
FPGA Accelerated Deep Learning Radio
Modulation Classification Using MATLAB System

Objects & PYNQ
Andrew Maclellan*, Lewis McLaughlin*, Louise Crockett, and Robert W. Stewart

Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland
Email: *{a.maclellan, lewis.mclaughlin}@strath.ac.uk

Abstract—Floating point Convolutional Neural Networks
(CNNs) are computationally expensive and deeper networks can
be impractical to deploy on FPGAs – consuming a large number
of resources and power, as well as having lengthy development
times. Previous work has shown that CNNs can be quantised
heavily using fixed point arithmetic to combat this without
significant loss in classification accuracy. We aim to quantise an
existing CNN architecture for radio modulation classification to
2-bit weights and activations, while retaining a level of accuracy
close to the original paper, for deployment on a Zynq System
on Chip (SoC). To improve the development time for hardware
synthesisable CNNs, we make use of MATLAB System Objects
and HDL Coder. The PYNQ framework is presented as a
practical means for accessing the functionality of the CNN. Our
preliminary results show a high classification accuracy even with
2-bit weights and activations.

I. INTRODUCTION AND MOTIVATION

Deep Learning (DL) and Artificial Intelligence (AI) have
proven to be exciting and powerful machine learning-based
techniques that have solved many real world challenges. Appli-
cations such as recognising and analysing images in computer
vision and natural language processing are just a few examples
of where DL has been highly effective.

With the increasing demand for efficient wireless data,
high quality spectrum sensing, cognitive radio, and accurate
channel estimation, smarter techniques are needed to handle
the requirements of these areas. As a result DL has made
appearances in the radio communications field where Deep
Neural Networks (DNNs) and CNNs are trained with radio
data rather than being expertly crafted, producing competing
results to traditional techniques.

As DNNs and CNNs become more complex, their number
of weights, layers, and computational cost increase, making
them increasingly difficult to deploy for the high sample rate
processing of radio applications. GPUs are typically used to
train and deploy neural networks, but these provide a poor
compute-to-power ratio compared to FPGAs. To support the
high sample rates of radio, FPGAs have been extensively used
to deploy signal processing algorithms in the past. In addition,
FPGAs offer more flexibility with regard to data types, making
them better suited to heavily quantised networks than GPUs.

Previous CNN FPGA implementations such as the FINN
Framework by Umuroglu et al. [1], quantise a trained neural
network down to 1-bit weights and activations and achieve

throughput results of 12.3 million image classifications per
second with 95.8% accuracy on an MNIST dataset. Quantising
weights and activations down to 1-bit allows for efficient use of
the FPGA fabric without sacrificing classification accuracy sig-
nificantly. Another FPGA implementation of neural networks
is the Ternary Neural Network by Alemdar et al. [2], which
adopts a teacher and student technique of training. The teacher
network is trained at full precision on a CPU/GPU system with
only activations being quantised in the range of (-1, 0, 1). The
weights and input data are then quantised to the same range
for the student network which is then deployed on the FPGA.
The accuracy rate achieved on MNIST was 98.14% at 255,102
images per second.

Our aim is to deploy an accelerated, heavily quantised CNN
(2-bit weights and activations) for Automatic Modulation Clas-
sification (AMC) that integrates with the PYNQ framework
to selectively demodulate different modulation schemes. We
chose 2-bit weights and activations to fully utilise the range of
values available for 2-bits unlike the Ternary Neural Network
with its (-1, 0, 1) range.

The PYNQ framework makes use of the Python pro-
gramming language to enable easier development of designs
targeting a Zynq SoC. In combining this highly productive
language with an FPGA, various components can be hard-
ware accelerated for real-time deployment (neural network,
modulation/demodulation, pulse shaping etc.) and controlled
easily through a Jupyter Notebook, similar to calling functions
from a software library [3]. Python is currently a prevalent
environment for developing DL algorithms. In addition, a
PYNQ image exists for RFSoC – a SoC created specifically for
interfacing with RF signals – making it a suitable framework
for consolidating DL and radio communications processing.

II. PRELIMINARY ARCHITECTURE OF QUANTISED CNN

The final aim for the architecture is to construct a hardware
efficient CNN that performs modulation classification in real
time. As a step towards achieving this, a neural network was
trained using QPSK and QAM-16 data and the weights and
biases were saved to be quantised. A MATLAB HDL Coder
System Object was constructed where dense and convolution
layers can be loaded with weights and biases. These can then
be quantised to 2-bits at synthesis time.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/228138316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A. Training Neural Network

The CNN was constructed and trained using PyTorch.
PyTorch is a deep learning framework that simplifies neural
network training and deployment. The AMC CNN structure is
based on a model proposed in [4]. The model consists of six
layers in total, depicted in Table I, describing the activations,
dimensions and total number of multiply-accumulates (MACs)
for each layer.

