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Abstract
In this paper we couple a deterministic planner with
an ontology, in order to adapt to new discoveries
during plan execution and to reason about the af-
fordances that are available to the planner as the set
of known objects is updated. This allows us to ex-
tend the planning agent’s functionality during exe-
cution. We use as an example planning for persis-
tent autonomous behaviour in underwater vehicles.
Planning in this scenario takes place in a symbolic
model of the environment, simulating sequences
of possible decisions. Ensuring that the simula-
tion remains robust requires careful matching of
the model to the real world, including dynamically
updating the model from continuous sensing ac-
tions. We describe how our system constructs an
initial state for planning, using the ontology; how
the ontology is also used to determine the results
of each action performed by the planner; and fi-
nally demonstrate the performance of the system
in a simulation, in which two AUVs are required
to cooperate in an unknown environment, demon-
strating that with additional reasoning the planning
system is able to make new efficient choices, taking
advantage of the environment in new ways.

1 Introduction and Motivation
AI Planning [Ghallab et al., 2004] supports a key requirement
of intelligent robotics: the ability to perform strategic task-
level planning, taking into account limited resources, time,
environmental constraints and long-term goals. Planners rely
on having access to a rich model of the environment, the ob-
jects within it, and the actions that can be performed on the
different kinds of objects. A major challenge is that knowl-
edge of the environment constantly changes during plan ex-
ecution, so the set of objects that can be manipulated cannot
be fixed in advance. Instead, the planner’s model has to be
adapted and updated as new discoveries are made. Acquiring
new knowledge in an autonomous way, adapting behaviour
accordingly, is a fundamental requirement of persistent au-
tonomous behaviour. Path-planning [Lavalle, 2006] is also a
fundamental underlying requirement, but we do not address
this topic in this paper.

To enable the acquisition and interpretation of data, and
inference over the resulting new knowledge, we provide an
ontology as one of the components of an autonomous plan-
based system. This paper addresses using an ontology in the
dynamic construction of AI planning models, using under-
water mission-planning for AUVs as an example. In the work
presented here, the ontology has two roles: to recognise in-
stances of known concepts from sensed data (eg: to be able to
distinguish a valve from a weld), and to identify affordances
with the newly recognised objects (eg: to recognise that, be-
ing a valve, the object can be grasped, turned, etc). In this
way, interpretation of sensed data opens up new reasoning
choices for the planner.

Our goal is to show that, equipped with task planning and
an ontology, an autonomous system can perform long-term
operations without human intervention, adapting to discover-
ies and increasing its functionality over time. Our approach
is to plan operations over a horizon, and replan whenever the
ontology updates the planning model. We make two main
contributions:

1. The use of a temporal planner, rather than a reactive
strategy, to control underwater missions, in order to an-
ticipate and avoid problems rather than simply react to
them when they cause actions to fail.

2. The use of an ontology to provide object classifications
and affordances to the planner, to improve the planner’s
interaction with the world.

When planning in robotic domains the actions available to
the planner correspond to interactions between the robot and
recognised objects in the environment, an idea explored by
Geib et al. [2006] as Object-Action complexes. If a plan-
based intelligent robot is placed in an environment with a
fixed model, the robot might not be able to exploit all of its
capabilities as objects are not correctly recognised, or are of
unknown types that nevertheless afford known interactions.
Using ontological reasoning in conjunction with planning, we
extend the capabilities of the planner to more closely match
those of the robot in the environment.

We consider the problem of autonomous inspection and
maintenance of a seabed oil installation. Regular inspection
and maintenance of the facility is to be carried out using au-
tonomous underwater vehicles (AUVs) over extended hori-
zons, so the system must be able to deal with unexpected dis-
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covery, and be able to model actions that can be performed in
the environment in the symbolic language of the planner. The
missions that must be undertaken have many temporal con-
straints and characteristics. For example, depending on how
long it takes to achieve a planned task, the timeframe in which
other tasks might be completed can be affected. Thus, de-
pending on the importance of tasks, the planner might decide
to make more time available for one task rather than another.
In cooperative tasks, the planner has to time the behaviours
of the cooperating robots so that they coincide at the right
locations.

