
Initial State Prediction in Planning

Senka Krivic,1 Michael Cashmore,2 Bram Ridder,2
Daniele Magazzeni,2 Sandor Szedmak,3 Justus Piater1

1Department of Computer
Science, University of

Innsbruck, Austria

2 Department of Computer
Science, King’s College

London, United Kingdom

3 Department of Computer
Science, Aalto University,

Finland
firstname.lastname@uibk.ac.at firstname.lastname@kcl.ac.uk sandor.szedmak@aalto.fi

Abstract

While recent advances in offline reasoning techniques and
online execution strategies have made planning under uncer-
tainty more robust, the application of plans in partially-known
environments is still a difficult and important topic. In this
paper we present an approach for predicting new information
about a partially-known initial state, represented as a multi-
graph utilizing Maximum-Margin Multi-Valued Regression.
We evaluate this approach in four different domains, demon-
strating high recall and accuracy.

1 Introduction
Planning in many domains means planning with incomplete
and uncertain information. In such domains plans generated
can be fragile. Contingency planning (Bonet and Geffner
2000; Hoffmann and Brafman 2005), conformant planning
(Smith and Weld 1998; Palacios and Geffner 2006), and
replanning techniques (Brafman and Shani 2014) work to
make execution more robust, for an acceptable cost of com-
putational difficulty or plan quality.

In this paper we focus on the problem of planning with
incomplete information on the initial state in a deterministic
domain. We describe a preprocessing step that predicts new
information about a partially-known initial state inspired by
research on associative learning (Hill 1984).

Humans associate certain holidays with specific sounds
and smells, or foods with specific flavours, colours and tex-
tures. Pavlov and Anrep (Pavlov and Anrep 2003) have
shown that it is possible to pair an unconditioned stimulus
with another previously neutral stimulus. This makes it pos-
sible to learn and predict events in terms of associations be-
tween stimuli, representing the paradigm of Classical con-
ditioning.

The idea is related to that of assumption-based planning
(ABP) (Sammy Davis-Mendelow 2013), which formalises
the idea of planning in a partially unknown initial state
with assumptions. Davis-Mendelow et al. show that ABP
has great utility for tasks that share a computational core
with planning, and encapsulates a compelling for of com-
mon sense planning.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we present a novel way in which to make
such assumptions, focusing on domains in which a robotic
agent has to make fast decisions. For example scenarios such
as the robocub where the robot has a partial information of
the initial state and has to make fast decisions, or an au-
tonomous underwater vehicle that must make critical deci-
sions before its position drifts.

We demonstrate that it is possible to predict missing infor-
mation in an initial state by exploiting the similarities among
known facts. We pose the problem of prediction as that of
learning missing edges in a graph. The learned edges are
analogous to assumptions about facts within the initial state.
To solve this associative learning problem we use a kernel-
based approach for learning missing edges in a partially-
given multigraph (Krivic et al. 2015). This allows us to prop-
agate knowledge from existing relations to unknown rela-
tions in a partially-known initial state.

Maximum Margin Multi-Valued Regression (M3V R)
(Ghazanfar, Prügel-Bennett, and Szedmak 2012; Szedmak,
Ugur, and Piater 2014) is applied to the class of learning
problems where item-item relations might be given by dif-
ferent attributes. This learning framework is used at the
core of a recommender system (Ghazanfar, Prügel-Bennett,
and Szedmak 2012) and for predicting the effects of an
action on pairs of objects in an affordance learning prob-
lem (Szedmak, Ugur, and Piater 2014). Their results show
that it can deal with sparse, incomplete and noisy infor-
mation. The M3V R is compared with the state-of-the-
art methods and is an established and competitive method
for prediction of missing relations and recommender based
systems (Ghazanfar, Prügel-Bennett, and Szedmak 2012;
Krivic et al. 2015).

Krivic et al. (2015) use this method to refine a world
model for planning to tidy up a child’s room with a robotic
agent. The system is used to learn the edges describing
the possible spatial relations between objects. We build on
this, describing how the approach can be generalised for
use in any planning domain, learning edges that correspond
to generic propositions in the initial state. In particular we
describe: how the initial state is represented as a partially-
known multigraph; the approach for learning missing edges;
how the results of the learning framework are translated back
into the planning domain; and finally, how they can be used
in the planning process.