TABLE I
NEURAL NETWORK PARAMETERS

Layer # Layer type Neurons Activations MACs
1 Input 2 ∗ 128 - -
2 Conv 64 ∗ 1 ∗ 3 ReLU 48384
3 Conv 16 ∗ 2 ∗ 3 ReLU 761856
4 Dense 128 ReLU 253952
5 Dense 2 Softmax 256
6 Output 2 - -

The model was trained to classify 128 samples of modulated
complex data and distinguish between QPSK and QAM-16.
A set of 34,000, 128 long complex samples were used and
simulated at varying SNRs. Once the model was trained, the
weights and biases were saved. An SNR of 10dB was later
used for testing the accuracy.

B. FPGA Architecture Design

A MATLAB System Object was used to convert the CNN
architecture to HDL. The convolutional and dense layers
were created within the System Object and programmed as
a low-level design and in a hardware compatible coding style.
A System Object design was used to enable layer weights
to be loaded from PyTorch and be automatically quantised.
Additionally, System Objects can generate HDL using HDL
Coder within MATLAB. This allows for simulations of the
quantised system before synthesis, saving development time.

Currently, we have created a System Object that takes in
trained layer weights as parameters and quantises them to 2-
bits. We believe this approach can result in greater accuracy
while still maintaining low resource utilisation. The model was
trained in PyTorch while limiting the weights during training
to a 2-bit range and performing the back-propagation with the
straight-through technique [5].

Once the preliminary design was created, accuracy tests
were performed. The test compared the accuracy of the CNN
at full precision with the 2-bit quantised version of the CNN.
All input samples into the quantised CNN were set to a word
length of 16 with 8 fractional bits. These results can be seen
in Table II.

TABLE II
FULL PRECISION VS FIXED POINT CNN ACCURACY.

CNN Type W and A prec. Input prec. Acc
Full precision CNN float float 99.2%

Fixed precision CNN 2-bit 16-bit 97.2%

The 2% accuracy drop shown in Table II indicates that the
quantised weights do not significantly alter the accuracy of the

system. This is the result of limiting the weight update during
training to a range of 2-bits.

III. PROPOSED AND FUTURE WORK

Final Goal: To produce a fully configurable System Object
that allows for loading of weights and automatic fixed point
precision conversion that can be interfaced with PYNQ to
provide a callable hardware-accelerated function. Figure 1
shows an example application where the CNN interfaces with
PYNQ for demodulation analysis.

Fig. 1. Brief architecture of how CNN interfaces with Python within PYNQ.

We next aim to deploy and test the CNN on a Zynq 7020,
using the Pynq-Z2 development board, and investigate various
methods for reducing the resources required. Once an accept-
able resource utilisation and timing has been achieved, we
intend to scale up the project such that the neural network can
classify over the full range of modulation schemes specified in
[4]. This will be deployed on the RFSoC, leveraging the RF-
ADCs to allow signals to be modulated, transmitted, received,
classified and demodulated accordingly.

IV. CONCLUSION

Previous work shows that neural networks can be heavily
quantised for implementation on FPGAs to greatly improve on
resource utilisation and power efficiency without significantly
lowering accuracy. We are motivated by the results shown
in these papers and have began to investigate how this can
be applied to radio communications. Preliminary results show
high accuracy results even with reduced precision weights.
We hope to demonstrate the suitability of MATLAB System
Objects and the PYNQ framework for implementing and
accessing the functionality of CNNs on FPGAs.

REFERENCES

[1] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M.
Jahre, and K. Vissers, “FINN: A Framework for Fast, Scalable Bina-
rized Neural Network Inference,” in International Symposium on Field-
Programmable Gate Arrays, 2017.

[2] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Petrot, “Ternary neural
networks for resource-efficient AI applications,” in International Joint
Conference on Neural Networks, 2017, pp.2547–2554.

[3] PYNQ, P. Lysaght, C. McCabe et al., Chapter 22 in Exploring Zynq
MPSoC: With PYNQ and Machine Learning Applications, Strathclyde
Academic Media, 2019.

[4] T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio
modulation recognition networks,” in Communications in Computer and
Information Science, 2016.

[5] B. Moons, K. Goetschalckx, N. Van. Berckelaer, and M. Verhelst, ”Min-
imum Energy Quantized Neural Networks,” in 51st Asilomar Conference
on Signals, Systems and Computers, 2017.


