
https://doi.org/10.17868/70008 1

Abstract—Industrial robotic systems are increasingly being

used to perform tasks requiring in-loop adaptive behavior to

accommodate the demands of data-driven and autonomous

manufacturing in the era of Industry 4.0. Achieving effective

integration and the full potential of robotic systems presents

significant challenges. This paper presents a C++ language-based

toolbox, developed to facilitate the integration of industrial robotic

arms with server computers, sensors and actuators. The new

toolbox, namely the “Interfacing Toolbox for Robotic Arms”

(ITRA), is fully flexible and extensible. It is capable of controlling

multiple robots simultaneously, thus providing the opportunity for

sophisticated manufacturing operations to be coordinated among

multiple robots. ITRA can be used to achieve fast adaptive robotic

systems, with latency as low as 30ms. Moreover, ITRA is cross-

platform, allowing great flexibility between different computer

architectures. The paper describes the architecture of ITRA,

presents all its functions and gives some application examples.

Index Terms— Industrial Robots, Interfacing Architecture,

Motion Control, Adaptive Control.

I. INTRODUCTION

S the world population continues to grow, and the demand

for technology rises, industry faces growing demands and

the need to increase flexibility and efficiency, etc. Robotic

systems are playing key roles in the efforts to tackle the current

challenges. Therefore, many companies are turning to modern

robotic systems for various purposes. However, robotics does

not come without its fair share of challenges [1]. When we think

of robots in manufacturing, some of us will recall fenced robots

performing specific repetitive tasks in structured environments.

All major robot suppliers can offer support for the installation

of new robots, through providing detailed reference manuals.

However, the robotic manipulator is only one component of a

complex robotic system, which also inevitably consists of

sensors, end-effectors, additional hardware (e.g. welding, laser

cutting, spray-painting equipment, etc.), data acquisition

instrumentation and software. The system integration phase is

often a bottleneck and slows down the advent and the growth of

robotic solutions. The “nuts and bolts” of the setup process -

Published on 02/10/2019.
This work was funded by the UK Engineering and Physical Science

Research Council (EPSRC), through the grant EP/N018427/1 - Autonomous

Inspection in Manufacturing and Re-Manufacturing (AIMaReM project).
C. Mineo is with the Department of Electronic and Electrical Engineering

(EEE), University of Strathclyde, Glasgow, G11XW, UK (e-mail:

carmelo.mineo@strath.ac.uk).

from mapping out the cell to installing, tooling, and

programming - is not trivial. Without good system integration,

robotic arms have little value. Traditional robot manipulators

can be programmed using specific programming languages, for

example the KUKA Robot Language (KRL) for KUKA robots.

These languages are usually simple, but they do not support

advanced mathematical tools (such as matrix operations,

optimization, and filtering tasks), and do not allow the easy

integration of external hardware and software modules (e.g.

cameras or embedded devices that use standard protocols: USB,

Firewire, PCI). A possible way to overcome these drawbacks is

to build a software abstraction layer upon the proprietary robot

programming languages.

Moving towards this direction, several toolboxes have been

developed in the past few decades for the modelling and control

of robot systems [2-12]. These toolboxes are targeted to various

robot platforms and application scenarios and have addressed

both industrial, research and educational objectives. Corke’s

toolbox [2] includes functionalities for robotic manipulators,

such as homogeneous transformations, direct and inverse

kinematics, dynamics, and trajectory generation. The Dynamics

Simulation Toolbox can be used for simulating robot dynamics

[5]. The KUKA control toolbox (KCT) is an open-source

MATLAB toolbox dedicated to motion control of KUKA

manipulators equipped with the KUKA Robot Controllers

(KRC) [6]. However, KCT is only compatible with robots using

controllers of second generation (KRC2) and third generation

(KRC3), which are becoming obsolete. Recently, KUKA

launched a series of manipulators for human-robot

collaboration that are based on the KUKA Sunrise.OS [13].

From an external computer it is possible to interface with

Sunrise.OS using the Robot Operating System (ROS) [14] or

the Fast Research Interface (FRI) [15]. However, using ROS

requires the user to have advanced technical and programming

skills. Similarly, the FRI platform is destined to people who

have good technical knowledge in C++. The KUKA Sunrise

Toolbox (KST) has been developed to interface the KUKA LBR

iiwa collaborative manipulator, based on the KUKA

Sunrise.OS controller [13]. This toolbox runs on an external

C. Wong is with the Department of Design Manufacture & Engineering
Management (DMEM), University of Strathclyde, Glasgow, G11XJ, UK (e-

mail: cuebong.wong@strath.ac.uk).

M. Vasilev, B. Cowan, C. N. MacLeod and S. G. Pierce are with the EEE
Department, University of Strathclyde, Glasgow, G11XW, UK (e-mails:

momchil.vasilev@strath.ac.uk, bruce.cowan@strath.ac.uk,

charles.macleod@strath.ac.uk and s.g.pierce@strath.ac.uk).
E. Yang is with the DMEM Department, University of Strathclyde,

Glasgow, G11XJ, UK (e-mail: erfu.yang@strath.ac.uk).

Interfacing Toolbox for Robotic Arms with

Real-Time Adaptive Behavior Capabilities

Carmelo Mineo, Cuebong Wong, Momchil Vasilev, Bruce Cowan, Charles N. MacLeod, S. Gareth Pierce and Erfu Yang

A

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/228138338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.17868/70008

https://doi.org/10.17868/70008 2

computer connected with the KUKA controller via TCP/IP. The

KST provides functionalities for networking, real-time control,

point-to-point motion, setters and getters of parameters and

physical interaction. Unfortunately, a robust and efficient

software interfacing toolbox does not exist for KUKA robots

based on the fourth generation of robot controllers (KRC4).

This paper presents a cross-platform software toolbox,

designed to facilitate the integration of robotic arms with

sensors, actuators and software modules through the use of an

external server computer. The platform, named Interfacing

Toolbox for Robotic Arms (ITRA), contains fundamental

functionalities for robust connectivity, real-time control and

auxiliary functions to set or get key functional variables. ITRA

is a C++ based library with functions using C calling

conventions. ITRA makes use of standard C++11 and Boost

[16]. Therefore, it is cross-platform and can be compiled as a

dynamic link library (DLL) for Windows, and as a shared object

(SO) for Linux-based operating systems. All embedded

functions can be used through high-level programming

language platforms (e.g. MATLAB, LabVIEW and Python) or

implemented into low-level language (e.g. C, C# and C++)

applications, providing the opportunity to speed-up flexible and

robust integration of robotic systems. ITRA can be easily

interfaced with external toolkits, to perform complex motion

control and robot vision tasks. Crucially, ITRA enables robotic

arms to obtain real-time adaptive behavior capabilities.