The AAAI-17 Workshop on
Knowledge-Based Techniques for Problem Solving and Reasoning

WS-17-12

750

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/228138282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The problem is similar to a restricted class of contingency
planning problems with deterministic actions, partially
observable Markov decision processes (POMDP) (Bonet
2009). Techniques exist to solve these problems by first
converting them into classical planning problems: K-
Planner (Bonet and Geffner 2011), PO-RPR (Muise, Belle,
and McIlraith 2014), and CLG (Albore and Geffner 2009);
or using conformant planning techniques (Smith and Weld
1998; Palacios and Geffner 2006). Our work differs in that
we do not translate the whole problem, but instead remove
uncertainty by making predictions. In our problem there
is no known probability distribution over the existence of
propositions in the partially-known initial state. Moreover,
the approach is orthogonal in that uncertainty is removed
from the problem through prediction, either enabling a de-
terministic solution, or simplifying the contingency planning
problem should they be used in combination.

By integrating the learning framework into a planning and
execution system we demonstrate its efficacy on several do-
mains. We perform an empirical evaluation on a range of
problems in these domains. We show that:

• With already 20% knowledge of the initial state the accu-
racy of complete initial state prediction is 90%.

• Prediction leads to plans that are more robust (fewer re-
plans are required) compared to an optimistic classical
planning approach.

• Comparing with CLG, prediction increases the scalability
of contingency planning, at a cost to robustness.

In Section 2 we describe our problem formulation for
learning new relations in partially-known initial states. We
describe the learning problem in Section 3, and explain how
the learning framework is used to solve the formulated prob-
lem. In Section 4 we perform an evaluation. We conclude in
Section 5.

2 Predictions in the Planning Problem
In this section we describe in detail our preprocessing step,
which predicts new information about a partially-known ini-
tial state.

Definition 1 (Planning Problem) A planning instance Π is
a pair 〈Dom,Prob〉, where Dom = 〈Ps,As, arity〉 is a
tuple consisting of a finite set of predicate symbols Ps, a
finite set of (durative) actions As, and a function arity map-
ping all symbols in Ps to their respective arities. The triple
Prob = 〈Ob, Init,G〉 consists of a finite set of domain ob-
jects Ob, the partial initial state Init, and the goal specifica-
tion G.

The atoms of the planning instance are the (finitely many)
expressions formed by grounding – applying the predicate
symbols Ps to the objects in Ob (respecting arities). The
resultant expressions are the set of propositions P .

A state s is described by a set of literals formed from the
propositions in P , {lp,¬lp, ∀p ∈ P}. If every proposition
from P is represented by a literal in the state, then we say
that s is a complete state. A partial state is a set of literals
s′ ⊂ s, where s is a complete state.

The initial state init is a partial state. A partial state can
be extended into a complete state.

Definition 2 (Extending a Partial State) Let s′ be a par-
tial state of Planning problem Π. Extending the state s′ is
a function Extend(Π, s′) : s′ → s where s is a complete
state and s′ ⊂ s.

We describe a pre-processing step implementing Extend.
All unknown propositional values in a partially-known ini-
tial state are predicted, producing a complete initial state.
Briefly, the function Extend(Π, s′) is implemented as fol-
lows: the initial state init is converted into a multigraph;
edges in the multigraph are learned using M3V R ; then the
new edges are added as literals to the initial state.

First we describe the construction of the multigraph, then
in Section 3 we describe the relational problem, and then
how the learned relations are inserted back into the initial
state. Finally, the complete initial state can be used by a clas-
sical planner to generate a plan.

Constructing the Multigraph
We represent a partially-known initial state init as a
partially-known multigraph M .

Definition 3 (Partially-known Multigraph) A partially-
known Multigraph M is a pair 〈V,E′〉, where V is a set of
vertices, and E′ a set of values of labelled, directed edges.

