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1.  INTRODUCTION

Pest control is a major challenge in high-intensity
farming. High densities of single species are suscep-
tible to density-dependent infestations (Lafferty et al.
2015). Use of integrated pest management (IPM)

strategies are increasing as ‘traditional’ chemical
control strategies are compromised by the evolution
of resistance and with concerns about impacts of
chemotherapeutants on human health and non-tar-
get species (Bale et al. 2008). While IPM can facilitate
processes that naturally control pest populations,
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ABSTRACT: Increasing usage of non-medicinal methods (NMMs) to control sea louse infestations
on salmon farms has raised questions about whether sea lice may be able to evolve tolerance of
NMMs. Of particular concern is the potential for sea lice to evolve freshwater tolerance as a result
of freshwater treatments. Wild trout and some juvenile salmonids swim into freshwater to control
infestations and regain ionic balance after disruption by sea lice; freshwater tolerance would com-
promise this potentially adaptive behavior. Here we evaluated the potential for freshwater toler-
ance to evolve in the sea louse Lepeophtheirus salmonis. When exposed to low-salinity water, par-
asitic stages of sea lice are able to osmoregulate through the host, while larval planktonic stages
are not. Transcriptomic work suggests that sea lice mount a costly polygenic stress response when
exposed to brackish water. The population structure of sea lice is panmictic in both the Pacific and
Atlantic, making it conducive to rapid evolutionary responses. It is unknown how much heritable
genetic variation these panmictic populations have for freshwater treatments. While usage of
freshwater treatments on wellboats is increasing, it is unclear whether the freshwater itself is a
strong selective force; during the freshwater exposure, sea lice can die from physical disruption
during pumping and filtration on the wellboat. Future studies are advised to quantify the heritable
variation in freshwater tolerance in sea louse populations, characterize mechanisms for freshwater
tolerance in planktonic and attached sea lice, and assess the risk of freshwater tolerance evolution
under different management strategies.
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these methods require evaluation; for example,
increasing exposure to environments that control
pests in the wild may artificially select for increased
environmental tolerance, potentially widening the
ecological niche that the pest inhabits.

In salmonid aquaculture, the success of IPM to con-
trol sea lice, which are prevalent parasites, has high
stakes for both farmed and wild fish. On salmon
farms, infestations of the sea louse Lepeophtheirus
salmonis are costly to control, and many of the com-
monly used chemotherapeutants are controversial,
expensive, and decreasing in effectiveness due to the
evolution of chemotherapeutant resistance in sea lice
(Aaen et al. 2015, Abolofia et al. 2017). For example,
in 2011, sea lice (L. salmonis) cost the Norwegian
salmon industry an estimated US $436 million
(Abolofia et al. 2017). Sea louse infestations on wild
salmonids are associated with spillover and spillback
of sea lice to and from farmed fish and have been cor-
related with declining returns in some stocks
(Thorstad et al. 2015, Groner et al. 2016a, Vollset et
al. 2018). These factors have led to an increased
demand for alternate treatments, also called non-
medicinal methods (NMMs). The past decade has
seen a substantial increase in the use NMMs to con-
trol sea lice, including stocking salmon farms with
sea louse predators (so-called ‘cleaner fish’) and/or
exposing salmon to salinities or temperatures that
sea lice cannot tolerate (Hjeltnes et al. 2019).

As the use of NMMs (freshwater, warm water,
brushes, flushing, etc.) for sea louse infestations on
farmed salmonids increases, so do concerns about
the potential for evolving tolerance. This is particu-
larly concerning for freshwater treatments because
freshwater exposure is a method that wild trout use
to self-control infestations. Some salmonids, such as
sea trout and juvenile pink salmon, travel into fresh-
water to shed parasitic sea lice and regain ionic and
osmotic balance, which can be disrupted by sea lice
(Birkeland & Jakobsen 1997, Bjørn et al. 2001, Heuch
et al. 2002, Webster et al. 2007, Halttunen et al. 2018).
Wild sea trout have weak physiological defenses
against sea lice and so are more reliant on behavioral
controls such as changing habitat (Bui et al. 2018).
When infected, they can remain for more than a
month in freshwater (Bjørn et al. 2001). This behavior
comes at a cost of reduced growth and/or mortality
(Birkeland & Jakobsen 1997), although this is pre-
sumably less costly than maintaining an infection
(Wells et al. 2007). If this behavior becomes less
effective due to artificial selection for freshwater tol-
erance in sea lice, or if control of sea lice on farms is
compromised because sea lice have evolved toler-

ance to treatments, these wild salmonid species
would be even more susceptible to the deleterious
effects of infestations on behavior and health.