II. PRE-EXISTING ROBOT INTERFACING LAYER

The following sections will explain how the ITRA

architecture offers modularity and flexibility to allow future

support for robots produced by different manufacturers. This

can be addressed by enabling the ITRA user to customize the

communication protocol (e.g. TCP/IP, EtherCAT, UDP/IP,

etc.) and the templates for incoming and outgoing

communication packets. Due to platform availability during its

development, the current version of ITRA is focused around

KUKA hardware, but can be extended to handle other real-time

interfaces (e.g. on ABB [17] and Stäubli [18] robots). As such,

it runs on a remote computer connected with KRC4 robots

through a User Datagram Protocol (UDP/IP) socket. This

section describes the pre-existing software layer used by ITRA,

when working with KUKA KRC4-based robotic hardware

equipped with a KUKA software add-on known as Robot

Sensor Interface (RSI) [19].

A. KRC4 Controller Architecture

The KRC4 controller comprises three main systems, which are

represented in Fig. 1. The graphic user interface (GUI) allows

the user to write and execute robot programs, through defining

robot bases, tool parameters and by jogging the robot arm. This

GUI runs within an embedded version of Windows XP®.

Hidden from the user is a separate operating system called

VxWorks®. This is a real-time operating system, which is

designed for embedded applications [20]. The VxWorks system

controls all robot drives and is used because of its multi-tasking

capabilities, real-time performance and reliability. Although

running on the same processor, the Windows XP and VxWorks

operating systems are entirely separate from each other. Any

information that is passed between them is sent over a virtual

TCP/IP connection within the KRC architecture. There is no

physical network cable but information is packed up,

transmitted over the virtual connection, received and unpacked

by the other system to be processed.

Fig. 1. Schematic representation of the architecture of the KRC4 controller and of the ITRA toolbox.

https://doi.org/10.17868/70008

https://doi.org/10.17868/70008 3

B. Robot Sensor Interface

RSI runs under the VxWorks operating system in a real-time

manner. It was purposely developed by KUKA to enable the

communication between the robot controller and an external

system (e.g. a sensor system or a server computer). Cyclical

data transmission from the robot controller to the external

system (and vice-versa) takes place in parallel to the execution

of the KUKA Robot Language (KRL) program. Using RSI

makes it possible to influence the robot motion or the execution

of the KRL program by processing external data. The robot

controller communicates with the external system via the

Ethernet UDP/IP protocol. No fixed data frame is specified. The

user can configure the template of the structure and the content

of the data packets in an XML file, stored in the robot controller.

Typical data packets, sent as ASCII packets by RSI to the

external system, can include feedback Cartesian or axial

coordinates, status of digital I/O signals and real-time operating

parameters (e.g. drives currents and torques). Typical data

packets received from the external system can include a number

of Boolean, integer or double precision variables. Fig. 2 shows

the XML template file defining the content of the packets

transferred between RSI and the server computer, supporting all

functionalities of the ITRA toolbox. The first part of the file

comprises the connection parameters. SENTYPE is the

identifier of the external system; it is checked by RSI to validate

every data packet it receives. ONLYSEND defines the direction

of the data exchange; FALSE indicates that RSI sends and

receives data. The signals from the RSI context that are sent to

the external system are defined in the SEND section. From this

XML section, RSI automatically creates the XML ASCII

packet that the KRC transmits. It includes the Cartesian actual

coordinates (incorporated through the “DEF_RIst” keyword),

the Axis-specific actual position of robot axes A1 to A6

(incorporated through the “DEF_AIPos” keyword) and the

status of four KRC digital outputs. The ASCII packet received

from the external system is parsed by the RSI context according

to the XML template contained within the RECEIVE section.

The RSI expects to receive eight double precision values and

four Boolean values. The HOLDON attribute is set equal to “1”

to make sure that if a data packet arrives too late to the RSI

context, the most recent valid value is maintained in place of

the value expected from the external system. The data packet

received from the external system is processed within each

machine cycle according to a data processing algorithm defined

in the RSI configuration. This is generated through an object-

based programming software application known as “RSI-

Visual”, using a library of RSI objects. Connecting multiple RSI

objects creates a signal flow, which is called “RSI context”. In

the KRL program, the RSI context can be loaded and the signal

processing parallel to program execution can be activated and

deactivated. The signal processing is performed at the RSI cycle

rate. Two cycle durations are available: 12 ms and 4 ms. When

the RSI context is activated, external data are processed by RSI

and forwarded to a portion of the KRC memory that can be

accessed by the KRL program. Appended to the end of every

packet sent by RSI is a number identified as the Interpolation

Cycle Counter (IPOC), which indicates the current timestamp

of the data packet. RSI expects the external system to extract

this timestamp and append it to the return packet, which must

be received by the RSI context within the same cycle. If RSI

does not receive the IPOC number back within the cycle

duration, the packet is deemed late [19].

Fig. 2. RSI XML template supporting the functionalities of the ITRA toolbox.

III. INTERFACING TOOLBOX

A. Architecture

ITRA is a C++ language library, designed to get feedback

parameters from one or more robots simultaneously, to monitor

the status of the running KRL robot programs and to trigger the

progress of the robotic tasks from a server computer. C++ was

chosen as programming language, since it is particularly

suitable to develop highly robust communication and data

processing algorithms that run in a reliable real-time manner.

This language offers the programmer specific features to avoid

the periodic, automated creation and disruption of allocated

memory, known as garbage collection [21]. Other languages

(e.g. C#), which do not allow the same level of control on the

allocated memory, can lead to unexpected drops in software

performances [22, 23].

The ITRA architecture is described below. The reader can

refer to the schematic representation given in Fig. 1. Once ITRA

is loaded into a hosting programming environment (e.g.

LabView or MATLAB), running within the operating system

of the server computer, the library constructor initializes

fundamental variables to support the UDP/IP connection with

the robots. These are private variables that cannot be accessed

by the hosting application. Nevertheless, a certain level of

control of the library internal operating parameters is available

through some of the public functions (described below), which

allow a user to specify the number of robots to manage, their IP

addresses and the directory that the library uses to store data.