The values assigned to all possible edges are {0, 1, ?} cor-
responding to {not-existing, existing, unknown}. We use E′
to denote a set of edges values in a partially-known multi-
graph, while E denotes the set of edges values in a com-
pleted multigraph. The partial state init is described as a
partially-known multigraph with an edge for each proposi-
tion p ∈ P that is either unknown or known to be true. That
is:

V ≡ Ob
E′ = {epred(b, u)|(b, u) ∈ V × V }

The existence of a directed edge epred(b, u) between two
vertices b and u for a predicate pred is described by the func-
tion Lpred : V × V → {0, 1, ?}. For example, let b and u
be two vertices in set V . For proposition p involving objects
b and u, Lpred(b, u) = 0 if ¬lp ∈ init, Lpred(b, u) = 1 if
lp ∈ init, and Lpred(b, u) =? otherwise. Known edges are
denoted with solid lines and unknown ones with dashed line
such as in Figure 1. Edges are directed in the order the object
symbols appear in the proposition. In the following we use
B and U to differentiate between vertices of outgoing and
incoming edges respectively. In our problem B = U = V .

Example
Consider the planning problem in figures 2 and 3. The
problem describes a robot that is able to move between
waypoints, pickup and manipulate objects, and put them
in boxes. The predicates: can-pickup, can-push,
can-stack-on, can-fit-inside describe whether it
is possible to perform certain actions upon objects in the en-
vironment. In this problem we restrict our attention to four
objects: robot, cup01, box01, and block01. In PDDL
(Fox and Long 2003) literals that are absent from the initial

751

Figure 1: The graph M representing the initial state in the
example problem. Solid edges correspond to propositions
known to be true, Lpred(b, u) = 1. Dashed edges correspond
to propositions whose value is unknown in the initial state,
Lpred(b, u) = ?.

(define (domain toy-domain)

(:requirements :strips :typing ...)

(:types

waypoint

vehicle

interactable

box toy - interactable

block - toy

gripper)

(:predicates

(connected ?wp1 ?wp2 - waypoint)

(at ?v - vehicle ?wp - waypoint)

(near ?v - vehicle ?wp - waypoint)

(can-pickup ?r ?interactable)

(can-push ?r ?interactable)

(can-stack-on ?interactable ?interactable)

(can-fit-inside ?interactable ?box)

...)

(:durative-action goto ...

(:durative-action pickup ...

(:durative-action putdown ...

(:durative-action stack ...

(:durative-action unstack ...

(:durative-action put_in_box ...

)

Figure 2: A fragment of the toy-domain. Some predicates
and the body of operators are omitted for space.

state are assumed to be false. However, in this initial state
those literals are assumed to be unknown.

A graph M is generated, the vertices of which are Ob :=
{robot, cup01, box01, block01}. The graph is shown in fig-
ure 1.

(define (problem toy-example-problem)

(:domain toy-domain)

(:objects

wp1 wp2 wp3 ... - waypoint

robot - vehicle

cup01 ... - interactable

box01 ... - box

block01 ... - block

)

(:init

(can-pickup robot cup01)

(can-push robot block01)

(can-push robot cup01)

(can-stack-on box01 block01)

(can-stack-on block01 cup01)

...)

(:goal ...)

)

Figure 3: A fragment of an example problem from the
tidy-room domain.

3 Predicting Missing Edges in a Multigraph

In this section we describe the procedure of predicting miss-
ing edges in a partially-known multigraph. We use M3V R
to extract similarities among vertices based on known edges
and to estimate missing edges, embodying the process of as-
sociative learning.

M3V R is a maximum-margin learning framework for
predicting incomplete data. The main idea is to capture the
hidden structure in the graph. The structure of the graph
represents the underlying structure of the environment. De-
pending on the regularities which occur in environments,
these structures can be less and higher complex. In the ex-
ample in figure 1 it is unknown if (robot can-pickup
block01). A prediction is made based on the available
information about the robot and block01. By observ-
ing existing relations, one can recognize that block01
and cup01 are similar. Thus it is predicted that robot
can-pickup block01 is true.

Generalized, the problem of predicting missing relations
is a problem of predicting directed edges from the vertices in
a set B to the vertices in a set U . We reconstruct a function
f : B × U → E from knowledge about existing edges. The
function f describes the mapping of vertices to a complete
set of edges E. In this way, the set of edges E′, representing
the known propositions, can be used to measure the simi-
larity between the elements of the vertex set V representing
the objects. Using this measure of similarity, missing edges,
representing unknown predicates, can be predicted.