The combination of planning with other modules that
model knowledge about the domain has been explored in
other contexts. Several approaches to building semantic maps
have been developed. Petrick et al. [2013; 2014] address the
issue of joining continuous low-level sensor data with plan-
ning in a partially-known symbolic representation with sens-
ing actions in contingent planning. This is similar to the
problem that we propose to tackle with an ontology mod-
ule. Where Petrick et al. cope with unknown knowledge at
a Planning level, our focus is on using an ontology to reason
about discovered objects, and by so doing extend the possi-
ble means of interacting with them. Tenorth et al. [2010] and
Galindo et al. [2008] focus on combining semantic knowl-
edge with spatial data to form a semantic map of the environ-
ment. Tenorth et al. in particular deal with attaching semantic
information to a spatial map using an ontology in the ROS1

framework for indoor household tasks. We define a similar,
but general approach to linking an ontology with a planner in
ROS.

We validate this approach in an under-water mission,
which we describe in Section 2, along with discussion related
work. In Section 3 we describe the details of our integration
between planning and ontology. We describe the simulations
with our system and then conclude in Sections 4 and 5.

2 Planning with Ontologies
Ontologies organise knowledge around concept hierarchies
and the relationshipsand attributes between these concepts
and instances of them. Considerable work has been car-
ried out on developing representational languages based on
description logics and inferences over the sentences they
record [Gruber, 1993]. In our framework, an ontology is used
as a way for the robot to organise the knowledge about the
physical world in which the AUVs operate, not just as geo-
metric concepts, but also as richer structures that offer access
to affordances expressed as action templates available in a
PDDL [Fox and Long, 2003] domain model (actions applica-
ble to objects of the corresponding types).

In this work we use an ontology to detect new objects and
reason about their identification and the relations between
them. The planner adapts to unexpected features by revising
its abstract, deterministic model of the world and replanning
to take account of the new features, while relying on robust
control and signal processing systems to handle inaccuracy
and noise.

1Robot Operating System (ROS); http://www.ros.org; last ac-
cessed Apr. 2014

Combining task planning and control have been considered
in much prior work. Recent works include: the constraint-
based temporal planning system, EUROPA-2, in the T-REX
framework [McGann et al., 2008; Py et al., 2010]; combin-
ing task and motion planning onboard the PR2 robot [Srivas-
tava et al., 2014]; using homotopy classes to guide path plan-
ning [Hernández et al., 2011b; 2011a]; generating a coarse
plan to initialise the inspection of an unknown hull [Englot
and Hover, 2010]; using a plan-based policy to guide an
AUV for autonomously tracking the boundary of the sur-
face of a partially submerged harmful algal bloom [Fox et
al., 2012] and autonomous underwater maintanence, explored
in the context of temporal planning [Cashmore et al., 2013;
2014];.

2.1 Case Study
We consider a context in which two AUVs have to cooperate
to accomplish tasks in a long term mission that requires sus-
tained autonomy: the inspection and maintenance of a seabed
facility. Some tasks cannot be achieved by a single AUV and
coordination between two or more AUVs is required. Our
problem scenarios in this paper are set in this context, fo-
cussing on a cluster of inspection tasks. Maintenance tasks
take place in a dynamic environment; currents will move
the robots, visibility might become obscured, and extrane-
ous events, such as sea animals passing by, might interfere
with the execution of an action. In order to find plans that are
robust to the uncertainty inherent in the environment, we con-
struct domain models that are conservative with respect to re-
source requirements (e.g. time and energy). The uncertainty
is abstracted by embedding it in the resource estimates used
in planning the actions. In this way, we can exploit powerful
deterministic temporal planning methods, rather than proba-
bilistic methods which, although they model and reason about
uncertainty directly, are much less performant.

During the execution of the plan the ontology is continu-
ously updated using parsed sensor data. As a result of some
observations and updates to the model of the world, an exe-
cuting plan can become invalid (some of the assumptions on
which it rests can be violated). This situation is identified by
the reasoning within the ontology, coupled with the content
on the plan, and will trigger a replan. For example, consider
the case where an AUV plans to perform an inspection of a
structure, and then move on towards a valve panel. While
performing the inspection, the sonar data continuously up-
dates the map. Suppose, during execution of the inspection,
the path planned between the structure and the valve panel
is found to be blocked. This information is given immedi-
ately to the planning system, which will find a new path to
the valve panel, and might decide to change the details of the
structural inspection to better fit the new strategic plan. This
is described in more detail in Section 3. It should be empha-
sised that the replanning carried out in this case is not path
planning (although path planning is a part of the problem),
but construction of a task plan, linking and coordinating ac-
tions between AUVs to achieve the goals of the original plan.