Only one socket is prepared by the constructor, to communicate

with all robots. The connection socket is open through the

“openConn” function (see below). At this stage the library does

not manage any data packets received from the robots. Since

https://doi.org/10.17868/70008

https://doi.org/10.17868/70008 4

each RSI XML packet must get a reply packet from the external

system, the library needs to run a background thread that

receives the RSI packets, parses the data, extracts the packet

IPOC numbers and mirrors them to the robots. Such thread is

critically important to maintain a robust communication with

the robots. It is hereafter referred as RSI-Manager Thread

(RMT). RMT cyclically checks if data are available on the UDP

socket. As soon as a XML packet is in the socket, the RMT

takes the value of the internal performance counter, to be used

as timestamp (with µs resolution), and downloads the packet

from the socket, decoding the IP address of the KRC that sent

it. The IP address is used to identify the index associated to the

robot. Then, the XML packet is parsed to extract the Cartesian

and axial coordinates, the status of the digital outputs and the

packet IPOC number.

It may be necessary to store the parsed positional feedback.

Since writing data to files can cause disrupting delays in the

RMT, ITRA uses a secondary auxiliary thread, hereafter

referred as Saving Thread (ST). The transfer of the parsed data

packets takes place through FIFO queues. These are container

adaptors specifically designed to operate in a FIFO context

(first-in first-out), where elements are inserted into one end of

the container and extracted from the other end [21]. The number

of FIFO queues initialized by ITRA is equal to the number of

connected robot controllers, so the data packets arriving from a

robot controller are sent to the queue identified by the same

robot index. Each data packet is enqueued jointly with the

timestamp taken at the time of reception. The ST continuously

looks for new packets in the queues and saves them into files,

empting the containers. Since these queues are used to hold

robot feedback data, they are referred as “feedback queues” in

Fig. 1. Besides sending each received data packet and its

timestamp to a queue, a copy of the timestamped data is

temporarily stored into a structured array containing the latest

packets received from each robot controller. Every time a new

packet is received from the n-th robot, the n-th element of the

array is refreshed with the new data. This is useful to keep a

copy of the most recent data received from the robots, even

when the feedback queues are completely emptied by the ST.

Although the ST is initialized when the RMT is launched, it

does not save any data packet into file by default. This is to

enable the user to specify when it is necessary to save the robot

positional feedback. An ITRA function (see below) allows

enabling/disabling the saving of the positional feedback for

each robot, specifying the data format to be sent to file. The ST

creates a separate text file (.txt) for each connected robot,

appending the feedback positional packets to the end of the

files, when saving is enabled.

The hosting application can use the public functions of the

ITRA library. These functions support the development of

simple and complex integration software platforms, comprising

modules like data acquisition, multiple robot task

synchronization, interfacing with sensors, data visualization,

robot path control and graphical user interfaces. ITRA contains

25 public functions, which can be divided in four groups, as it

is shown in Table I. ITRA and its detailed reference manual,

together with application examples and videos, can be

downloaded through the permanent link given in Appendix A1.

A general description of the functions is given below.

B. Initializers

The functions referred as “Initializers” are designed to set

internal fundamental operating parameters of the library (e.g.

number of robots, IP addresses, type of connection and output

directory). These functions can only be used before launching

the background service threads (RMT and ST), except for

setRobFeedbackOutput. This function sets the format of the

positional feedback to store into files. It can be called before

launching the threads, to pre-set the behavior of the ST at the

start, or during runtime to enable/disable the saving of the

positional feedback for one or more robots.

C. Networking

The networking functions allow opening of the UDP

connection, checking if data is available in the socket, starting

the RMT to manage the connection with the robots, terminating

the background service threads when they are no longer

required and closing the connection. The saving thread is

automatically launched and terminated together with the RSI-

manager thread.

TABLE I

LIST OF ITRA FUNCTIONS DIVIDED INTO GROUPS

 Function names Description

In
it

ia
li

ze
rs

setNumRob Set number of robots to manage

setRobIP Set IP address of robot(s)

setRobConnType Set connection type (receive or receive/send)

setOutputDir Set directory for saving feedback file

setRobFeedbackOutput Set format of positional feedback to store

N
et

w
o

rk
in

g
 openConn Open connection socket

isDataAvailable Check if data are available in the socket

startRSIManager Start RSI Manager Thread (RMT)

terminateRSIManager Terminate RMT

closeConn Close connection socket

G
et

te
rs

isRSIRunning Check if RSI is running on a specific robot

isRobotTaskActive Check if the robot task is active

isRobStill Check if the robot is still

isRobMoveRequired Check if a robot move is required

isDataAcquRequired Check if data acquisition is required

getCurrPos Get current robot position

getTimestamp Get current time

S
et

te
rs

allowRobotStart Allow robot to start its task

allowRobMove Allow robot to move

allowRobotFinish Allow robot to finish its task

requRealTimeEnd Request termination of real-time control

requRobTaskEnd Request termination of current robot task

setCartPos Set target position in Cartesian space

setAxialPos Set target position in joint space

setToolPathFromFile Set external control tool-path from file

D. Getters

The “Getters” are functions able to retrieve data required by

the hosting application. They query the structured array

containing the latest packets received from the robot

controllers. The function to get the current robot position

accesses the requested element of the array and retrieves the

parsed Cartesian and axial coordinates, returning them to the

https://doi.org/10.17868/70008

https://doi.org/10.17868/70008 5

hosting application as an array of double precision values.

These can be used to monitor the robot position remotely from

the server computer or to encode sensor data in a real-time

fashion. Other getters return a Boolean value (TRUE or

FALSE); these ITRA functions operate on the status of the four

digital outputs inserted by RSI into the XML packets (see

reference manual – Appendix A1). The function that gets the

current clock time (the current timestamp) is the only function

that does not query the array with the latest packets. It retrieves

the current value of the internal library performance counter and

returns a double precision timestamp expressed in

microseconds (µs). The performance counter is the same clock

used to timestamp the received packets sent to the feedback

queue and (optionally) stored into files. Getting access to the

same clock used to timestamp the feedback positional packets

can be very useful, for example when it is necessary to encode

sensor data through interpolated robot positions.

E. Setters

The “Setters” are functions able to influence the execution of

predefined KRL programs and/or to control the robot tool-path.

When called by the hosting applications, these functions

generate command data packets addressed to one of the

connected robots. The index of the target robot is given to the

setters as an input. The generated command packets are sent to

reserved FIFO queues, separated from the feedback queues.