For an origin vertex b and a destination vertex u, we define
the vector of edges

ebu = {Lpred(b, u)|pred ∈ Ps}

For example, in the graph given in Figure 1 there will be the

752

vector:

erobot,block01
= [Lcan−fit−inside(robot, block01),

Lcan−stack−on(robot, block01),
Lcan−push(robot, block01),
Lcan−pickup(robot, block01)]

= [0, 0, 1, ?]

Then, we define the projections of known edges E′ into a
set containing origin vertices B and destination vertices U
by

B′ = {b ∈ B|∃pred ∈ Ps : ∀U,Lpred(b, u)
=?}
and

U ′ = {u ∈ U |∃pred ∈ Ps : ∀B,Lpred(b, u)
=?}
Finally, the learning problem is given by a set of sample

items consisting of three elements (b, u, ebu), where (b, u) ∈
B′ × U ′, and ebu ∈ E′. To realize this learning task we set
up an optimization routine for maximum-margin regression.

Since the function f that defines how edges are assigned
to vertices can be very complex, a transformation is applied
to both vertices and edges, embedding them into Hilbert
spaces1. We assume that:

Condition 1 There exists a mapping φ from V into a Hilbert
space Hφ, with the kernel function κvertex defined on all
possible pairs B′ and U ′ of all subsets of B × U such that
κvertex(B

′, U ′) = 〈φ(B′), φ(U ′)〉.
Condition 2 Similarly there is another mapping ψ of E
into a Hilbert space Hψ with a kernel function κedge de-
fined for all pairs e1, e2 ∈ E such that κedge(e1, e2) =
〈ψ(e1), ψ(e2)〉.

Hφ and Hψ are feature representations of the domains of
B, U , and E. The vectors φ(·) and ψ(·) are called feature
vectors. This allows us to use the inner product as a measure
of similarity.

The mapping function can now instead be defined on fea-
ture vectors, i.e., F : Hφ → Hψ . It is indirectly and partially
given by the subset E′. The input for the mapping function
F is given by the feature vectors of vertices, and the output
is a feature vector of edges. To each b ∈ B representing an
origin vertex, we assign such a mapping Fb .

Reconstructing these mappings is done by finding a
vector-valued function that extends E′ to all possible pairs
of vertices by exploiting the latent interactions between the
edges. For each element b we assign a linear operator Wb

which maps Hφ to Hψ . Thus predictor functions can be cre-
ated as

ψ(ebu)←Wbφ(u), (b, u) ⊂ B ∩ U (1)

Wb is a tensor representing a linear transformation project-
ing elements of Hφ into Hψ , which needs to be learned. The
correlation between the vectors Wbφ(u) and ψ(ebu) is de-
scribed by the inner product 〈ψ(ebu),Wbφ(u)〉Hψ

. If the

1Hilbert spaces are high dimensional vector spaces with inner
product as scalar quantity associated to the each pair of vectors.

correlation between Wbφ(u) and ψ(ebu) is higher, the inner
product will have a greater value. As a consequence ψ(ebu)
can be predicted by a linear function Wbφ(u).

Known edges are used to determine Wb for each map-
ping. A learner is assigned to learn each mapping. The num-
ber of learners is equal to the number of vertices. To exploit
the knowledge about existing edges linking different vertices
of B, learners are coupled into one assembly by shared slack
variables representing the loss to be minimized by the learn-
ers with respect to constraints. Detailed descriptions of the
optimization procedure can be found in related work (Krivic
et al. 2015; Ghazanfar, Prügel-Bennett, and Szedmak 2012).
In this procedure there are as many constraints as the num-
ber of known edges in E′. Therefore the complexity of the
prediction problem is equal to O(|E′|), where |E′| stands
for the cardinality of the set E′.

Once determined, the linear mappings Wb allow us to
make predictions of missing edges for elements b. The value
of the inner product of the edge feature vector ψ(ebu) and
Wbφ(u) can be seen as a measure of confidence in that edge
belonging to a specific class (in this case 0 or 1):

conf{L∗
pred(b, u) = c} =

〈ψ(ebu|L∗
pred(b, u) = c),Wbφ(u)〉Hψ

where c ∈ {0, 1}, and L∗
pred(b, u) is an unknown value in

ebu ∈ E � E′ of predicate pred.
For each prediction L∗

pred(b, u), we update the existence
of the directed edges:

Lpred(b, u) = argmax
c∈{0,1}

conf{L∗
pred(b, u) = c}

Thus, the graph is completed.

