relative to the single-level data, and that 

also has implications for the results. Great care is needed 

when deciding both the weather data sets used and the 

fragility curves involved in modelling failure rates. Further, 

to mitigate the impact of storms such as in the case studies 

here, future wind generation should be distributed across 

different regions to prevent HWSS and risk jeopardising 

wider system security- but should be planned carefully given 

the relationship between OHL risk and wind power outputs. 

9. Conclusion and Future Work 

This paper has proposed methods of presenting OHL 

risk and the potential effects of HWSS on wind power output, 

and discussed the potential implications of such events using 

the example of an extreme wind storm from hindcasted data. 

The method is tractable and could provide operators a useful 

tool for resilience planning ahead of similar extreme weather 

events in the future, or be used to hindcast similar events from 

Fig.10. line failure probability and windfarm capacities 
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the past to compare mitigation strategies. It has also been 

demonstrated how sensitive such models are to the scale of 

model used and the quality of weather data. 

This modelling only considers the risk of outage on 

overhead lines due to extreme wind, however such fragility 

curves could also be based on wind and snow events or 

lightning-related events. The versatility of this approach 

means those events can also be readily considered and their 

risks visualised to help planning, particularly pertaining to the 

location of repair teams and assets. Another potential 

application of this approach could be to consider the risk 

associated with line icing or wildfires. Given the links 

between line loading, line temperature line icing, elevation, 

and ambient temperature, this approach also offers a 

foundation on which to investigate such risk in a meaningful 

way, should the representations used here be linked to load-

flow models.  

The proposed methods could also be applied to 

examine impacts of weather conditions on other renewable 

sources of energy e.g. ambient temperature and solar 

irradiance on solar generation, or precipitation on substation 

risk and hydroelectric generation; this simply requires 

changes to the incident weather and relationships with power 

output, and is another benefit of the proposed approaches.  

This work also provides a means to link disparate 

weather and network analysis tools to analyse weather-related 

outages and impacts on power systems in a more detailed 

manner than similar work has provided, and has illustrated 

the sensitivities involved with using such data.  

In geographically diverse regions such as Scotland, 

taking account of factors such as the wide range of weather 

conditions which may affect a line of is important given the 

significant difference in elevations of assets across the grid.  

Considering lines in terms of “subsections” with 

different exposure to weather conditions is a step-change 

from relying on homogenous representation of branches. This 

allows a variety of new and productive results to be 

ascertained, as shown here with determining the EFL values. 

Increasing granularity of source data could further improve 

modelling of line failure risk; interpolation is useful to 

improve granularity of the simulation but cannot capture 

many of the features discussed in this report such as coastal 

effects or effects of changing elevation. 

The demonstrated methodology considers variations 

in line conditions across branches in a robust manner with 

clear postulated relationships between altitude, exposure, 

wind speed, and failure rates on lines, and between wind 

speed and estimated wind power output on farms. The 

novelty in this work also lies in applying separate fragility 

curves in the analysis based on voltage level, demonstrating 

clearly the varied strength of different levels of network and 

the need to distinguish networks in such a manner. While on 

a population level a homogenous model for a “line” may well 

be representative, when performing analysis on a real 

network the extra granularity used here may be important 

when simulating events occurring over multiple different 

voltage levels, particularly as more generation is connected at 

lower levels.  

Applying the method to real networks demonstrates 

the significance of such relationships in real-world analyses. 

Further work needs to be done to then weigh the actual impact 

of these outages on a network to further inform planners, 

particularly given localised outage events can have 

distributed effects, by incorporating the modelling with 

power system simulation models. An immediate example 

here is that HWSS or network faults in Scotland could lead to 

cascading outages or major loss of supply to parts of the 

network far to the South of the areas which are actually 

impacted by adverse weather conditions. Such work would 

also need to consider the impacts of e.g. loss of system inertia, 

network faults, and infeed losses.  

An area for improvement could be the granularity of 

the weather data used to refine representation of local 

topological conditions; the tractability of the method means 

this is straightforward, with the only real limitation being 

computational expense. The potential benefits of moving 

from homogenous representations of lines to 2d 

representations has been shown. A brief investigation into the 

variation in elevation on the system suggests it is possible – 

and, on some networks, may be necessary- to move to a 3d 

representation incorporating elevation. A next step of this 

work, then, is to link the failure probabilities and power 

curves utilised here to a simulation model and a 

representative system model for more comprehensive 

analysis of risk considerate of both HWSS and risk associated 

with OHL during storms. It may also be useful to consider 3-

dimensional representation of OHL using the elevation data 

acquired. A comparison between the demonstrated approach 

and conventional, homogenous line representations validated 

against real data over longer time samples could also be a 

productive next step for research. 
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