Such containers are referred as “command queues” (see Fig. 1)

and they are also initialized by the ITRA constructor as soon as

the library is loaded into the hosting application. The number of

command queues is equal to the number of connected robot

controllers, so each command packet can be sent to the queue

identified by the same robot index targeted by the hosting

application. The command packets are de-queued by the RSI-

Manager Thread. After parsing the RSI packet received from

the n-th robot controller, the RMT must reply to the robot

through an XML string containing the data described in the

RECEIVE section of the XML template (Fig. 2). The RMT

looks for command packets available in the n-th command

queue. If the queue is not empty, the packet at the front of the

queue is de-queued and its content is concatenated into a string,

according to the XML format expected by the RSI context. The

setters allow flexible control of the robot arms, through the

conventional meaning given to the value of the variables

inserted into the XML packets sent to the robot controllers.

Through some of the setters, the hosting application can trigger

a robot to start its task, continue the task (e.g. after a phase

during which the robot must be still) or allow the robot to

terminate the task and return to the home position. Such type of

control is achieved through acting on the values of the four

Boolean variables, denoted as B1-B4 in Fig. 2. These critically

important logical setters use software handshaking to guarantee

the robustness of the messaging between robot controllers and

external computer; they expect to receive a change in the status

of the digital flags sent by RSI (the four KRC digital outputs),

as an acknowledgement for the successful communication.

Permission to proceed with the execution of the KRL program

is not granted to the robot if such acknowledgement is not

received.

It is possible to control the robot tool-paths from the external

computer, sending target positions to the robot controllers.

ITRA has functions to set command coordinates in Cartesian-

space and in joint-space. External robot control is achieved by

transmitting the command coordinates through six of the double

precision variables (D1-D6). The preferred robot speed and

acceleration can also be controlled through the two remaining

variables (D7 and D8). Further details are given in the ITRA

reference manual (Appendix A1). Each command packet

dequeued from the n-th command queue is also used to refresh

the n-th element of a structured array containing the latest

command packets sent to each robot controller. The copy of the

latest command position sent to the n-th robot is used when the

external path-control is active and the n-th command queue

does not contain any new command packets. This ensures the

robot reaches the latest commanded position and stops there,

until a new target position is requested.

IV. APPLICATION EXAMPLES

This section presents two application examples, to

demonstrate the use of ITRA. The architecture of the library

provides flexibility to support the integration of a wide range of

robotic systems. The first application is an example where a

system with three robotic manipulators is used to perform

automated photogrammetric and ultrasonic inspection of large

high-value manufacturing parts. In this application, referred

below as “robotically enabled sensing”, the robots follow

predefined tool-paths, programmed in KRL through

commercial off-line path-planning software. ITRA is used to

control the execution of the robot KRL programs, synchronize

the data acquisition with the robotic movement, timestamp the

data packets and acquire robot positional feedback. The second

application covers three control approaches, demonstrating the

use of ITRA for achieving external control of robotic arms.

They will show how significantly different results can be

achieved by combining customized RSI-Visual configurations

to the flexibility of the ITRA architecture described above.

Whereas the RSI configurations (created through RSI-Visual)

define the way external data are processed and used by the robot

controller, ITRA provides robust communication between one

or more robots and the external computer.

A. Robotically enabled sensing

Geometric and volumetric quality inspection of critically

important parts is often a requirement in manufacturing (e.g. in

the aerospace industry). Manual inspection, also known as Non-

Destructive Testing (NDT). Automating the inspection has

become an industrial priority to speed up repetitive inspection

of large numbers of components in the production chain [24].

ITRA has been used to integrate a robotic inspection prototype

system, schematically described in Fig. 3 [25]. The robotic

hardware of the system comprises three KUKA KR90 R3100

extra HA manipulators, mounted on linear tracks and an

additional external axis drive unit (KUKA KP1-MDC750),

utilized to enable the rotation of a rigid frame where the work-

piece is secured.

https://doi.org/10.17868/70008

https://doi.org/10.17868/70008 6

Fig. 3. Representation of the robotic inspection application example [25].

The integrated system is capable of performing volumetric

ultrasonic inspection of the part, through an ultrasonic probe

manipulated by Robot #1. The ultrasonic instrumentation is

linked to the server computer via a PCI Express bus [26]. The

camera and the projector are both connected via USB links.

ITRA has allowed the use of a single server computer for

managing all aspects of the system, controlling the execution of

all robotic tasks synchronously. Fig. 4 shows the RSI Visual

configuration loaded into all robot controllers. Since the system

is based on robots following predefined tool-paths (no external

path control is used), the RSI configuration is very simple. Data

exchange with the external computer is implemented using the

RSI ETHERNET object. The name of the XML file (ITRA.xml)

containing the template of the data to be exchanged (Fig. 2) is

specified as one of the object parameters. The signals at the

object inputs (the four digital outputs) are sent to the computer.

The data received from the external computer are available at

the object outputs. The eight double values (D1-D8) in the

receive section of the XML template are available between

Out1 and Out8. The four Boolean values (B1-B4) are mapped

to the elements of an array ($SEN_PINT), which can be

accessed by the KRL module. These four KRC digital outputs

are used to track the execution status of the KRL program,

whereas the Boolean values mapped to $SEN_PINT are used to

trigger some key steps of the robot program. The library getters

and the setters are high-level functions, respectively responsible

for querying the status of the robot and formulating the correct

command packets to achieve the specific objectives.

Fig. 4. RSI-Visual configuration loaded into each robot controller [25].

The ITRA-based logical workflow, for the operation of the

described robotic inspection system, is given in Fig. 5.

B. External control capabilities

Robots have been quite successful in accomplishing tasks in

well-known environments like a work cell within a factory. The

much harder problem of a robot acting in unstructured and

dynamic environments, like those humans normally act and live

in, is still an open research area [27].

Fig. 5. ITRA-based logical workflow, for the operation of the described robotic

inspection system.

In such situations, the robots need to be able to adapt their tasks

quickly. Real-time robot motion control can be divided into two

sub-problems: (i) the specification of the control points of the

geometric path (path planning), and (ii) the specification of the

time evolution along this geometric path (trajectory planning).

This section presents the application of ITRA to achieve

https://doi.org/10.17868/70008

https://doi.org/10.17868/70008 7

external control of robotic arms. Three different approaches are

presented. Whereas the path-planning sub-problem is always

dealt with by the computer hosting ITRA, where processing of

machine vision data and/or other sensor data can take place to

compute the robot target position, the trajectory planning

subproblem can be managed by different actors of the system.

In the first approach (hereafter referred to as KRL-based

approach), the trajectory planning takes place at the KRL

module level within the robot controller. The second approach

has trajectory planning performed within the external computer,

soon after path-planning, and is referred to as Computer-based

approach. The third approach relies on a real-time trajectory

planning algorithm implemented into the RSI configuration.

Therefore, trajectory planning is managed by the RSI context

and the approach is named as RSI-based approach.