Concerns about the evolution of freshwater toler-
ance in sea lice are driven by several observations.
First, sea lice have evolved resistance to numerous
chemotherapeutants over a relatively short time
span (<20 yr) (Aaen et al. 2015). This suggests that
the strong and frequent selective pressure imposed
by repeated exposure to sea louse control methods
can yield a strong evolutionary response on a short
timescale. Secondly, higher tolerance to low salinity
(~15 psu) was observed in 1 (of 12) genetic families
of L. salmonis generated from 2 locations (6 families
generated per location, Ljungfeldt et al. 2017). If
this tolerance turns out to be heritable, the raw
genetic or epigenetic material for the evolution of
tolerance to less saline (if not fresh) water exists; the
evolution of tolerance will not depend upon the sto-
chastic occurrence of beneficial mutations. Given
the deleterious role that freshwater tolerance could
have for sea louse control in wild fish, further inves-
tigation into this process is paramount.

Here, we evaluated the potential for freshwater
 tolerance to evolve in L. salmonis, the most problem-
atic sea louse species in the northern hemisphere
(Aaen et al. 2015, Thorstad et al. 2015, Groner et
al. 2016b, Abolofia et al. 2017, Vollset et al. 2018)
(Table 1). We review sea louse biology, including the
physiological mechanisms for freshwater tolerance
and their genetic components in sea lice and related
taxa, and the population genetic structure of sea lice.
We also describe the various methods for applying
freshwater treatments and consider the potential in -
fluence of differing management strategies on sal -
mon farms to contribute to resistance evolution. We
identify knowledge gaps related to these topics and
provide parameters which could potentially inform
a risk analysis for freshwater tolerance evolution in
sea lice, given the continued use of freshwater
 treatments.

2.  REVIEW

2.1.  Sea louse biology and farming techniques

The biology of sea lice (family Caligadae) has
been thoroughly reviewed (Boxaspen 2006, Costello
2006). Briefly, these parasitic copepods occur in all
salmon-inhabited marine waters of the northern
hemisphere. They are attached to salmonid hosts as
copepodid, chalimus, pre-adult and adult stages.

508



Reproduction is sexual, with high fecundity and
short generation times (~30 d at 16°C to 110 d at
4°C) (Groner et al. 2014). Female sea lice carry
eggs in 2 egg-strings which can contain between 50
and 1000 eggs per string, depending upon environ-
mental conditions, and parasite age and condition
(reviewed by Brooker et al. 2018). Once hatched,
the non-feeding larval stages (nauplii and then
copepodids) are planktonic for several weeks, after
which they must find a host or die as a result of de -
pleted endogenous energy  supplies. Where hydro -
dynamic conditions permit, planktonic sea lice have
been found congregating at river mouths, particu-
larly during spring when salmon smolts are out-
migrating (Costelloe et al. 1998, McKibben & Hay
2004). The potential exposure to low-salinity water
in these locations requires passive vertical migra-
tion to avoid low-salinity seawater, and laboratory
studies suggest that planktonic sea lice can actively
orient towards the halocline (Heuch 1995). Success-
ful attachment to a host is dependent upon host
densities and hydrodynamic conditions, which can
disperse infectious stages more than 30 km
(Johnsen et al. 2016, Cantrell et al. 2018).

While sea lice have been observed for centuries to
parasitize salmonids (Berland & Margolis 1983), in-
creased infestation intensities are associated with
high densities of salmonids in aquaculture (Jansen et
al. 2012) as well as, in some places, spillover and spill-
back of sea lice between farmed salmon and wild mi-
gratory salmonids (Krkošek 2017). Methods for con-
trolling sea lice on salmon farms are multi-faceted. In
addition to chemotherapeutant usage when sea lice
levels exceed density thresholds or approach maxi-
mum allowable values, farms often co-stock sea pens
with predators of sea lice, such as various wrasse spe-
cies or lumpfish. At a regional level, farms coordinate

fallowing and stocking sea pens to disrupt the expo-
nential growth of established sea lice (reviewed by
Groner et al. 2016b). The recent increase in the use of
NMMs reflects a strong push to develop alternative
methods for sea louse control. For example, in Nor-
way, there has been an overall decrease in the rate at
which pens are treated each year. This accompanies
a proportional increase in the use of NMMs, including
freshwater and warm water treatments, prophylactic
skirts, snorkels, deep-water lights and deep-water
feeding to attract salmon away from surface waters
(Stien et al. 2012, Oppedal et al. 2017, Wright et al.
2017). These changes coincide with a shift towards
targeted treatments of selected pens instead of treat-
ing all the pens on a farm (Hjeltnes et al. 2019; Fig. 1).
Freshwater treatments contributed 5.7 and 5.0% of
the total registered NMM treatments in 2017 and
2018, respectively (Hjeltnes et al. 2019). In addition to
freshwater and warm water treatments and prophy-
lactic skirts, other methods in development include
novel chemotherapeutants (Poley et al. 2018) and se-
lective breeding for sea louse resistant Atlantic
salmon (Gharbi et al. 2015).