Extending a Partial State with Predictions
Given a complete multigraph, we extend the partially-known
initial state init by adding literals to the state:

(lp ∈ init)↔ (Lpred(b, u) = 1)

where lp is the positive literal of proposition p, formed
from predicate pred between objects b and u. For exam-
ple, Figure 1 contains an edge representing the proposition
can-pickup(robot, block01).

Initially, Lpickup(robot, block01) = ?. After prediction,
Lpickup(robot, block01) = 1. Therefore, we add to the ini-
tial state the literal (can pickup robot block01).

4 Evaluation
To evaluate the approach, we integrated the prediction into a
planning and execution framework, ROSPlan (Cashmore et
al. 2015). With this framework we were able to generate ran-
domised problem instances from four domains: tidy-room,
inspired by the problem of cleaning a child’s room with an
autonomous robot presented in Krivic et al. (2015), in which
actions for manipulating objects have been added to the
robot’s capabilities; course-advisor, adapted from Guerin et
al. (2012); mars-rovers, a multi-robot version of the navi-
gation problem of Cassandra et al. (1996), in which several

753

Figure 4: Accuracy results of 10-fold cross validation obtained by variating number of objects and the known data percentage.

Figure 5: Comparison of accuracy, precision and recall with standard deviation for all 4 domains in case of 20 and 40 objects.
Each of the six graphs represents one slice through each of the four graphs of Figure 4, together with standard deviations.

robots are gathering samples; and persistent-auv, described
by Palomeras et al. (2016).

In each domain we generate initial states, varying the size
of the problem and percentage of initial knowledge. The
size is varied by increasing the number of objects from 5
to 100 by an increment of 5. This increases the number of
propositions quadratically. The initial knowledge is varied
by generating complete initial states and removing literals at
random. The percentage of initial knowledge was varied be-
tween 0.5% and 80% (14 values). For each combination of
parameters we randomly created 10 instances of a problem
utilizing 10-fold cross validation.

The prediction was applied to every problem. The result
of the prediction was compared to the ground truth. Figure 4
shows the mean accuracy in each domain. The accuracy is

the number of truly predicted relations as a percentge of all
missing relations.

The number of learned relations is large for each domain:
for a small percentage of initial knowledge (20%) the over-
all accuracy of the process is higher than 90% for most of
the problems except for the rovers domain with a number of
objects less than 20 (Figure 6). Accuracy increases with the
size of the problems. With 40 objects in the each problem
domain already 8% of known data is enough for accuracy
over 90%. Course-advisor and persistent-auv domains con-
tain more instances of objects and more predicates compared
with the other two domains. This results in larger networks.
Thus, for these domains, the accuracy is better for smaller
numbers of objects as well.

Since all four domains contain more negative than posi-

754

0 20 40 60 80 100

Number of objects

0

10

20

30

40

50

60
K

n
o
w

n
 D

a
ta

 (
%

)
tidy-room

mars-rovers

course-advisor

persistent-auv

Figure 6: Minimal percentage of known data which gives
stable accuracy equal to or higher than 90%.

tive literals (the average ratio is 76:1) we also analysed pre-
cision and recall for the category representing positive lit-
erals. Precision is the percentage of all literals predicted to
be positive which are predicted correctly. Recall is the per-
centage of positive literals in the ground truth which were
correctly predicted.

We also give a comparison for each domain for 20 and
40 objects in Figure 5. The course-advisor and persistent-
auv domains appear to be simpler than the tidy-room and
mars-rovers domains and accuracy is high with a very small
proportion of known data. However in the course-advisor
domain overfitting effects appear for high percentages of
known data and many objects (Figures 4 and 5).

With 20% of the initial predicates and with 20 objects re-
call and accuracy are higher than 90% for all domains except
mars-rovers. To examine the problem size conditions we ex-
tracted from the testing results which amount of the known
data is needed to achieve accuraccy higher than 90%. This
is shown in the Figure 6. Accuracy increases with the size of
the problems. With 40 objects in the each problem domain
already 8% of known data is enough for accuracy over 90%.
Course-advisor and persistent-auv domains contain more
instances of objects and more predicates compared with the
other two domains. This results in larger networks. Thus, for
these domains, the accuracy is better for smaller numbers
of objects as well.The accuracy depends on the structure of
used domains, their size and complexity of regularities in re-
lations between objects. Results show good predictions for
large and small problems with different complexities.