In this paper we focus on a mission involving two AUVs,
which we call the structure inspection task. The objective
is for the two AUVs is to inspect a structure. This requires
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exploring a set of inspection points, by navigating close by
and directing the sonar and imaging equipment towards them.
However, if there are pillars in the structure, the AUVs are
able to inspect each complete pillar as a single structure, by
observing from a greater distance. This action explores a
larger area than any single inspection point, but poses some
challenges, as the pillars are deep down in the water, so that a
light has to be shone upon the target for the observation to be
of sufficient quality.

One solution would be to equip a single AUV with both a
camera and a light, but in such a case the light would come
from the same direction as the camera, and backscatter would
compromise the image quality. Instead, one AUV should ap-
proach the pillar and shine the light from an oblique angle,
while the other AUV approaches the target to make the ob-
servation. Note that it is not possible to sequentialise the be-
haviour of the two AUVs for the pillar inspection task. The
concurrency of the behaviours is crucial to the success of the
inspection. This task therefore requires temporal coordina-
tion of activities, and temporal reasoning is key for the effec-
tive planning of this mission. The combination of temporal
coordination of two AUVs, the assignment of tasks between
them and the timing and ordering of tasks is the role of a task
plan and cannot be resolved by path planning, although path
planning is necessary in determing which navigation tasks are
achievable and by what route.

The AUVs are placed inside an environment with a number
of pillars and other structures. Initially the AUVs have little
knowledge of the environment. The AUVs and planning sys-
tem are capable of performing an inspection in an unknown
environment by observing dynamically generated inspection
points and replanning as new observations invalidate the cur-
rent plan.

3 Integration
The symbolic model of the world is provided by the ontology
though a ROS interface that the planner uses to construct the
initial state of the problem. The symbolic representation of
the locations that the AUVs can visit, the objects, and the re-
lationships between them are provided by the ontology. This
process is described in four parts. First we describe our model
for the structure inspection task, and how it is dynamically
updated. We discuss how the model recorded in the ontology
is delivered as a problem description for the planner. We then
show some solutions to examples of these generated planning
problems, and finally describe how these plans are executed.

3.1 Model
The objects collated in the ontology are either known a pri-
ori or are derived from analysing sensor data that is col-
lected throughout the execution of a plan. The types of ob-
jects include 3d-points within the volume bounding the mis-
sion region, which has several subtypes (waypoints, inspec-
tion points and strategic waypoints), and structures, which
includes the subtypes of pillars and one representing the im-
age slice a sonar captures when intersecting a cylinder, which
we call a Circle (though it might be elliptical, depending on
angle, and will be partially occluded by the solid structure).

Figure 1: The architecture of integration between the plan-
ning system and ontology. The ontology provides the initial
state of the planning problem. The ontology is also involved
in the exectution of the plan, alerting the planning system
when an important part of the environment changes, or is dis-
covered to be different from what is expected.

Figure 1 displays the relationship between the planning sys-
tem and the ontology.

The possible trajectories the AUVs can traverse are deter-
mined by a set of waypoints. These waypoints are created
using a probabilistic road map (PRM) [Kavraki et al., 1996;
Lavalle, 2006], and stored in the ontology. We use an oc-
tomap [Wurm et al., 2010] to check if a waypoint collides
with an obstacle in the world. Similarly we use the octomap
to determine whether the AUVs can traverse between two
waypoints. The octomap is built from sensor data and con-
tinuously updated.

Inspection points are added to the ontology. These are ar-
eas that must be observed by the AUV, either areas of unex-
plored space, or the unseen sides of possible pillars.

The PRM is augmented with additional waypoints – called
strategic waypoints – these waypoints are stored in the ontol-
ogy to provide a denser collection of waypoints around points
of interest (in our case the locations of possible pillars and
unexplored space). For example, if the sonar picks up a sig-
nature that is roughly cylindrical, this is recognised as a new
Circle and stored in the ontology. New inspection points are
inferred as a consequence of the knowledge that such struc-
tures can be inspected on all sides. This has the effect of
enabling and encouraging the planning system to plan to in-
spect the opposite side of this object to determine whether it
is a Pillar.

This information can also be used to ’clean up’ the oc-
tomap by removing noise. If an object is determined to be
a pillar, its shape is known and errors from the sonar can be
corrected.

