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Modeling the global distribution 
of Culicoides imicola: an Ensemble 
approach
Samson Leta   1, Eyerusalem Fetene1, Tesfaye Mulatu2, Kebede Amenu1, Megarsa Bedasa Jaleta1, 
Tariku Jibat Beyene1,3, Haileleul Negussie1 & Crawford W. Revie   4

Culicoides imicola is a midge species serving as vector for a number of viral diseases of livestock, 
including Bluetongue, and African Horse Sickness. C. imicola is also known to transmit Schmallenberg 
virus experimentally. Environmental and demographic factors may impose rapid changes on the global 
distribution of C. imicola and aid introduction into new areas. The aim of this study is to predict the 
global distribution of C. imicola using an ensemble modeling approach by combining climatic, livestock 
distribution and land cover covariates, together with a comprehensive global dataset of geo-positioned 
occurrence points for C. imicola. Thirty individual models were generated by ‘biomod2’, with 21 models 
scoring a true skill statistic (TSS) >0.8. These 21 models incorporated weighted runs from eight of 
ten algorithms and were used to create a final ensemble model. The ensemble model performed very 
well (TSS = 0.898 and ROC = 0.991) and indicated high environmental suitability for C. imicola in the 
tropics and subtropics. The habitat suitability for C. imicola spans from South Africa to southern Europe 
and from southern USA to southern China. The distribution of C. imicola is mainly constrained by 
climatic factors. In the ensemble model, mean annual minimum temperature had the highest overall 
contribution (42.9%), followed by mean annual maximum temperature (21.1%), solar radiation (13.6%), 
annual precipitation (11%), livestock distribution (6.2%), vapor pressure (3.4%), wind speed (0.8%), 
and land cover (0.1%). The present study provides the most up-to-date predictive maps of the potential 
distributions of C. imicola and should be of great value for decision making at global and regional scales.

Globally, the incidence of vectors and vector-borne diseases of livestock and humans is increasing at an alarming 
rate associated with changes related to factors such as climate, environment, high human mobility, unplanned 
urbanization and agricultural intensification1,2. Mosquitoes, ticks, sandflies, tsetse flies and biting midges are the 
common vectors transmitting agents of vector-borne diseases that cause significant production and productivity 
losses in livestock systems3. Among biting midges (Culicoides species), Culicoides imicola is one of the most 
widespread in the world4. C. imicola transmits the agents of a number of viral diseases of veterinary importance, 
including Bluetongue5,6, and African Horse Sickness (AHS)7,8. C. imicola is also known to transmit Schmallenberg 
virus experimentally9.

Bluetongue is a devastating viral disease of ruminants found to be historically enzootic in tropical regions 
of the world; however, since 1998 the virus has spread across southern European countries. The expansion is 
believed to be facilitated by northward distribution of the infected Culicoides species mainly C. imicola and avail-
ability of competent and efficient vectors such as C. obsoletus and C. pulicaris10–12. AHS is an infectious disease 
considered to be the most lethal viral disease of equines, especially horses7,13 and is endemic in sub-Saharan 
Africa7. Schmallenberg virus is a recently emerged virus, identified in North Rhine-Westphalia, Germany, dur-
ing the summer of 201114, which has since spread across Europe inflicting congenital deformities in the off-
spring of infected adult ruminants15. The recent emergence of two Culicoides-borne diseases (Bluetongue and 
Schmallenberg) in Europe has raised concerns around the potential introduction and further spread of AHS virus 
into temperate parts of the world13.
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As stated above, C. imicola is a cosmopolitan midge species and has been reported from various geographic 
areas of the world spanning in its distribution from South Africa to southern Europe and from western Africa to 
southern China4. The recent northward expansion of C. imicola and unprecedented outbreaks of Bluetongue and 
Schmallenberg viruses in southern Europe have been a major research and surveillance focus. Knowledge of the 
potential geographical distribution of this species is important to guide surveillance of C. imicola and the diseases 
it transmits. Considerable numbers of studies have mapped the national or regional distributions of C. imicola 
using a range of modelling techniques. For example, maps outlining the distribution and ecological niche of C. 
imicola have been developed for Spain, Portugal, Morocco, Italy, the Mediterranean basin and South Africa16–20.