This combination of high accuracy, precision and recall
allows us to solve many otherwise unsolvable instances,
while maintaining a high degree of robustness. Without pre-
processing, no problems could be solved.

To analyse the effect of prediction in regard to the plan-
ning state space, we count the number of reachable actions
before and after prediction. Figure 7 shows the the number
of newly reachable actions as a fraction of the total number

no. of time to solve plan duration (s)
objects conting. predict. conting. predict.

2 2.57 2.00 210.00 160.00
3 19.55 2.03 320.00 290.00
4 94.34 2.11 450.00 440.00
5 346.99 2.25 580.00 510.00
6 807.28 2.37 670.00 590.00
7 - 2.61 - 660.00

Table 1: Average time to solve (mean in seconds) and av-
erage plan duration for problems in the tidy-room domain,
with varying numbers of objects. Times are for contingency
planning and planning after prediction. Initial knowledge
was 30%. Times in the prediction column include prediction
time. Planners were given a time limit of 1800 seconds.

of actions in the ground truth. The increase in reachable ac-
tions is very large, even for a small amount of initial knowl-
edge. These results show that after prediction, the number
of all reachable actions was very high in all experiments, al-
most the same as the number of actions enabled by ground
truth. This increase in valid actions enabled by the prediction
demonstrates an increase in size of reachable state space.

The prediction approach is not mutually exclusive to
approaches to contingency and conformant planning ap-
proaches. In fact, these approaches can be usefully com-
bined, as we discuss in the conclusion. However, we com-
pare against a purely contingent planning approach in or-
der to illustrate the benefit in complexity. Sensing actions

Figure 7: Number of newly reachable actions after predic-
tion divided by reachable actions in the ground truth. For
problems with 20 objects and varying amounts of initial
knowledge.

755

were introduced into the tidy-room domain, allowing the
agent(s) to determine the ground truth of unknown proposi-
tions. We used the planner CLG (Albore and Geffner 2009)
to solve problems in these extended domains, recording the
time taken to solve and the duration of the execution trace of
the contingent plan. These data are shown in Table 1.

Each problem was generated in the same way as described
above, with 30% initial knowledge. We compare these times
against the time taken to solve the problems by first applying
prediction and then solving using the planner POPF (Coles
et al. 2010), and validating against the ground truth using
VAL (Fox 2004). The times for POPF include the time taken
to perform the prediction. With 30% initial knowledge all
plans produced by POPF after prediction were valid.

These results show that while both approaches produce
valid plans given 30% initial knowledge, a prediction ap-
proach scales far better. By pre-processing the problem we
are able to avoid complexity at small cost to robustness, par-
ticularly when the initial knowledge is above 30%.

The plan duration shows a clear benefit of initial state pre-
diction. This improvement comes from the quality of the
plans produced by the respective planners, but also from
the need of sensing actions in the contingent plan, which
increase the duration by an average 31 seconds.

5 Conclusion
We have shown how an initial state with uncertainty can
be represented as a partially-known multigraph, how the
M3V R framework can be used to predict edges in such a
graph, and how these edges can then be reintroduced into
the initial state as predicted propositions.

Learning a world model can be improved with exploita-
tion of the obtained knowledge in the learning process itself.
An agent can build hypotheses on unknown relations in the
world model by associating among the existing and possible
relations.

This approach is performed offline and is not an execu-
tion strategy in itself. It is orthogonal to online approaches
in dealing with uncertainty in the initial state, and can be
combined. Moreover, while we compared with contingency
planning, these approaches are not exclusive.

In future work we intend to investigate how predictions
can be used in order to inform a contingent planning ap-
proach in two ways:

1. By using the confidence values of predictions, filtering the
number of unknown facts verifiable by sensing action. A
confidence threshold indicates a likely fact that should be
verified by a sensing action, while a high confidence can
be assumed true.