2.2.  Freshwater treatments

Positive correlations between sea surface salinity
and the prevalence and incidence of sea lice on
farmed and wild salmon have been found in west-
ern Canada, Chile and Norway (e.g. Heuch et al.
2002, Kristoffersen et al. 2013, Rogers et al. 2013,
Rees et al. 2015). Therefore, it is not surprising that,
as resistance to chemotherapeutants has rendered
these methods to control sea lice less effective, the
industry has focused on freshwater treatments as an
alternative.
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Mechanism State of knowledge Relevant literature

Heritable variation in Lab-based evidence for tolerance of brackish water based Ljungfeldt et al. (2017)
freshwater tolerance on 2 populations (Section 2.5)

Population genetic Weak population structure in Atlantic sea lice on wild Glover et al. (2011),
structure fish (Section 2.6) McEwan et al. (2015)

Fitness trade-offs asso- Freshwater tolerance slows development and reduces salt- Lee & Petersen (2003),
ciated with freshwater water tolerance in the non-parasitic copepod Lee et al. (2007)
tolerance Eurytemora affinis (Section 2.5)

Sea louse transcriptome suggests that tolerating less saline Sutherland et al. (2012)
water is energetically demanding (Section 2.4)

Selection for increased Unclear whether freshwater is the main cause of sea louse Reynolds (2013),
tolerance of freshwater death in wellboat treatments (Section 2.2) Oppedal et al. (2017)

Table 1. Mechanisms affecting the evolution of freshwater tolerance, state of knowledge, and relevant literature
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A variety of techniques for applying freshwater
treatments have been tested in salmon aquaculture,
particularly in Norway. Two types of freshwater
treatments are being used (Fig. 2). Freshwater baths
on wellboats into which salmon are placed for fixed
time periods are the main freshwater
treatment for sea lice control. This
strategy targets only the parasitic
stages of sea lice (i.e. copepodid, chal-
imus, preadult and adult sea lice). The
second technique is the use of fresh-
water caps in snorkel pens. The fresh-
water caps are designed to target
amoebic gill disease caused by Neo -
paramoeba perurens, but they do
have the additional effect of exposing
attached sea lice to freshwater when
salmon swim through the freshwater
cap. The methods differ in terms of the
length of exposure to freshwater,
whether or not they use filters to
remove sea lice that detach during
freshwater exposure, and the poten-
tial for different life stages of sea lice
to be exposed to freshwater.

Freshwater exposure in wellboats is
by far the most frequently used tech-
nique for delousing fish with fresh-
water. When this method is adopted,
fish are seined within the net pen and

pumped over a dewatering unit to remove the sea-
water. They are then held in freshwater for 5 to 8 h,
before being pumped back over the dewatering unit
(in order to reuse the freshwater) and returned to the
open sea pen. The relatively short freshwater expo-
sure does not cause the attached sea lice to die, but it
will often cause them to detach. For this reason, the
freshwater is filtered to avoid the possibility of
detached lice resettling on fish. The newest well-
boats use filters of 100 µm (S. Gaasø pers. comm.),
which is fine enough to collect all parasitic stages.
Freshwater in wellboats may be reused for up to 4
treatments (S. Gaasø pers. comm.). The exact method
depends upon the equipment available; some of the
older wellboats do not have dewatering units and the
filter type may vary. Wellboat treatments can be
highly effective; Rey nolds (2013) found reductions
ranging from 92 to 100% in sea louse burdens on
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Fig. 1. Trends in the use of non-medicinal methods (NMMs)
in Norway. (a) Number of medical and NMM treatments re -
gistered at the open information platform Barentswatch.no.
The treatments registered include those used against sea lice
(Caligus elongatus or Lepeophtheirus salmonis) or amoebic
gill disease. Since 2012, the use of NMMs has increased
 relative to medicinal methods (MM). (b) Number of weeks
where farm sites report use of NMMs on their farms to the
Norwegian Food Safety Authority. Farmers are required to

report NMM use to control sea lice on a weekly basis

Fig. 2. Common methods for applying freshwater treatments on salmon farms.
(a) Salmon are removed from the sea pen, transferred briefly to a dewatering area
and then into a wellboat where they are exposed to freshwater (light blue). After
6−8 h, salmon are dewatered (in order to reuse the freshwater) and returned to
the sea pen. The freshwater is filtered to remove any detached sea lice before it
is pumped out of the wells. (b) Salmon are in a snorkel pen where they must
pass through a freshwater layer to gulp air in order to fill their swim bladder.
The snorkel has a higher density of mesh designed to keep sea lice, which

occupy the top few meters of the water column, from entering the net pen
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Atlantic salmon. Much of this is likely due to
mechanical disruption rather that from the fresh-
water treatment itself. Evidence for this was pre-
sented in the same study, as a wellboat treatment
simply using saltwater yielded a 50% reduction in
sea lice.