1) KRL-based approach

This approach is based on the use of ITRA in conjunction

with the RSI configuration shown in Fig. 6a. This configuration

maps the eight double precision values available at the outputs

of the ETHERNET object to the first eight elements of an array

of real numbers ($SEN_PREA), which is accessible from the

KRL module. The ITRA setCartPos function can be used to

send the target Cartesian space coordinates (X, Y, Z, A, B, C)

and the desired speed and acceleration with which the target

must be reached. The coordinates are mapped to

$SEN_PREA[1-6], the speed gets mapped to $SEN_PREA[7]

and the acceleration to $SEN_PREA[8]. Therefore, the array

element values can be assigned to local variables in the KRL

module and the target position can be reached through a linear

(LIN) movement within a loop structure. The KRL code

responsible for extracting the values stored in $SEN_PREA and

moving the robot is the following:

» LOOP

» target_pos.x = $SEN_PREA[1]

» target_pos.y = $SEN_PREA[2]

» target_pos.z = $SEN_PREA[3]

» target_pos.a = $SEN_PREA[4]

» target_pos.b = $SEN_PREA[5]

» target_pos.c = $SEN_PREA[6]

» $VEL.CP = $SEN_PREA[7]/1000

» $ACC.CP = $SEN_PREA[8]/1000

» LIN target_pos

» IF ($SEN_PINT[13]==1) THEN

» $OUT[14]=TRUE

» EXIT

» ENDIF

» ENDLOOP

In this example the coordinates are given in millimeters,

whereas desired speed and acceleration are respectively given

in m/s and m/s2. By modifying the KRL code, it is possible to

use point-to-point (PTP) movements, rather than LIN

movements. It is also easy to customize the KRL code to control

the robot through joint space coordinates (A1-A6) rather than

Cartesian coordinates. In this case, the setAxialPos function

should be used on the computer side. The external control can

be terminated through the requRobTaskEnd function that sends

a Boolean flag to set $SEN_PINT[13] true and waits for

$OUT[14] to became true too. Since the robot controller

interprets the KRL module line by line, one limitation of this

approach is that the robot must decelerate and stop at the target

position. This is to allow the KRL interpreter to return to the

beginning of the loop and extract the new target coordinates,

and the required speed and acceleration from the $SEN_PREA

array. This approach is unable to provide true real-time control

of the robot, since a previously commanded target must be

reached before a new target position can be assigned. Moreover,

only PTP and LIN interpolations are available.

2) Computer-based approach

This second approach is based on the use of ITRA in

conjunction with the RSI configuration shown in Fig. 6b. Here

the target coordinates available at the output of the ETHERNET

object are given to the inputs of the POSSCORR object, which

allows Cartesian correction of the robot position within a

defined range (limits specified in the object parameters).

POSCORRMON is the object that limits the maximum overall

Cartesian correction. The KRL code responsible for activating

the motion guided by the external computer is reduced to the

following line:

» RSI_MOVECORR()

Once the KRL interpreter reaches this line, the robot drives start

actuating towards the target coordinates received by the RSI

context at every cycle; the KRC is no longer responsible for

planning the kinematics and dynamics of the trajectory used to

reach the target. Therefore, it is crucial the communication

between the computer and the RSI context is stable and no

command packets are lost. Moreover, it is important the

commanded trajectory is smooth and the associated velocity

and acceleration patterns are continuous. Methods to compute

control points for smooth trajectories have been presented in

[28]. The setToolPathFromFile ITRA function supports this

external control approach, enabling the possibility to send all

trajectory control points with no delays. The function is called

by giving, as inputs, the index of the robot to control and the

name of a text file, where all target positional packets are stored

in advance. The function accesses the text file and loads all

command packets into the library command queue relative to

the robot to control. Each packet is promptly de-queued and

sent to the RSI context by the ITRA RSI-Manager Thread,

which guarantees all packets are sent sequentially and each

packet is sent within the RSI cycle duration. This external

control approach realizes the execution of a trajectory, by

sending a control point per each interpolation cycle of the robot

controller. Therefore, this approach is ideal for following

complex trajectories accurately. In the Computer-approach, the

external control can be terminated through the

requRealTimeEnd function; it transmits a Boolean flag that

triggers the STOP object in the RSI configuration. This causes

the KRL interpreter to terminate the RSI_MOVECORR() line.

https://doi.org/10.17868/70008

https://doi.org/10.17868/70008 8

Fig. 6. RSI-Visual configurations for external path control: KRL-based (a) and Computer-based (b) approach

In a similar way to the KRL-based approach, the limitation of

the Computer-based approach is its necessity to wait until all

trajectory points are sent before a new set of points can be

streamed to the robot. The reason lies in the fact that a sudden

interruption of the sequential transfer of control points would

bring the robot motion to an immediate stop with a consequent

peak/discontinuity in the velocity, acceleration and jerk.

3) RSI-based approach

Unlike the KRL-based and the Computer-based approaches,

the RSI-based approach enables true real-time path control of

KUKA robots based on KRC4 controllers. This approach

permits fast online modifications to a planned trajectory,

allowing robots to react to dynamic environments. Whereas the

path-planning takes place in the server computer, trajectory

planning has been implemented as an RSI configuration,

employing the second-order trajectory generation algorithm

presented in [29]. The approach can operate in Cartesian-space

and in joint-space. While the robot is static or is travelling to a

given position, the computer can send a new target position

(together with the maximum preferred speed and acceleration)

through the setCartPos or the setAxialPos functions. Due to the

complexity of the relative RSI-Visual configurations

(containing over 500 objects), they are not shown herein but

they are available in the ITRA software package downloadable

through the permanent link given in Appendix A1. Unlike the

RSI configuration for the Computer-based approach, the target

coordinates received by the RSI context are not passed to the

POSCORR object. Such target coordinates are instead used to

compute the optimal coordinates of the set point to send to the

object through a two-fold algorithm. On the one hand, the set

point is generated to guarantee a smooth transition from the

initial conditions (starting coordinates, velocity and

acceleration) towards the final target position. On the other

hand, the algorithm makes sure the evolution of the robot

motion is constrained within the given maximum speed and

acceleration. Fig. 7 compares two trajectories obtained through

the KRL and the RSI-based approaches. A KR6 R900 AGILUS

robot was used to test both approaches, using the same control

points (P1, P2 and P3). The speed and the acceleration were set

respectively to 2 m/s and 3 m/s2. The robot started from S.

In the first trajectory, the robot travelled through all control

points and took 2.52sec to complete the path. This trajectory

can be generated by both the KRL and the RSI-based

approaches when, before commanding a new point, enough

time is given to the robot to reach the previous target point.