3.2 Constructing the Planning Problem Instance
In our domain, the state of each AUV is partially described
by its position, given by a waypoint. The AUV can per-
form six actions, namely do hover fast, do hover controlled,
correct position, illuminate pillar, observe pillar, and ob-
serve inspection point, as shown in Figure 2.
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(:durative-action do_hover_fast
:parameters (?v - vehicle ?from ?to - waypoint)
:duration ( = ?duration (* (distance ?from ?to)

(invtime ?v)))
:condition (and (at start (at ?v ?from))

(at start (connected ?from ?to)))
:effect (and (at start (not (at ?v ?from)))

(at end (near ?v ?to))))

(:durative-action illuminate_pillar
:parameters (?v - vehicle ?wp - waypoint ?p - pillar)
:duration ( >= ?duration 0)
:condition (and (over all (at ?v ?wp))

(at start (can_observe_pillar ?v ?wp ?p)))
:effect (and

(at start (pillar_illuminated ?p))
(at start (not (can_observe_pillar ?v ?wp ?p)))
(at end (not (pillar_illuminated ?p)))
(at end (can_observe_pillar ?v ?wp ?p))
(at end (near ?v ?wp))))

(:durative-action observe_pillar
:parameters (?v - vehicle ?wp - waypoint ?p - pillar)
:duration ( = ?duration 10)
:condition (and

(at start (at ?v ?wp))
(at start (can_observe_pillar ?v ?wp ?p)))
(over all (pillar_illuminated ?p))

:effect (and
(at start (not (can_observe_pillar ?v ?wp ?p)))
(at end (observed_pillar ?p))
(at start (not (at ?v ?wp)))
(at end (near ?v ?wp))))

Figure 2: A fragment of the PDDL inspection-task domain.

The do hover fast action moves the AUV between two
connected waypoints (which, by construction, are the end-
nodes of a collision-free edge). Since the fast motion does
not take into account final orientation, it only arrives near
the desired pose. The position must then be corrected. The
duration of the action depends on the distance between the
two waypoints.

The observe actions allow the AUV to observe an inspec-
tion point or a pillar. The precondition requires the AUV to
be at a waypoint from which the target inspection point is
(partially) visible. Furthermore, the observe pillar action re-
quires the pillar to be illuminated over the whole duration of
the observe action. The illuminate pillar action, whose du-
ration is decided by the planner, needs to be performed by a
different AUV to meet this requirement.

The problem instance is described using a collection of ob-
jects, their initial states, and a goal. The objects correspond
to object types known by the ontology, and the initial state of
the problem instance is generated from the attributes of these
objects, also stored in the ontology. This describes the current
known state of the world. In the structure inspection task the
goal is automatically generated from the initial state, given
the current knowledge of the environment. This is done by
adding the requirement that every inspection point and pillar
has been fully observed. This data is accessed using a ROS
interface. In a typical scenario, the goal is initially to observe
a set of inspection points p1, . . . , pn. When a pillar is dis-
covered, the goal is dynamically updated, and some inspec-
tion points pj , . . . , pk are removed from the goal and replaced
with the goal of observing the pillar (as it subsumes multiple

(define (problem inspection-task-p1)
(:objects

auv - vehicle
wp1 wp2 wp3 ... - waypoint
ip1 ip2 ip3 ... - inspectionpoint)
p1 ... - pillar)

(:init
(at auv wp1)
(= (mission-time) 0)
(= (observed ip1) 0)
(connected wp1 wp2) (connected wp2 wp1)
(= (distance wp1 wp2) 7.16958)
(= (distance wp2 wp1) 7.16958)
...
(cansee auv ip4 wp12)
(= (obs ip4 wp12) 0.445331)
...

)
(:goal (and (>= (observed ip1) 1)

(observed_pillar p1)
...

))
(:metric minimize (total-time)))

Figure 3: A fragment of the PDDL inspection-task problem
instance.

inspection points, pj , . . . , pk, as determined by the appropri-
ate geomtric reasoning in the ontology). Figure 3 shows a
fragment of a problem instance.

3.3 Solving the Planning Problem
To solve the problem, we use the temporal planner
POPF [Coles et al., 2010]. As described earlier, the planner
deals with coarse-grained events: in this case movement be-
tween waypoints and observation of inspection points. Ex-
ample plans in PDDL representation are shown in Figures 4
and 5. In both plans, the AUVs are explicitly given concur-
rent activities and the planner minimises the duration of the
plans. However, in the second case, the plan requires con-
currency to allow the correct illumination of the pillar during
the (long range) inspection task. Note that the illumination
duration has been set by the planner to meet the demands of
the inspection task.