Snorkel pens consist of net pens submerged sev-
eral meters below the surface with a cylindrical
‘snorkel’ that extends to the surface. The snorkel is
enclosed with a sea louse impermeable mesh, and
the area inside is filled with freshwater, which floats
on top of the seawater due to its lower density. While
lower dissolved oxygen levels in the snorkel and the
more limited swimming area generally keep the
salmon in the larger net pen, they must enter the
snorkel in order to reach the surface and gulp air, a
behavior which is necessary for maintaining their air
bladder equilibrium (Saunders 1965). Snorkel pens
control sea lice through multiple mechanisms. The
main mechanism is by placing salmon at depths
where infective sea louse stages are less likely to
occur (Oppedal et al. 2017). Secondly, when salmon
surface into the ‘snorkels’ they are obligated to swim
through freshwater, which may reduce sea louse
loads further, although the extent of this exposure is
short. Salmon lice are likely regularly exposed to
lower-salinity water with these techniques, similar to
exposures they would experience naturally in fjords
with freshwater layers. Testing and optimization of
snorkel pens is ongoing (Stien et al. 2016, Oppedal et
al. 2017, Wright et al. 2017, 2018); however 2 Norwe-
gian companies (Bremnes Seashore AS and Sink-
aberg-Hansen) are using them (F. Oppedal pers.
comm.).

In situ freshwater treatments have also been tested
on sea pens by containing the treatment water with a
tarpaulin skirt that is wrapped around the pen. This
method is rarely used in practice because there is no
mechanism to collect or filter sea lice that become
detached during this operation to prevent them from
later reattaching (G. Ritchie pers. comm.).

From an evolutionary perspective, the method
used to apply freshwater treatments will influence
the selection pressure experienced by the sea
louse. Wellboats apply a selective force that causes
parasitic stages to detach from the host either due
to the freshwater itself or due to the mechanical
disruption that occurs during dewatering and trans-
fer of the fish into the wellboat. These detached sea
lice will die during filtration of the freshwater. Due
to the method of moving salmon onto the wellboats,
planktonic stages of sea lice are unlikely to be ex -
posed to freshwater in wellboats. Planktonic stages

may be ex posed to freshwater caps in snorkel pens,
while motile sea lice will be exposed for short dura-
tions when salmon enter the snorkel. Whether this
causes detachment of sea lice is unknown. Short-
term exposures to freshwater are unlikely to be
lethal for attached stages of sea lice, but they may
be lethal to pelagic stages (Dalesman 2003, Connors
et al. 2008, Wright et al. 2016).

2.3.  Sea lice and salinity

As with other marine invertebrates, environmental
conditions influence sea louse population dynamics
(Groner et al. 2016a). Temperature and salinity, in
particular, have been identified as major drivers of
sea louse population dynamics (Heuch et al. 2002,
Arriagada et al. 2016, Groner et al. 2016a, Ritten-
house et al. 2016, Harte et al. 2017). Typical of many
marine ectotherms, increasing temperatures are
associated with faster development, with tempera-
ture limits ranging between around 3 and 21°C (Stien
et al. 2005, Samsing et al. 2016). Reproductive output
shifts from many small eggs to fewer larger eggs at
the upper and lower thermal tolerance limits for sea
lice (Samsing et al. 2016).

Sea lice are frequently exposed to water with vary-
ing salinities. They are often found in fjords and near
river mouths where haloclines can form as a result of
freshwater input. Pelagic sea lice are able to adjust
their position in the water column to avoid water with
lower salinities (Heuch 1995). As part of their host-
seeking behavior, copepodids congregate at halo-
clines near river mouths during salmon migrations
(Brooks 2005). In contrast, attached sea lice experi-
ence the salinities that their host is swimming in,
unless they detach.

Numerous laboratory studies have demonstrated
that salinity can influence development, behavior,
infestation success and survival of sea lice (Table 2).
Salinity, in contrast to temperature, acts more as a
threshold, although the effect depends upon the
developmental stage at which the exposure occurs.
Planktonic larval stages are vulnerable to salinities of
less than ~15 psu and experience mortality after
 several hours (re viewed by Groner et al. 2016b). In
 contrast, attached stages of sea lice are able to osmo -
regulate through consumption of the host mucus and,
in experiments, have been found to survive for a
week or more at salinities as low as 7 psu (Connors et
al. 2008, Wright et al. 2016). While adults, including
gravid adult females, can tolerate freshwater for
 several days, their eggs will not survive. In a labora-
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tory study, hatching did not occur below 20 psu
(Johnson & Albright 1991). Field studies indicate that
reductions in fecundity due to salinity can substan-
tially de crease sea louse populations in British
Columbia, Canada (Arriagada et al. 2016).