Modeling the spatial and temporal distribution of vector species can help in the assessment and management 
of the associated health risks21. However, the global distribution models of C. imicola so far developed4 have been 
based on coarse-scale images, specifically using CLIMEX at 10’ spatial resolution. Moreover, the majority of pre-
vious studies focused on assessing the distribution and survival of this species by considering only a few climatic 
covariates and adopted a single-model forecasting technique. In contrast, ensemble modeling techniques com-
bine a variety of modeling techniques to better predict the global distribution of C. imicola and also characterize 
the respective contributions of each variable. Ensemble models are meta-algorithms that combine several mode-
ling techniques into a single predictive model in order to decrease variance and bias, and improve prediction22,23. 
The present study was initiated based on the proposition that an ensemble modeling technique could be used to 
predict the global distribution of C. imicola, and ultimately provide better scientific evidence with regard to the 
potential global distribution of the vector.

Materials and Methods
In this study a probabilistic global habitat suitability model for C. imicola was developed using an ensemble 
modeling technique23. The modeling was implemented using the R package biomod223. The developed models 
combine climatic, livestock distribution and land cover covariates to predict the global distribution of C. imicola 
and to characterize the respective contribution of various factors. The following sets of input data were used in 
order to make accurate predictions of the distribution of this vector: (i) environmental and livestock distribution 
data which includes climatic, land cover and livestock population data, and (ii) a globally comprehensive dataset 
of geo-positioned occurrence points for C. imicola. Details regarding the specific attributes of the model and data 
generation are outlined below.

Environmental and livestock distribution data.  Climatic data.  The survival of a given vector/species 
and thereby their geographical distribution is influenced by climatic and other environmental factors. As is the 
case for many other insects, the distribution of Culicoides is governed by climate factors4,24–27. Climatic factors, 
particularly temperature and rainfall can promote, enhance or even break critical parts of the life cycle for a 
given species. Solar radiation28, wind speed29,30, and water vapor pressure31 have also been reported to influence 
the presence of different insect species. To account for the impact of climatic factors on the distribution of C. 
imicola, data were downloaded from the WorldClim database (http://worldclim.org/). WorldClim version 232 has 
average monthly climate data including minimum, mean, and maximum temperature as well as precipitation for 
1970–2000. Solar radiation (kJ m−2 day−1), wind speed (m s−1) and water vapor pressure (kPa) are also available 
in version 2 of the Worldclim database. The database provides these climatic layers at different spatial resolutions, 
from 30 seconds (~1 km2) to 10 minutes (~18 km2); 2.5 arcminute resolution data (~5 km2) were used in this study.

Land cover data.  To account for the impact of land usage on the distribution of C. imicola27, land cover data were 
downloaded from the European Space Agency’s GlobCover Portal (http://due.esrin.esa.int/page_globcover.php). 
In this study GlobCover v2009, released on 21st December 2010, was used. This dataset is the most recent (2009) 
available and specifies 22 classes33, based on the Land Cover Classification System (LCCS) at a high resolution 
(300 m).

Livestock distribution data.  Culicoides rely on livestock for their blood meal and according to Purse et al.27, 
local-scale abundance patterns of Culicoides are best explained using models that include data relating to poten-
tial hosts. To account for the impact of host distribution on the distribution and occurrence of Culicoides, 
livestock distribution data was downloaded from the website of FAO livestock systems (http://www.fao.org/
livestock-systems/) and incorporated into the model. The livestock dataset contains peer-reviewed spatial distri-
bution for cattle, sheep, goats, buffaloes, horses, pigs, chickens and ducks at a global extent with 5 minutes of arc 
(~10 km2) resolution for the year 201034.

Culicoides occurrence data.  The C. imicola occurrence records compiled and published by Leta et al.35 which 
contains information on the known global occurrences of C. imicola was used in the present study. The data 
consists of 2 589 (before technical validations) and 1 039 (after technical validations) geo-positioned occurrences 
of C. imicola spanning 50 countries worldwide. Geographical biases in the density of occurrence records were 
apparent in the data before technical validations, during technical validations; a 5 km spatial thinning was per-
formed to overcome the geographical sampling bias. Thus, a more comprehensive global database of C. imicola 
occurrence consisting of 1 039 spatially thinned occurrence records used as occurrence records in the ensemble 
species distribution modeling of the present study.