Fig. 7. Comparison of robot paths obtained through the KRL-based and the

RSI-based approach.

https://doi.org/10.17868/70008

https://doi.org/10.17868/70008 9

The second trajectory shows the adaptive behavior

achievable through the RSI-based approach. This approach was

used to simulate the situation where it is no longer necessary to

reach a previously set point and a new target position is

requested. Therefore, P2 and P3 were commanded after 0.25sec

from the time when the previous points were set as target

position. The robot adapted on-the-fly to the change of target

position and the final target (P4) was reached in 1.61sec, with a

smooth and continuous trajectory.

V. BENCHMARKING

The run-time of all ITRA functions was investigated by

loading the library into MATLAB 2018a (64bit version),

running within a computer with Intel i7-7700HQ CPU and

16GB of RAM. The computer was linked to one KR6 R900

AGILUS robot running a KRL module that contained all

required lines to enable the execution of the ITRA functions.

A. Function run-times

Each function was executed 100 times and the run times were

recorded. Table II reports the resulting run time values in

microseconds (µs), for x64 Windows10® and Linux operating

systems. The table reports the 50th and the 75th percentiles

(respectively P50 and P75). Whereas P50 corresponds to the

median of the run time distribution, the 75th percentile provides

information about the spread of the values, since P75 is the run

time value that exceed 75% of the readings. The variability in

the run time of each function was due to ITRA running on non-

real-time platforms.

TABLE II

RUN-TIME FOR ALL ITRA FUNCTIONS.

 Function names

Run time [µs]

 Windows 10 Linux OS

P50 P75 P50 P75

In
it

ia
li

ze
rs

setNumRob 24.2 28.9 11.1 12.6

setRobIP 9.0 10.1 5.3 6.0

setRobConnType 12.1 13.6 5.7 6.1

setOutputDir 17.9 20.5 9.9 10.4

setRobFeedbackOutput 10.5 11.6 4.1 4.3

N
et

w
o

rk
in

g
 openConn 205.6 224.7 42.9 54.7

isDataAvailable 13.9 15.2 6.0 6.5

startRSIManager 1532.9 1601.8 65.4 76.0

terminateRSIManager 10.8 12.0 7.7 8.2

closeConn 78.5 90.4 20.9 23.7

G
et

te
rs

isRSIRunning 45.1 50.0 30.4 32.8

isRobotTaskActive 37.6 40.3 13.3 16.2

isRobStill 37.7 40.2 13.4 16.2

isRobMoveRequired 59.0 65.4 41.3 42.5

isDataAcquRequired 7.6 8.4 5.2 5.9

getCurrPos 40.5 42.3 35.8 39.4

getTimestamp 11.2 12.7 6.8 7.3

S
et

te
rs

allowRobotStart 26460.1 26558.1 27911.7 27950.8

allowRobMove 9630.5 11019.9 11869.1 11898.7

allowRobotFinish 23985.9 24035.8 23985.1 24011.1

requRealTimeEnd 96959.2 100000.2 102519.7 102565.0

requRobTaskEnd 11967.3 12003.9 11953.8 11971.5

setCartPos 41.7 43.9 16.3 31.2

setAxialPos 41.6 44.0 16.3 31.1

setToolPathFromFile 4143.9 4212.8 1376.6 1401.6

All functions were tested with the RSI context running at 4

ms cycle mode, with the exception of setToolPathFromFile,

which was used for the Computer-based external control

approach that is only supported by the 12 ms RSI cycle mode.

The run-time of setToolPathFromFile depends on the number

of command positions contained in the text file, which affects

the time to load them into the library command queue. The

function was tested with a file containing 250 positions.

B. External control reaction times

The performance of the three external control approaches

was also tested. Reaction time is the most important parameter

in real-time control, since it measures the promptness of the

system. Reaction time in humans is a measure of the quickness

in which the organism responds to some sort of stimulus. The

reaction time is defined as the latency between the stimulus and

the very start of the reaction. The average reaction time for

humans is 250 ms to a visual stimulus, 170 ms for an auditory

stimulus, and 150 ms for a haptic stimulus [30]. The reaction

speed plays a large part in everyone’s everyday life. Fast

reactions can produce big rewards, for example saving a

blistering soccer ball from entering the goal. Slow reaction

times may come with consequences. Similarly, achieving small

reaction time is crucial for robots that need to have real-time

adaptive behaviors to respond to dynamic changes and/or to

interact with humans.

The external control latency (or reaction time) is defined

herein as the time interval between the instant a new target

position becomes available on the external computer and is sent

to the robot via setToolPathFromFile, setCartPos or

setAxialPos and the instant the robot starts reacting to reach

such commanded target. With ITRA running within MATLAB

and saving robot feedback positions through the saving thread,

the reaction time of each external control approach was

measured 100 times through commanding the robot to move to

a target from a static position. The timestamp of the first robot

feedback positional packet, reporting a deviation greater or

equal to 0.01 mm from the original home position, was

compared with the timestamp taken by getTimestamp just

before sending the target position to the robot. The resulting

reaction times are given in Table III. Although the run times to

send a target position to the robot, get the current position and

obtain the timestamp are negligible (in the order of

microseconds), the reaction times comprise such run times.

TABLE III

PERFORMANCE OF EXTERNAL CONTROL APPROACHES

External control
approach

RSI
cycle

Update
rate

Reaction time [ms]

 Windows 10 Linux OS

P50 P75 P50 P75
KRL-based 4 ms Variable 110.17 153.75 110.73 153.81

Computer-based 12 ms Variable 68.42 77.73 63.12 69.72

RSI-based 4 ms 250 Hz 29.26 31.08 30.14 31.40

The average robot reaction time given by the three

approaches is always better than the human reaction time, when

responding to haptic stimulus. The first approach (KRL-based)

is 26% better than the human reaction. The second (Computer-

based) and the third approach (RSI-based) are respectively 54%

https://doi.org/10.17868/70008

https://doi.org/10.17868/70008 10

and 80% better. The update rate of the first and second approach

is variable, since a new target position can be commanded only

after the previous target is reached. The update rate of the RSI-

based approach is equal to the running frequency of the RSI

context, so a new target position can be set every 4 ms with the

robot expected to react within 30 ms (±2 ms). ITRA enables

applications that go beyond the capabilities offered by native

robot interface layers (RSI for KUKA KRC4 platforms).

Whereas the native RSI adaptive real-time path-correction only

works for small corrections (few millimeters), for which

accurate trajectory planning is not required, this work enables

adaptive real-time control for large displacements. This allows

achieving prompt robot reactions to reach distant target

poses/positions, which can be commanded on the fly at any time

during movement along a trajectory.