2.4.  Mechanisms of freshwater tolerance

Most marine invertebrates are isosmotic (also
called osmoconformers), passively conforming to the
osmolality of the surrounding seawater. In contrast,
many invertebrates living in fluctuating salinities,
such as estuaries, are hyper-hypo-osmoregulators;
they are isosmotic across intermediate salinities
(15−30 psu), hyper-osmotic at lower salinities (so that
hemolymph osmolality is higher than that of ambient
water) and hypo-osmotic at higher salinities (hemo -
lymph osmolality is lower than ambient water)
(Pequeux 1995, Lee et al. 2012). Attached sea lice are
osmoconformers in full-strength seawater and hyper-
osmotic at lower salinity (Hahnenkamp & Fyhn
1985). Free-swimming stages cannot maintain their
osmolality in lower-salinity waters and die within
hours of exposure, while parasitic stages can accli-
mate to lower-salinity water (over 1−3 d) and then
maintain their osmolality for days. Maintenance of
osmolality is likely facilitated by borrowing ions from
the host to replace those lost to the environment and
by burrowing into the mu cosal layer of the host in
order to reduce the surface area exposed to seawater
(Hahnenkamp & Fyhn 1985, Sievers et al. 2019).

In crustaceans, active regulation of osmolality
occurs through transport of ions in specialized gill
cells and possibly in the gut epithelium and excretory
glands (Pequeux 1995, Charmantier 1998). In the
free-living copepod Eurytemora affinis, freshwater
invasion has been associated with increased hemo -
lymph osmolality (hyper-osmoregulation). Labora-
tory experiments and field surveys suggest that this
is due to increased ion transport capacity in special-
ized tissue in the swimming legs that have increased
activity and expression of the ion-motive transport
enzymes V-type H+ ATPase and Na/K-ATPase (Lee
et al. 2011, 2012, Johnson et al. 2014).

More energy is required to maintain hemolymph
osmolality that differs from the surrounding environ-
ment. In a laboratory experiment, transcriptional
changes in copepodid sea lice across a salinity gradi-
ent suggested costly osmoregulatory strategies are
employed (Sutherland et al. 2012). Differential regu-
lation of genes in response to lower salinity expo-
sures was associated with apoptosis, chaperones and
the cuticle, and included the genes: 26S proteasome
non-ATPase regulatory subunit 6 (psmd6), 26S pro -
teasome non-ATPase regulatory subunit 4 (psmd4),
proteasome subunit beta type-3 (psmb3), 60-kDa
heat shock protein (HSP60), heat shock 70 kDa pro-
tein cognate 4 (Hsc-70), programmed cell death pro-
tein 4, cuticle protein, cuticle protein CP14.6 and
chitin bind 4 (Sutherland et al. 2012). One must be
careful placing too much weight on genome annota-
tions such as these; in many instances within
L. salmonis, no functional annotation has been con-
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Parameter                                                                       Equation                                                         Data source

Egg mortality                                                                                               Johnson & Albright (1991)
(proportion of eggs)

Copepodid mortality                                                              Dalesman (2003)
(proportion of copepodids)

Copepodid attachment success                                                     Bricknell et al. (2006)
(proportion)

Mortality of motile lice                                                             Connors et al. (2008)
(daily rate)

1

1
20.8

egg 13.98( )
=

+
M

S

1

1
19.1 1.8

copepodid 7.1 1.3( )
=

+
±

±M
S

1
1

1
21.2

attachment 5.8( )
= −

+
C

S

{ }1 1motile
[( 0.23 0.03)– ] 24= − − − ±M e S

Table 2. Equations from Groner et al. (2016a) characterizing the effects of salinity (S) on Lepeophtheirus salmonis mortality
(M) and  attachment success (C), and the data sources from which these equations were modeled. The first 3 equations charac-
terize the  proportion of individuals that will die or find a host while they are in that life stage, while the fourth equation describes

a daily mortality rate
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ducted. However, genes coding for proteasome
(psmd4, psmd6, psmb3) can have important func-
tions in the ubiquitin-proteasome system, and dys-
regulation can have clinical significance through
reducing proteolytic activity and misfolding of pro-
teins. Heat shock proteins (such as HSP60, Hsc-70)
ensure proper folding and a chaperone function for
many proteins. This protective role of HSPs can
essentially act in an anti-apoptotic manner, and pre-
vent programmed cell death (Lanneau et al. 2008).
These markers, along with impacts in cuticle and
chitin binding proteins, would suggest osmoregula-
tory stress in these lice, likely causing cell death and
cuticle/chitin damage. Altered regulation of these
pathways is likely energetically expensive, particu-
larly for non-feeding larval stages (Sutherland et al.
2012). Upregulation of HSPs, which can also be
important for ‘hardening’ an individual to future
instances of a stressful condition, has been found in
response to lower-salinity water by both Sutherland
et al. (2012) and Borchel et al. (2018), although in
both cases, only a few HSPs were upregulated and to
a relatively low degree compared to a simultaneously
conducted thermal challenge.