GIS operation and variable selection.  It was found that the various databases had different spatial resolutions; 
land cover data has 300 m2, the climatic data has 5 km2 and the livestock data has 10 km2 spatial resolutions. This 
necessitated rescaling. Accordingly, the databases were rescaled to 2.5 arcminute (~5 km2) resolution to match 
the WorldClim database spatial resolution. Multicollinearity among explanatory variables was checked using 
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variance inflation factor (VIF) analysis36, with the “vifstep” command in the “usdm” package of R37,38. A step-
wise selection routine was implemented to select a set of variables with sufficient low multicollinearity and only 
variables which had VIF values less than or equal to 10 were considered in the analysis39. However, according 
to Guisan and Zimmermann40, the selection of explanatory variables should also be based on the selection of 
conceptually meaningful variables. Thus, due to its eco-physiological importance4,24,25 average annual maximum 
temperature was kept in the model despite its high VIF value.

Modeling approach.  The potential distribution of C. imicola was estimated based on ensemble species distribu-
tion modeling, executed using the biomod2 package in R. The package produces ensemble species distribution 
models using ten different methods: general linear models (GLM), general boosted models (GBM, also referred 
to as boosted regression trees), general additive models (GAM), classification tree analysis (CTA), artificial 
neural networks (ANN), surface range envelope (SRE), flexible discriminant analysis (FDA), multiple adaptive 
regression splines (MARS), random forests (RF), and maximum entropy (MAXENT)23. All ten modelling tech-
niques require both absence and present records to determine the suitability range for the species under question. 
Explicit C. imicola absence records were not available, so pseudo-absence data were generated using the Surface 
Range Envelope (SRE) model. This technique forces pseudo-absences to be selected outside of the broadly defined 
environmental conditions suitable for the species. As such a surface range envelop model is first generated for the 
species of interest, after which the pseudo-absence data are defined as occurring outside of this envelop23.

To evaluate the performance of each model, the C. imicola occurrence records were split into two, with 80% 
of the data being used to train and 20% to test the models. The true skill statistic (TSS) and the area under the 
receiver operating characteristics (ROC) curve were used to assess the performance of the models41,42. Three eval-
uation runs were performed during the modeling, resulting in a total of 30 models (10 modelling methods × 3 
folds), from which the average values of TSS and ROC were taken. TSS scores range from −1 to 1, where +1 indi-
cates a perfect ability to distinguish actually suitable from unsuitable habitat, while values of zero or less indicate 
a performance no better than random41. For the ensemble modeling, only those models with a TSS value greater 
than 0.8 were considered41,42.

The models produced raster cells with values varying between 0 and 1000. The values indicate how close the 
climate and ecological conditions within in each cell are to the optimal conditions for the species in question; 
with higher values indicating higher suitability. As a rule of thumb, sites with suitability higher than 500 predict 
presence, while sites with suitability lower than 500 indicate absence. The estimated suitability value was divided 
by 1000 to convert the suitability value into a probability of occurrence. During model development the ‘build.
clamping.mask’ was set to ‘TRUE’ to identify locations where predictions could be uncertain. Predictions could 
be uncertain if values of the variables extend outside the range used for calibrating the models. Models committee 
averaging, which gives both a prediction and a measure of uncertainty, was also developed during the ensemble 
modeling.

Results
Model performance and importance of environmental variables.  The ensemble model performed 
very well (TSS = 0.898 and ROC = 0.991). Figure 1 illustrates the TSS and ROC scores of the 30 models. On aver-
age the most accurate technique was random forest, while the least accurate was surface range envelope. Among 
the 30 models, 24 had ROC > 0.90 (ROCaverage = 0.95), considered as good accuracy based on the classification of 
Swets43. Of these, 21 had TSS > 0.8 (TSSaverage = 0.81) or excellent accuracy based on the classification of Ben Rais 
Lasram et al.44. High-accuracy models (TSS > 0.8) were combined to form ensemble forecasting of C. imicola.

The distribution of C. imicola is mainly constrained by climatic factors. Both the individual and the ensemble 
models identified two temperature variables, namely mean annual minimum and mean annual maximum tem-
perature, as significant determinants of the distribution of C. imicola. The variables contributions of individual 
models are provided in Table 1.

A final ensemble model was created by incorporating weighted runs from the 21 models which met the inclu-
sion criteria (all models using the RF, GAM, GBM, CTA, FDA and MARS algorithms, two using GLM and one 
using ANN). In this ensemble model, mean annual minimum temperature had the highest overall contribution 
(42.9%), followed by mean annual maximum temperature (21.1%), solar radiation (13.6%), annual precipitation 
(11%), livestock distribution (6.2%), vapor pressure (3.4%), wind speed (0.8%), and land cover (0.1%).