3.4 Execution
The controllers are responsible for achieving the actions and
providing feedback. There are two possible reasons for re-
planning:

1. action failure: an action execution reports failure, using
the ROS action feedback, or times out; and

2. change of environment: the ontology notifies the plan-
ner of a change in the environment that invalidates the
plan, or new information, such as new object instances,
pertinent to mission goals.

A single plan governs both AUVs. We make the assump-
tion that when replanning, the vehicles can coordinate and
share information as required. In practice, this communica-
tion is difficult, and in future work we will consider how the
plans execution and replanning requests can be coordinated
between independent vehicles.

Once the planner has found a plan, the actions are con-
verted into ROS messages and sent to the AUVs. This is done
by tokenizing the plan (e.g. figures 4 or 5) and passing the
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Without knowledge of Pillars
Plan time PDDL action duration

0.000: (correct position auv0 wp auv0) [10.000]
0.000: (correct position auv1 wp auv1) [10.000]

10.001: (do hover fast auv1 wp auv1 s16) [46.469]
10.001: (do hover controlled auv0 wp auv0 s0) [14.274]
24.276: (observe inspection point auv0 s0 i0) [10.000]
34.277: (correct position auv0 s0) [10.000]
44.278: (do hover controlled auv0 s0 s1) [16.971]
56.471: (correct position auv1 s16) [10.000]
61.250: (observe inspection point auv0 s1 i1) [10.000]
66.472: (observe inspection point auv1 s16 i16) [10.000]
71.251: (correct position auv0 s1) [10.000]
76.473: (correct position auv1 s16) [10.000]
81.252: (do hover controlled auv0 s1 s2) [16.971]
86.474: (do hover controlled auv1 s16 s20) [15.000]
98.224: (do hover fast auv0 s2 s10) [66.000]

101.475: (observe inspection point auv1 s20 i20) [10.000]
111.476: (correct position auv1 s20) [10.000]
121.477: (do hover controlled auv1 s20 s17) [22.649]
144.127: (observe inspection point auv1 s17 i17) [10.000]

Figure 4: A PDDL plan for an inspection task, found using
POPF. Each action has an associated duration, and expected
dispatch time, which may differ from the actual execution.
Each waypoint and inspection point is associated with its co-
ordinates, as stored in the ontology. In this plan no pillars
have been recognised by the ontology.

With knowledge of Pillars
Plan time PDDL action duration

0.000: (correct position auv0 wp auv0) [10.000]
0.000: (correct position auv1 wp auv1) [10.000]

10.001: (do hover fast auv1 wp auv1 s16) [46.469]
10.001: (do hover controlled auv0 wp auv0 s0) [14.274]

0.000: (correct position auv0 wp auv0) [10.000]
0.000: (correct position auv1 wp auv1) [10.000]

10.001: (do hover controlled auv0 wp auv0 s3) [10.833]
10.001: (do hover fast auv1 wp auv1 s16) [46.469]
20.835: (do hover fast auv0 s3 s20) [84.546]
56.471: (correct position auv1 s16) [10.000]
75.383: (illuminate pillar auv1 s16 pillar2) [50.000]

105.382: (correct position auv0 s20) [10.000]
115.383: (observe pillar auv0 s20 pillar2) [10.000]

Figure 5: A PDDL plan for an inspection task, found using
POPF. Each action has an associated duration, and expected
dispatch time, which may differ from the actual execution.
Each waypoint and inspection point is associated with its co-
ordinates, as stored in the ontology. In this plan, knowledge
of pillars exists in the intial state, allowing faster observation
of the structure.
actions to the AUV controllers. The actions are dispatched to
the two AUVs concurrently as scheduled by the plan.

The AUV controllers provide feedback to the executor. If
the action is successful, then at the scheduled time, the next
action can be dispatched to that controller. If the action is
failed, then replanning is triggered. If an action is taking too
long to complete, the action is cancelled by the executor and
replanning is triggered.