Sutherland et al. (2012) and Borchel et al. (2018)
used different subspecies of Lepeophtheirus salmo-
nis, namely L. salmonis oncorhynchi (Pacific) and L.
salmonis salmonis (Atlantic), respectively, showing
that, despite significant environmental and evolu-
tionary pressures linked to phenotypic differences
between these subspecies, salinity stress responses
were conserved. Going one step further, Borchel et
al. (2018) noted that 2 of the HSPs expressed by L.
salmonis salmonis copepodids in response to salinity
stress were also induced following exposure to the
anti-louse treatment hydrogen peroxide. Poley et al.
(2017) also showed that HSc70 and HSP60 were
induced in L. salmonis oncorhynchi copepodids
infected with the microsporidian Facilispora mar-
golisi and exposed to the anti-louse treatment
emamectin benzoate. Other known pathways for
freshwater tolerance in crustaceans include reduced
cuticular permeability, ability to excrete urine that is
more dilute than hemolymph and adaptation to lower
hemolymph osmolality relative to stenohaline spe-
cies (Pequeux 1995). It is unknown which, if any, of
these strategies are used by sea lice.

Costs of osmotic and ionic regulation are likely
greater at early developmental stages as a result of a
greater surface area:volume ratio. Indeed, in some
crustaceans, larval stages have different osmolality
than adults (Charmantier 1998). In sea lice, pelagic
stages are much more susceptible to lower salinities

(Johnson & Albright 1991, Dalesman 2003, Bricknell
et al. 2006, Groner et al. 2016a), though how much of
this is due to surface area:volume ratios as opposed
to the lack of host-mediated osmoregulation (which
benefits attached stages) is unknown. Environmental
factors, particularly temperature, have been found to
alter the capacity of crustaceans to osmoregulate
(reviewed by Pequeux 1995); however, this is not
well understood in euryhaline copepods. Molting
may also alter freshwater susceptibility, although,
again, this is not well explored in sea lice or even
copepods in general. In American lobster Homarus
americanus, pronounced hyper-osmotic regulation
precedes ecdysis, while isoosmotic regulation occurs
post-molt (Charmantier et al. 1988).

2.5.  Heritability of freshwater tolerance

For tolerance to evolve in response to freshwater
treatments, there must be heritable genetic or epige-
netic variation in freshwater tolerance. In a common
garden experiment in which F2 generation pedi-
greed sea lice were exposed to 15 psu salinity,
Ljungfeldt et al. (2017) found preliminary evidence
for heritable genetic variation in low-salinity toler-
ance. This experiment used F2 offspring from sea lice
sourced from 2 locations: a site with full-salinity sea-
water (>30 ppt) and a fjordic site with lower and
more variable salinity (13−30 ppt). Counterintu-
itively, those sea lice that were collected from high-
salinity environments had greater survival at low
salinity; however, there was no high-salinity treat-
ment in this study that could be used to calculate
baseline survival for each family. Given the caveats
associated with this experiment, general conclusions
are not possible. Research is required to characterize
the extent of genetic variation in freshwater toler-
ance and, if found, the mechanisms associated with
freshwater tolerance.

Phenotypic plasticity could also increase survival of
copepods in freshwater environments. Indeed, the
ability to adapt physiologically in response to envi-
ronmental cues (in this case salinity) could benefit
species exposed to a variety of environmental condi-
tions. Phenotypic plasticity in response to variable
salinities has not been investigated in parasitic cope-
pods; however, Lee & Petersen (2002, 2003) explored
this question in E. affinis, which has invaded fresh-
water environments at least 5 times (Lee & Bell 1999).
They found no evidence of a within-generation plas-
tic response to freshwater; exposure of embryos to
freshwater did not increase survival post-metamor-
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phosis. Further work exploring transgenerational
plasticity (epigenetic) effects on freshwater tolerance
could be interesting and relevant in the context of
freshwater tolerance in sea lice.

Several other species of marine copepods have also
evolved freshwater tolerance. Transport in ship bal-
last water has facilitated 2 coastal species, Acartia
tonsa and Oithona davisae, to adapt to low-salinity
estuarine habitats in the Black Sea (Svetlichny &
Hubareva 2014), demonstrating the critical role of
human actions in freshwater invasions (Lee & Bell
1999). While those examples do not include parasitic
species, Hairston & Bohonak (1998) suggested that 2
life history strategies, diapause and parasitism, likely
facilitate freshwater invasions by providing mecha-
nisms for coping with salinity variance (i.e. osmoreg-
ulation through the host or suspending development
until conditions improve). Parasitism of anadromous
fish can expose sea lice to a variety of fresh, brackish
and saline environments (Boxshall & Jaume 2000).
Indeed, within the order Siphonostomatoida, which
contains the family Caligidae (to which L. salmonis
belongs), all instances of freshwater invasion occur
with parasites. These include the numerous species
of Salmincola, which parasitize a variety of fish gen-
era including anadromous acipenserids and sal -
monids. There is a single freshwater parasite within
the Caligidae, Caligus lacustris, and a single mono-
typic genus (Dichelesthium) that infects members of
the family Acipenseridae, the sturgeons (Boxshall &
Jaume 2000). Similar to L. salmonis, D. oblongum can
be found on Atlantic sturgeon more than 2 wk after
they have returned to freshwater rivers (M. D. Fast
pers. obs.). Copepodids of this species also exhibit
poor survival after exposure to salinities less than
20 ppt (M. D. Fast pers. obs). In summary, freshwater
tolerance has evolved both in parasitic species and as
a result of anthropogenic exposures. Both scenarios
are relevant to the case of sea lice.