As indicated in Fig. 2, the presence localities have moderate temperature values. The mean annual minimum 
and maximum temperature of the occurrence localities were 12.7 ± 3.5 and 23.2 ± 4.2 °C, respectively. The annual 
precipitation of the occurrence localities was 52.7 ± 23.8 mm. The predominant land cover type of the occurrence 
localities is cultivated terrestrial areas and managed lands based on Land Cover Classification System (LCCS).

Predicted geographical distribution of C. imicola.  The ensemble model indicated high environmental 
suitability for C. imicola in the tropics and subtropics (Fig. 3). In Africa, the potential distribution of C. imicola 
was widely distributed across most Sub-Saharan African countries; except some central African countries, namely 
the Democratic Republic of Congo, Equatorial Guinea, Gabon and Republic of Congo. Habitat suitability for C. 
imicola was also predicted along the Mediterranean coast extending from Morocco to Egypt. Areas predicted to 
be highly suitable are found in southern, south eastern, and the Horn of Africa. In the Americas, the potential dis-
tributional of C. imicola was observed in many South American countries, particularly Brazil, Paraguay, Uruguay 
and Argentina. There were also environmentally suitable areas for C. imicola along the coasts of Venezuela and 
Columbia, extending to many Caribbean islands, and to much of the southern USA and Mexico.

In Asia, C. imicola potential suitability was indicated across south-east Asian countries including southern and 
eastern China, Myanmar, Thailand, Vietnam, and Cambodia. Potential suitability for the species also occurred 
in Syria, Lebanon, Israel, and along the south-western coasts of the Arabian Gulf. Considerable suitability for C. 
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imicola was also observed in Iran, Iraq, Kuwait and the Indian subcontinent. In Australia and New Zealand, the 
predicted suitability for C. imicola included much of the south-western, eastern and southern coasts of Australia, 
and Northern New Zealand. In Europe, C. imicola was predicted to occur along the Mediterranean coasts of 
Turkey, Greece, Cyprus, Albania, Croatia, Italy, southern France, Spain and Portugal.

The model strongly matches most known occurrence patterns including the recent hotspots in southern 
Europe. It also predicts additional regions where C. imicola has so far been unrecorded, but where further inquiry 
may be warranted (in particular, southern USA and Mexico, the Caribbean and various South American coun-
tries). The model also indicates that certain occurrences, such as records from the Sahara Desert (north-western 
Sudan), are likely to be outside the stable niche.

Model uncertainty.  The committee averaging model depicted in Fig. 4 shows a prediction and a measure of 
uncertainty. When the prediction is close to 0 (blue) or 1 (red), it means that all models agrees to predict 0 and 
1 respectively. When the prediction is around 0.5, it means that half the models predict 1 and the other half 0. 
Figure 5 shows the ‘clamping mask’ value. The values equal to one corresponds to uncertainty in models predic-
tions. The model showed variation in the uncertainty index among different regions. Both the ‘committee aver-
aging’ and ‘clamping mask’ value showed higher uncertainty in the Indian subcontinent. Uncertainty in models 
predictions was also observed for some part of Africa, central Asia, south eastern Asia and some part of Southern 
America. Thus, caution should be taken when interpreting the result for these areas.

Figure 1.  Beanplot illustrating performance in terms of TSS and ROC values over the 30 prediction models (10 
algorithms × three runs). The lite horizontal lines indicate the overall averages.

Variables RF GAM GLM GBM CTA ANN SRE FDA MARS MAXENT
Overall relative 
contribution