VI. CONCLUSION

The paper presented a new Interfacing Toolbox for Robotic

Arms (ITRA). It is a fully flexible and extensible toolbox,

which addresses three current gaps in the control approaches for

industrial robotic systems. Most importantly, it enables

adaptive robotic system with fast reactions. Secondly, it is

capable of controlling multiple robots simultaneously. Thirdly,

it is cross-platform compatible and allows great flexibility

between different computer architectures. Due to platform

availability during its development, the current version of ITRA

only works with KUKA hardware. ITRA contains high-level

functions for robust connectivity between multiple KRC4

KUKA robots and a server computer. The toolbox is designed

to speed-up efficient integration of robotic systems. Crucially,

ITRA can be used to enable real-time adaptive robot behavior,

maximizing the robot promptness and respecting dynamic

constraints (maximum accelerations and velocities). ITRA

enables applications that go beyond the capabilities offered by

native software robotic interface layers. Several application

examples have also been provided to demonstrate how the

toolbox can be used to integrate robotic systems with multiple

robots, sensors and instrumentation and how to achieve external

control through three different approaches. ITRA allows

controlling robot arms with update rates up to 250 Hz,

achieving robot reaction times as short as 30ms. The

benchmarking provided accurate measurement of the run-time

of all ITRA functions. Current work is focusing on testing

ITRA performance on real-time platforms and enabling support

for java-based KUKA robot platforms and for robots produced

by different manufacturers. This will be addressed by enabling

the ITRA user to customize the communication protocol (e.g.

TCP/IP, EtherCAT, UDP/IP, etc.) and the templates for

incoming and outgoing communication packets.

APPENDIX

A1 - ITRA library and user manual package:

https://doi.org/10.15129/bfa28b77-1cc0-4bee-88c9-

03e75eda83fd

REFERENCES

[1] G.-Z. Yang et al., "The grand challenges of Science Robotics," Science

Robotics, vol. 3, no. 14, pp. 1-14, Jan. 2018.

[2] P. I. Corke, Robotics, Vision and Control: Fundamental Algorithms in
MATLAB. Berlin: Springer, 2011.

[3] A. Breijs, B. Klaassens, and R. Babuška, "Automated design

environment for serial industrial manipulators," Industrial Robot: An
International Journal, vol. 32, no. 1, pp. 32-34, 2005.

[4] G. L. Mariottini and D. Prattichizzo, "EGT for multiple view geometry

and visual servoing: robotics vision with pinhole and panoramic
cameras," Robotics & Automation Magazine, IEEE, vol. 12, no. 4, pp.

26-39, 2005.

[5] M. Toz and S. Kucuk, "Dynamics simulation toolbox for industrial robot
manipulators," Computer Applications in Engineering Education, vol.

18, no. 2, pp. 319-330, 2010.

[6] F. Chinello, S. Scheggi, F. Morbidi, and D. Prattichizzo, "Kuka control
toolbox," Robotics & Automation Magazine, IEEE, vol. 18, no. 4, pp.

69-79, 2011.

[7] T. Pawletta et al., "Robotic control & visualization toolbox for
MATLAB," IFAC-Papers On Line, vol. 48, no. 1, pp. 687-688, 2015.

[8] E. Dean-Leon, S. Nair, and A. Knoll, "User friendly Matlab-toolbox for

symbolic robot dynamic modeling used for control design," in Robotics

and Biomimetics (ROBIO), 2012 IEEE International Conference on,

2012, pp. 2181-2188: IEEE.

[9] H. Bruyninckx, "Open robot control software: the OROCOS project," in
Proceedings 2001 ICRA. IEEE international conference on robotics and

automation (Cat. No. 01CH37164), 2001, vol. 3, pp. 2523-2528: IEEE.

[10] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback,
"Towards component-based robotics," in 2005 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2005, pp. 163-168: IEEE.
[11] A. Blomdell et al., "Extending an industrial robot controller:

implementation and applications of a fast open sensor interface," IEEE

Robotics & Automation Magazine, vol. 12, no. 3, pp. 85-94, 2005.
[12] B. Inner and S. Kucuk, "A novel kinematic design, analysis and

simulation tool for general Stewart platforms," Simulation, vol. 89, no.

7, pp. 876-897, 2013.
[13] M. Safeea and P. Neto, "KUKA Sunrise Toolbox: Interfacing

Collaborative Robots with MATLAB," arXiv preprint

arXiv:1709.01438, 2017.

[14] S. Mokaram et al., "A ROS-integrated API for the KUKA LBR iiwa

collaborative robot," IFAC-PapersOnLine, vol. 50, no. 1, pp. 15859-

15864, 2017.
[15] R. Bischoff et al., "The KUKA-DLR Lightweight Robot arm-a new

reference platform for robotics research and manufacturing," in Robotics

(ISR), 2010 41st international symposium on and 2010 6th German
conference on robotics (ROBOTIK), 2010, pp. 1-8: VDE.

[16] R. Demming and D. J. Duffy, Introduction to the Boost C++ Libraries;

Volume I-Foundations. Datasim Education BV, 2010.
[17] ABB, Application manual - Robot Reference Interface. 2013.

[18] Stäubli, uniVAL Drive. 2018.

[19] KUKA, KUKA.RobotSensorInterface 3.2 Documentation - Version:
KST RSI 3.2 V1. 2013.

[20] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and C.

Taliercio, "Performance comparison of VxWorks, Linux, RTAI and
Xenomai in a hard real-time application," in Real-Time Conference,

2007 15th IEEE-NPSS, 2007, pp. 1-5: IEEE.

[21] B. Stroustrup, The C++ programming language. Pearson Education,
2013.

[22] K. D. Nilsen, "Reliable real-time garbage collection of C++," Computing

Systems, vol. 7, no. 4, pp. 467-504, 1994.
[23] K. Houstoun and E. Briggs, "Rapid addition leverages Microsoft .NET

3.5 Framework™ to build ultra-low latency FIX and FAST processing,"

ed, 2014.
[24] C. Mineo, S. Pierce, B. Wright, I. Cooper, and P. Nicholson, "PAUT

inspection of complex-shaped composite materials through six DOFs

robotic manipulators," Insight-Non-Destructive Testing and Condition
Monitoring, vol. 57, no. 3, pp. 161-166, 2015.

[25] C. Mineo et al., "Flexible integration of robotics, ultrasonics and

metrology for the inspection of aerospace components," in AIP
Conference Proceedings, 2017, vol. 1806, no. 1, p. 020026: AIP

Publishing.