While selection may favor a specific trait, trade-offs
in the form of negative genetic correlations between
a trait that increases fitness and one that decreases
fitness can hinder evolutionary processes. The rela-
tive cost of the trade-off to the cost of the selective
agent will dictate how constraining it is. In many
cases, trade-offs may be context-dependent, only
occurring in specific environments (Roff & Fairbairn
2007). Selection to decrease trade-offs may reduce
these costs over time, although this likely depends
on the genetic architecture of the genetic correla-
tion (i.e. pleiotropy or linkage disequilibrium) (Roff
& Fairbairn 2007). Due to the metabolic cost of
osmoregulation, trade-offs associated with fresh-

water tolerance are likely. For example, freshwater-
adapted E. affinis copepods have decreased salt -
water tolerance and slower development (Lee &
Petersen 2003, Lee et al. 2007). Consistent and wide-
spread transcriptional changes, particularly chaper-
one and catabolic processes in copepodid L. salmonis
(Pacific) in response to salinities below 28 psu and
apoptosis at 25−26 psu, suggest that these responses
are energetically demanding and impact cellular
integrity, a situation which may be particularly
stressful for lecithotrophic stages (Sutherland et al.
2012).

2.6.  Influence of metapopulation structure

The response to selection is influenced by the
metapopulation structure of sea lice. This influences
the rate at which beneficial genes spread and the
probability that a beneficial mutation could be lost to
drift. Genetic evidence supports the idea of weak
population structure among sea lice. Evaluation of
microsatellites of L. salmonis across 12 farms distrib-
uted across the North Atlantic provides support for a
single panmictic population, with subtle differentia-
tion between locations (FST < 0.002) (Glover et al.
2011). Machine-learning algorithms combined with
IIb-RAD (reduced representation library sequencing)
genomic data have since been used to fingerprint
distinct sea lice subpopulations in the eastern North
Atlantic and have also found weak population struc-
ture (FST < 0.02) (Jacobs et al. 2018). In the North
Pacific, analyses of single-nucleotide polymorphisms
and microsatellites from sea lice collected in a wide
range of locations also supports the idea that sea lice
are panmictic (Messmer et al. 2011).

The panmictic population structure of sea lice,
combined with their relatively short generation time,
can lead to fast evolutionary responses on large
 spatial scales. L. salmonis have evolved resistance to
numerous chemotherapeutants over a relatively
short time span (<20 yr) (Besnier et al. 2014, Aaen et
al. 2015). Use of the organophosphate azamethiphos
(beginning in 1992) caused rapid selection for a
resistant allele (Phe326Tyr) that is now found across
the North Atlantic in sea lice collected on both wild
and farmed salmonids (Fjørtoft et al. 2017, Kaur et al.
2017). Genomic data suggest that panmixia in sea
lice contributed to a selective sweep for resistance to
the commonly used chemotherapeutant emamectin
benzoate in L. salmonis salmonis. Within 11 yr of the
found in pesticide’s introduction, linkage groups asso-
ciated with pesticide resistance were found in popu-
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lations across the north Atlantic (Besnier et al. 2014).
The structure of the genomic data suggests that the
resistance evolved in a single location and spread
rapidly throughout the Atlantic (Besnier et al. 2014).
The genomic signature of an additional putative
selective sweep due to selection by an or gan -
ophosphate chemotherapeutant was also evident in
this dataset (Besnier et al. 2014). Collectively, these
results suggest that, should freshwater tolerance
evolve in sea lice at a single site, connectivity among
populations could facilitate a rapid selective sweep.