Tmin 21 46 45 20 10 42 15 49 53 23 35.2

Tmax 7 23 26 12 13 18 17 28 24 18 19.9

Srad 17 15 18 11 20 13 16 10 9 11 13.8

Prec 11 9 8 12 13 8 9 11 9 18 10.2

Livestock 28 0 0 28 21 8 15 0 5 7 8.7

Vapr 14 4 1 17 20 11 16 2 1 10 8.5

Wind 3 2 2 1 3 1 8 1 0 12 3.0

Land cover 0 1 0 0 0 0 4 0 0 2 0.8

Table 1.  Contribution (%) of each variable to the variability in the initial models. Key: Tmax = Mean annual 
maximum temperature (°C), Tmin = Mean annual minimum temperature (°C), Srad = Solar radiation (kJ m−2 
day−1), Prec = Mean annual precipitation (mm/year), Livestock = Livestock population (livestock population/5 
arc minute), Vapr = water vapor pressure (kPa), Wind = wind speed (m s−1), Land cover = Land cover type.
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Discussion
The present study provided the most up-to-date and detailed maps of the predicted potential distribution of C. 
imicola using an ensemble modeling technique. The results presented here are based on thinned and unbiased 
treatment of the most extensive C. imicola occurrence dataset created to date, and represents the most up-to-date 
description of C. imicola distribution. To overcome the limitation of previous studies, we used additional sets of 
occurrence data35 and a robust modeling technique22. Our ensemble model performed well (TSS = 0.898 and 
ROC = 0.991), indicating a clear ability to distinguish between suitable and unsuitable habitat41.

Several factors may influence the distribution of C. imicola, including both biotic and abiotic factors. In this 
study, mean annual maximum temperature, mean annual minimum temperature, mean annual precipitation, 
solar radiation, water vapor pressure, wind speed and land cover type, which are abiotic factors, and livestock 
distribution which is a biotic factor, were required to model the distribution of the species. The global distribution 
of C. imicola appears to be limited by temperature; with annual minimum and maximum temperatures being 

Figure 2.  Beanplot of environmental and livestock demographic characteristics of C. imicola occurrence 
localities (N = 1039). Tmin = Mean annual minimum temperature (°C), Tmax = Mean annual maximum 
temperature (°C), Tavg = Mean annual temperature (°C), Prec = Mean annual precipitation (mm/year), 
Srad = Solar radiation (kJ m−2 day−1), Wind = wind speed (m s−1), Vapr = water vapor pressure (kPa), 
Livestock = Livestock population (livestock population/5 arc minute).

Figure 3.  Predicted potential distribution of C. imicola. The scale indicates less suitable environment (cooler 
colors) and most suitable environment (warmer colors).

https://doi.org/10.1038/s41598-019-50765-1
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the major determinants of the distribution of C. imicola. A study that aimed to map the potential distribution 
of C. imicola in Europe16, identified three temperature variables as significant determinants of the distribution 
of C. imicola, namely minimum of the monthly minimum temperatures, maximum of the monthly maximum 
temperatures, and the number of months per year with a mean temperature ≥12.5 °C. An experimental study by 
Veronesi et al.45 indicated that temperature could influence the fecundity, hatching and survival rate of C. imicola. 
In our ensemble model, temperature covariates contributed 64% to the model; the mean annual minimum and 
maximum temperature of the occurrence localities were 12.7 ± 3.5 and 23.2 ± 4.2 °C, respectively. According to 
Veronesi45, when reared at higher temperature (28 °C), C. imicola demonstrated higher variability in fecundity 
and lower hatching rates. On the other hand, the mean emergence rate from pupae was highest at 20 °C. However, 
distribution and abundance of C. imicola is likely directly constrained by their relatively poor tolerance of lower 
temperatures46. Other climatic factors, such as solar radiation and precipitation, were also important in determin-
ing the distribution of C. imicola.

Our models indicate that non-climatic factors are also important in driving spatial distribution of Culicoides 
including land cover and host factor (livestock distribution). The contribution of land cover to the model was low. 
According to Purse et al.27 local-scale abundance patterns of Culicoides were best explained by models combin-
ing host, landscape and climate factors. The land cover characteristics of C. imicola includes rainfed croplands, 
mosaic cropland (50–70%) / vegetation (grassland/shrubland/forest) (20–50%) and mosaic vegetation (grassland/
shrubland/forest) (50–70%) / cropland (20–50%) based on LSSC land cover classification. In this study, livestock 
distribution was found to have an influence on the distribution of C. imicola. Evidence of the importance of live-
stock as sources of blood meals for C. imicola is well established47. C. imicola is a blood-sucking insect, tend to 
blood-feed on and breed near domestic livestock and humans. Frequencies of contact between Culicoides and 
vertebrate hosts are closely related to pathogen amplification and the risk for transmission27,47.

Figure 4.  The estimated committee averaging across the selected predictions. The scale indicates unsuitable 
environment with certain prediction (cooler colors), less suitable with uncertain prediction (light colors), and 
most suitable environment with certain prediction (warmer colors).