2. Directing the executive agent to perform sensing actions
that, while not immediately supporting actions leading to-
wards the goal, will allow for a higher confidence predic-
tion of many other facts involving similar objects.

Without integration into a more sophisticated execution
strategy, our evaluation has shown that this approach accu-
rately predicts a surprisingly large number of facts in struc-
tured domains, even with few objects.

Acknowledgements
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 (Specific Programme Cooperation,
Theme 3, Information and Communication Technologies)
under grant agreement no. 610532, SQUIRREL.

References
Albore, A.; Palacios, H., and Geffner, H. 2009. A
translation-based approach to contingent planning. In Pro-
ceedings of the 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI’09).
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proceed-
ings of the 5th International Conference on Artificial Intelli-
gence Planning Systems (AIPS’00), 52–61.
Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In Proceedings of the 22nd International joint conference on
Artificial Intelligence (IJCAI’11).
Bonet, B. 2009. Deterministic POMDPs revisited. In Pro-
ceedings of the 25th Conference on Uncertainty in Artificial
Intelligence (UAI’09), 5966.
Brafman, R. I., and Shani, G. 2014. Replanning in domains
with partial information and sensing actions. CoRR.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
Proceedings of the 25th International Conference on Auto-
mated Planning and Scheduling (ICAPS’15).
Cassandra, A. R.; Kaelbling, L. P.; and Kurien, J. A. 1996.
Acting under uncertainty: Discrete bayesian models for mo-
bile robot navigation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In Proceedings of the
20rd International Conference on Automated Planning and
Scheduling (ICAPS’10), 42–49.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Res. (JAIR) 20:61–124.
Fox, R. H. D. L. M. 2004. Val: Automatic plan validation,
continuous effects and mixed initiative planning using pddl.
In 16th IEEE International Conference on Tools with Artifi-
cial Intelligence (ICTAI’04).
Ghazanfar, M. A.; Prügel-Bennett, A.; and Szedmak, S.
2012. Kernel-mapping recommender system algorithms. In-
formation Sciences 208:81–104.
Guerin, J. T.; Hanna, J. P.; Ferland, L.; Mattei, N.; and Gold-
smith, J. 2012. The academic advising planning domain. In
Proceedings of the 3rd Workshop on the International Plan-
ning Competition at ICAPS, 1–5.
Hill, W. F. 1984. Conditioning and associative learning. The
American Journal of Psychology 97(3):472–474.

756

Hoffmann, J., and Brafman, R. I. 2005. Contingent plan-
ning via heuristic forward search witn implicit belief states.
In Proceedings of the 15th International Conference on Au-
tomatedPlanning and Scheduling (ICAPS’05), 71–80.
Krivic, S.; Szedmak, S.; Xiong, H.; and Piater, J. 2015.
Learning missing edges via kernels in partially-known
graphs. In European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning.
Muise, C. J.; Belle, V.; and McIlraith, S. A. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI’14), 2322–2329.
Palacios, H., and Geffner, H. 2006. Compiling uncertainty
away: Solving conformant planning problems using a clas-
sical planner (sometimes). In Proceedings of the 21st Con-
ference on Artificial Intelligence (AAAI’06).
Palomeras, N.; Carrera, A.; Hurts, N.; Karras, G. C.; Bech-
lioulis, C. P.; Cashmore, M.; Magazzeni, D.; Long, D.; Fox,
M.; Kyriakopoulos, K. J.; Kormushev, P.; Salvi, J.; and Car-
reras, M. 2016. Toward persistent autonomous intervention
in a subsea panel. Autonomous Robots.
Pavlov, I., and Anrep, G. 2003. Conditioned Reflexes. Dover
Publications.
Sammy Davis-Mendelow, Jorge A. Baier, S. A. M. 2013.
Assumption-based planning: Generating plans and explana-
tions under incomplete knowledge. In Proceedings of the
27th conference on Artificial Intelligence (AAAI’13), 209–
216.
Smith, D. E., and Weld, D. S. 1998. Conformant graph-
plan. In Paper presented at the meeting of the AAAI/IAAI
(AAAI’98), 889–896.
Szedmak, S.; Ugur, E.; and Piater, J. 2014. Knowledge prop-
agation and relation learning for predicting action effects. In
Intelligent Robots and Systems (IROS’14), 623–629.

757