During the execution of an action the executor may can-
cel the action if the plan is invalidated or the current action

Figure 6: The plan is executed with sonar continuously up-
dating the environment. The plan is invalidated in 2 and re-
planning is triggered.

is no longer desirable. Note that, in our framework, replan-
ning is based on reformulating the inspection task as a new
planning problem. This re-modelling is performed dynam-
ically, as new information becomes available – the PRM is
continuously updated according to the new information about
the environment, and the ontology with detected objects and
structures to inspect. This reformulation allows the AUVs to
adapt to new discoveries during execution.

For example, by collating information continuously it is
possible that the obstacle is detected long before the action is
to be dispatched. The system can alter the plan before the ac-
tion is dispatched, thereby avoiding dead-ends and inefficien-
cies. For example, consider the following simple scenario in
figure 6: the AUV is moving between two waypoints, and the
sonar detects a wall. The wall obstructs the planned hover
action, but will not interfere with the current action. Clearly,
replanning should take place to avoid dispatching the doomed
action. In this case the obstructed connection is removed from
the ontology, the planning system is notified of the change,
and finds a new route before dispatching the action.

4 Experimentation
Our objective is to show that the planner and ontology can
interact to support the execution of a complex mission. We
have designed experiments that demonstrate the following
features:

1. Controlled failure of an executing plan in the event of
the discovery of new information

2. The discovery of new object instances and their affor-
dances, and updating of the planning problem

3. Replanning of a cooperative mission involving coordi-
nated activity of the two AUVs to achieve mission goals

We show that by continually augmenting the knowledge
available, the ontology gives the planner access to previously
unknown parts and affordances of the environment leading to
plans that are shorter and more efficient than those that can be
found without the ontology. We demonstrate the role of plan-
ning by considering a mission with interesting temporal struc-
ture. The two AUVs must act concurrently in order to inspect
pillars. A reactive strategy, in which one or more AUVs patrol
the site inspecting pillars as they are encountered, would not
be able to arrange coordination of AUV activities and would
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# of pillars IPs only IPs and Pillars
1 208.909 117.631
1 216.309 135.814
2 365.618 263.028
2 351.014 350.307
3 758.375 383.531
3 781.005 324.062

Avg time (s) 446.872 262.395
Avg # actions 58 23

Table 1: Plan quality for the structure inspection task. “IPs
only” refers to the task undertaken without knowledge of pil-
lars. “IPs and Pillars” shows the results when taking knowl-
edge of pillars into account.
result in inefficient inspections. We illustrate this by com-
paring the behaviour of the AUVs under coordination of the
planner with and without the support of the ontology.

The structure inspection missions are carried out in simu-
lation, using a system that emulates an underwater environ-
ment and interfaces with ROS. The entire control system has
been used to plan and execute missions using physical vehi-
cles, but we have not had the opportunity to test physical mis-
sions with two AUVs together. In the test missions, the AUVs
are sent to inspect different structures with various numbers
of pillars. Initial inspection points are placed on the surface
of the structure. Our hypothesis is that using the knowledge
from the ontology will allow us to generate plans that have a
shorter duration, and fewer actions, because the recognition
of a specific instance of an object type gives the planner ac-
cess to the best affordances to enable efficient interaction with
the object. The simulation was run multiple times, first with-
out taking into account knowledge of pillars from the ontol-
ogy. In this case, all the inspection points had to be observed.
Then, the ontological data was taken into account, and pillars
could be inspected with the pillar-specific observation action,
inspecting multiple inspection points at once.

The times taken to execute the missions are reported. The
planning time on each planning cycle is limited to 10 sec-
onds. Figure 7 shows the simulation during runtime. Using
the knowledge provided by the ontology about Pillars greatly
reduced the time taken to complete the mission (Table 1). Ex-
tending the functionality of the planner with new knowledge
about the environment can be expected to increase the quality
of the plans based on the improvement of affordances.

5 Conclusion
In this paper we describe the linkage of a planning system
to an ontology within an execution framework, allowing the
planner to exploit features and affordances of elements of the
environment as they are identified and inferred by the ontol-
ogy. As the world state is continually modified using pro-
cessed sensor data to update the ontology, the executing plan
is monitored for validity and replanning is invoked when it
ceases to be valid. The result is a system robust to changes in
the environment. We tested our system in simulation, show-
ing that using the ontology to associate objects with affor-
dances can result in plans with a shorter duration and fewer
actions.

Figure 7: Images of the simulation environment, the 3D
model of the AUV structure and sea-bed; and the rviz scene,
the environment as detected by the AUV.
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