Figure 5.  The Estimated ‘clamping mask’ value. Warmer colors indicate areas where models predictions are 
uncertain.
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C. imicola is widely distributed across the world, from South Africa to the Mediterranean basin and across 
the Middle and Far East4,35. The suitability maps identified areas suitable for the occurrence of C. imicola in the 
tropical and subtropical regions. There are, however, areas with either low suitability or even completely unsuit-
able for C. imicola in this part of the world, underlining a patchy distribution of this species. As an example, 
although, tropical Africa is known to be within the global distribution range of C. imicola, the Sahara Desert and 
the heavily forested central Africa were found not to be suitable for this species. The suitability map indicates all 
tropical rainforests were unsuitable for the existence of C. imicola. C. imicola is a heliophile breeding predomi-
nantly in habitats that are low forest cover and open to sunlight48. It is important to note that, the suitability for C. 
imicola extends its known global distribution, as considerable suitable habitats are manifested in areas where no 
occurrence has so far been reported, including areas in southern USA, Mexico, Central and southern American 
countries, and Australia. Thus, it is entirely feasible that C. imicola could spread into these parts of the world, 
potentially increasing the risk of transmission of Bluetongue, and AHS.

A considerable number of studies have explored the role of different climatic factors on the distribution and 
abundance of C. imicola16–18,20,24,45,46,48–58. Climatic factors, mainly lower temperature limits may play a role in 
constraining a northern expansion of suitable habitat especially in Europe and Asia. As stated by Guichard et al.4, 
there appears to be substantial opportunity for range expansion of C. imicola. The model developed by Guichard 
and colleagues4 projects a northern expansion of suitable climate especially in Europe and some parts of Asia, 
under future climate scenarios.

The results of the current model overlap in many respects with the previously published model of Guichard 
and colleagues4. However, the current model resulted in different distributional patterns to those predicted by 
Guichard et al.4 in many parts of the world. For example, in contrast to the current model, the model proposed by 
Guichard and colleagues4 predicted wider suitability for C. imicola in Central Africa, the Pacific region, northern 
and western Brazil, and New Zealand. As such we postulate that the previous study4 over-estimated the potential 
distribution of this species. The distributional potential of the species was likely poorly estimated owing to the 
quality of the occurrence data, the quality and resolution of the predictor variables, as well as the predictive per-
formance of the model used.

The distribution of BT and AHS overlaps with the predicted distribution of C. imicola. BT is a widely distrib-
uted disease with reports from Africa, Europe, and Asia. The distribution of AHS on the other hand is restricted 
to Africa and Middle East (OIE, 2009). Despite the presence of suitable habitats, and competent vectors, AHS 
didn’t introduce in to southern and Western Europe, Eastern Asia, Southern Asia, and South Eatern Asia. BT and 
AHS have a high potential to spread to other parts of the world via the transportation of infected livestock, or 
mosquitoes. Due to the presence of suitable habitats and a competent vector, the present study infers a consider-
able probability of BT and AHS introduction into countries of East and Southeast Asia and Oceania. European 
countries along the Mediterranean Sea have a significant risk of AHS virus introduction.

In the current study, a range of predictor variables were used. Climatic variables were obtained from 
WorldClim32. WorldClim has become a most widely used climatic data source when constructing species distri-
bution models. Despite the extensive application of WorldClim data to species distribution modeling, the data-
base is known to have some limitations59. WorldClim version 2 has average monthly climate data for minimum, 
mean, and maximum temperature and for precipitation only between 1970 and 2000, which may not accurately 
reflect current climatic conditions. Thus, the result displayed here may deviate from current reality in areas that 
have undergone clear climatic changes over the last two decades.

Conclusion
This study has provided predictive estimates as to the potential distributions of C. imicola and could be used for 
decision making at global and regional scales. The model developed has importance for two main reasons; (1) the 
model estimate probabilities of occurrences for one of globally cosmopolitan and primary vectors of major arbo-
viruses of veterinary importance that are increasingly spread across the world, and (2) the maps provide primary 
and firsthand information to prioritize surveillance and control programs for both C. imicola and the diseases 
transmitted by this species, such as Bluetongue, and AHS. The study enables the scientific community and policy 
makers to indirectly infer the risks of these diseases and thereby provides a framework for updating management 
and biosecurity strategies to target disease epizootics.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author up on request.
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