[26] T. Fountain, A. McCarthy, and F. Peng, "PCI Express: an overview of

PCI Express, cabled PCI Express, and PXI Express," in 10th ICALEPCS

Int. Conf. on Accelerator & Large Expt. Physics Control Systems, 2005.

[27] T. Kunz, "Real-Time Motion Planning for a Robot Arm in Dynamic
Environments," Verlag nicht ermittelbar, 2009.

[28] C. Mineo, S. G. Pierce, P. I. Nicholson, and I. Cooper, "Robotic path

planning for non-destructive testing–A custom MATLAB toolbox

https://doi.org/10.17868/70008
https://doi.org/10.15129/bfa28b77-1cc0-4bee-88c9-03e75eda83fd
https://doi.org/10.15129/bfa28b77-1cc0-4bee-88c9-03e75eda83fd

https://doi.org/10.17868/70008 11

approach," Robotics and Computer-Integrated Manufacturing, vol. 37,
pp. 1-12, 2016.

[29] R. Haschke, E. Weitnauer, and H. Ritter, "On-line planning of time-

optimal, jerk-limited trajectories," in Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Conference on, 2008, pp.

3248-3253: IEEE.

[30] G. R. Grice, R. Nullmeyer, and V. A. Spiker, "Human reaction time:
toward a general theory," Journal of Experimental Psychology: General,

vol. 111, no. 1, p. 135, 1982.

Carmelo Mineo was born in Palermo

(Italy) in 1987. He studied Mechanical

Engineering at the University of Palermo,

where he obtained the Bachelors’ degree in

2009 and the Masters’ degree in 2011.

In 2012, with a background in

mechanical engineering, laser ultrasound

and NDT testing, he joined the Centre for

Ultrasonic Engineering (CUE) of the

department of Electrical and Electronic Engineering at the

University of Strathclyde to undertake a PhD in Automated

Non-Destructive Inspection of Large and Complex Geometries

of Composite Materials. Dr Mineo became a Research

Associate of the University of Strathclyde in 2015 and a

Research Fellow in 2018. His current research interests

comprise all aspects of the operation of robotic cells, including

programming, instrument interfacing and data collection. He

has vast experience in industrial engineering areas such as

robotics, sensors, mechanical design, software, system

integration, interfacing and control.

Cuebong Wong obtained a Masters with

Distinction in Electrical and Mechanical

Engineering at the University of

Strathclyde (UK) in 2016. While

undertaking his Masters, he joined the

Control Robotics Intelligence (CRI) Group

at Nanyang Technological University

(Singapore) as part of an international

exchange to conduct an investigation into

human locomotion. He joined the Department of Design,

Manufacture and Engineering Management (DMEM) to

undertake a PhD in Robotics and Autonomous Systems for

Harsh Environments, which was funded by the EPSRC

Doctoral Training Partnership (DTP) 2016-2017 program. His

current research interests lie in adaptive task planning, motion

planning and machine learning for robotic manipulators and

mobile robots that interact with challenging environments. Mr

Wong became a Member (M) of the Institution of Engineering

and Technology (IET) in 2017, and is an alumnus of the

Engineering Leaders Scholarship program with the Royal

Academy of Engineering.

Momchil Vasilev was born in Sofia

(Bulgaria) in 1994. He received a BEng

with Honours in electronic & electrical

engineering from the University of

Strathclyde, Glasgow, in 2017.

From 2016 to 2017 he was a part time

researcher at the Centre for Ultrasonic

Engineering (CUE) in the University of

Strathclyde and in 2017 he joined the group

as a PhD researcher. His interests include in-process ultrasonic

inspection of welds, non-destructive evaluation, sensor enabled

robotic welding and sensor fusion for robotic applications.

Charles MacLeod is a Lecturer in the

Centre for Ultrasonic Engineering. After

being awarded a Masters in Electrical and

Mechanical Engineering with Distinction

at Strathclyde, Charles then went on to

undertake a PhD in Automated Non –

Destructive Evaluation. While undertaking

his PhD Charles, was seconded to Spirit

AeroSystems, in Prestwick to undertake

Knowledge Exchange activities built on fundamental EPSRC

funded research. Charles was awarded the prestigious

University of Strathclyde EPSRC Doctoral Prize for 2014, for

his work investigating automated NDE. Charles has vast

experience in electrical and mechanical engineering areas such

as robotics, sensors, electronics, mechanical fixturing and

software.

S. Gareth Pierce is based in the Centre for

Ultrasonic Engineering (CUE) at The

University of Strathclyde. With a

background in Applied Physics and

Engineering, his research interests include

robotic systems for Non-Destructive

Testing & Evaluation (NDT&E),

ultrasonics and acoustics, structural health

monitoring, applied optics,

instrumentation and machine learning. He is EU Robotics

member for the UK Research Centre in Non-Destructive

Testing (RCNDE), member of the Association for Robots in

Architecture, and Technical Committee member for the

European Workshop on Structural Health Monitoring. He is

currently visiting Professor at Högskolan Väst, Trollhättan,

Sweden.

Erfu Yang became a Member (M) of IEEE

in 2005. He was born in Gansu province,

China. In 2008, he received his Ph.D.

degree in robotics and autonomous

Systems from the University of Essex,

Colchester, UK.

He is a Lecturer of the Department of

Design, Manufacture and Engineering

Management (DMEM) at the University of

Strathclyde. His main research interests include robotics,

autonomous systems, computer vision, image/signal

processing, mechatronics, data analytics, manufacturing

automation, multi-objective optimizations, and applications of

https://doi.org/10.17868/70008

https://doi.org/10.17868/70008 12

machine learning and artificial intelligence including multi-

agent reinforcement learning, fuzzy logic, neural networks, bio-

inspired algorithms, and cognitive computation, etc.

Dr Yang is the Fellow of the UK Higher Education Academy,

committee member of the Chinese Automation and Computing

Society in the UK (CACSUK), and the IET SCOTLAND

Manufacturing Technical Network. Dr Yang has been a

Scientific/Technical Programme Committee member or

organizer for a series of international conferences and

workshops. He has served for many international journals and

conferences as a scientific reviewer. He was a Literature

Surveyor for the leading International Journal of Adaptive

Control and Signal Processing (published by Wiley). He is now

an associate editor for the Cognitive Computation journal

published by Springer. He was also guest editor of the

International Journal of Automation and Computing for its

Special Issue on Emergent Control and Computing Techniques

for Industrial Applications.

https://doi.org/10.17868/70008