2.7.  Strategies to avoid tolerance evolution

Management strategies can be used to reduce evo-
lutionary responses to freshwater treatments. In gen-
eral, the application of fewer treatments will reduce
selection for tolerance. Data from terrestrial systems
and mathematical models of aquaculture systems
suggest that combination treatments, which kill pests
using multiple mechanisms, have more effective
 control and result in a slower rate of resistance (or
tolerance) evolution than applying a single treatment
(REX Consortium 2013, McEwan et al. 2016). This
likely occurs during wellboat treatments as a result of
physical disruption of the sea lice followed by filtra-
tion of the water (Reynolds 2013, Powell et al. 2015).
Other models suggest that the evolution of resistance
to chemotherapeutants on salmon farms is slowed
when the farms are in proximity to wild salmon pop-

ulations, as occurs on the west coast of Canada,
because they maintain a population that is never
exposed to the selective agent and can dilute the arti-
ficially selected gene pool (Murray 2011, McEwan
et al. 2015). However, this idea will need to be re-
evaluated in the case of freshwater treatments
because some infested salmonids, such as resident
juveniles, may swim in and out of freshwater (Web-
ster et al. 2007).

3.  CONCLUSIONS

Several criteria must be met for artificial selection
to result in the evolution of freshwater tolerance in
sea lice populations (Fig. 3, Table 1). These include:
(1) heritable genetic variation for freshwater toler-
ance, (2) metapopulation structure and size that are
conducive to evolution (3) weak to nonexistent fit-
ness trade-offs associated with the trait and (4) strong
selection pressure for the trait in question.

Our review suggests there is preliminary evidence
for variation in tolerance of less saline water (crite-
rion 1). However, the single study investigating this
topic (Ljungfeldt et al. 2017) is inconclusive and this
should be a priority for future research.

There is strong evidence that the metapopulation
of sea lice is conducive to rapid evolution (criterion
2). As has been demonstrated with chemotherapeu-
tant resistance, the panmictic population structure of
sea lice and their short generation times are con-
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ducive to rapid selective sweeps of beneficial genes.
Less is known about potential fitness costs of fresh-

water tolerance (criterion 3); the high energetic
demands of hyper-osmoregulation and the presence
of catabolic processes in sea lice exposed to more
brackish water suggest that strong physiological and
energetic barriers may lead to fitness trade-offs in
freshwater-tolerant sea lice (Sutherland et al. 2012).
This may explain why freshwater tolerance has not
evolved in sea lice already, since freshwater expo-
sures can occur naturally when they parasitize wild
sea trout or juvenile salmonids.

The amount of selective pressure that sea lice
experience for freshwater tolerance (i.e. freshwater
exposure) depends upon the location of the sea lice.
Sea lice parasitizing wild trout that retreat into fresh-
water streams and rivers may certainly experience
sustained selective pressure for freshwater tolerance.
This may be an important selective pressure in the
Pacific, where wild salmonids far outnumber farmed
salmonids, but not in the Atlantic Ocean, where the
opposite is true. In the Atlantic, the more relevant
question is whether freshwater treatments place a
strong enough selection pressure to cause popula-
tions to evolve freshwater tolerance. Wellboats,
which are the main mechanisms for freshwater treat-
ments, only target parasitic stages, and the mecha-
nism for death is through filtration of detached sea
lice or mechanical disruption of sea lice during trans-
port (Powell et al. 2015). The freshwater exposures
do not occur for a long enough time to be a cause of
death in attached lice, which can osmoregulate
through the host. Snorkel pens are effective at reduc-
ing sea louse populations because they limit trans-
mission by placing salmon deeper in the water than
sea lice typically go. Thus, in both cases freshwater
exposure is not likely to be the only or the main selec-
tive pressure. On the other hand, the relative use of
freshwater treatments is increasing in Norway, with
102 reported uses in 2018 compared to only 1 in 2014.

It is unclear whether the resulting selection is for
freshwater tolerance in the stages that experience
the selection (i.e. attached stages, which osmoregu-
late through the host), or if it will increase freshwater
tolerance in planktonic larval stages (which do not
osmoregulate through the host). A better under-
standing of the mechanisms that dictate freshwater
tolerance in both stages is necessary to answer this
question. Recent studies on the mechanisms of fresh-
water tolerance in E. affinis, as well as the transcrip-
tomics of sea lice exposed to low salinities, can pro-
vide a starting point for further investigation into
mechanisms of freshwater tolerance in various stages

of sea lice (Lee & Petersen 2003, Lee et al. 2003, 2011,
2012, Sutherland et al. 2012). Sea lice transcriptomic
studies suggest that generic and costly polygenic
stress responses may be associated with freshwater
exposure (Sutherland et al. 2012). If this is the case, it
may be worth investigating if exposure to other stres-
sors, such as thermal treatments, may select for the
same alleles that increase freshwater tolerance.

Despite being a well-studied marine parasite
(Groner et al. 2016b), numerous research gaps hin-
der our understanding of evolutionary processes in
sea lice. Research is needed to characterize the
extent of variation in and the mechanisms associated
with freshwater tolerance across spatial scales and
life stages. Additional topics include the influence of
gradual versus abrupt exposure to freshwater, differ-
ences in freshwater tolerance between Pacific and
Atlantic sea lice and the influence of multiple fresh-
water exposures.
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