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Abstract 12 

The past decade has seen rapid development in DNA methylation (DNAm) microarrays, including 13 

the Illumina HumanMethylation27 and HumanMethylation450 (450K) chips, which have played 14 

an essential role in identifying and evaluating age-related (AR) DNAm markers in different tissues. 15 

Recently, a new array, the Illumina MethylationEPIC (EPIC) was introduced, with nearly double 16 

the number of probes as the 450K (~850,000 probes). In this study, we test these newly added 17 

probes for age association using a large cohort of 754 DNAm profiles from blood samples assayed 18 

on the EPIC BeadChip, for individuals aged 0-88 years old. 52 AR CpG sites (Spearman’s abs(rho) 19 

>0.6 and P-value <10-83) were identified, 21 of which were novel sites and mapped to 18 genes, 20 

nine of which (LHFPL4, SLC12A8, EGFEM1P, GPR158, TAL1, KIAA1755, LOC730668, 21 

DUSP16, and FAM65C) have never previously been reported to be associated with age. The data 22 

were subsequently split into a 527-sample training set and a 227-sample testing set to build and 23 

validate two age prediction models using elastic net regression and multivariate regression. Elastic 24 

net regression selected 425 CpG markers with a mean absolute deviation (MAD) of 2.6 years based 25 

on the testing set. To build a multivariate linear regression model, AR CpG sites with R2 > 0.5 at 26 

FDR < 0.05 were input into stepwise regression to select the best subset for age prediction. The 27 

resulting six CpG markers were linearly modelled with age and explained 81% of age-correlated 28 

variation in DNAm levels. Age estimation accuracy using bootstrap analysis was 4.5 years, with 29 

95% confidence intervals of 4.56 to 4.57 years based on the testing set. These results suggest that 30 

EPIC BeadChip probes for age estimation fall within the range of probes found on the previous 31 

Illumina HumanMethylation platforms in terms of their age-prediction ability.  32 
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1 Introduction  38 

Aging can be described as the decline in a set of vital cellular functions that occur over time [1]. 39 

This consequently disrupts the homeostatic regulation of the body, which leads to various age-40 

related (AR) diseases such as cancer, and cardiovascular disease. Due to its significant association 41 

with chronological age, DNA methylation (DNAm) has been the focus of much attention in the 42 

field of epigenetics, and in particular forensic epigenetics, which has proven a more significant 43 

association than those found with other factors such as telomere length, mitochondrial dysfunction, 44 

loss of proteostasis, and stem cell exhaustion [2]. Thus, age-related (AR) DNAm sites have become 45 

important and robust biomarkers for accurately measuring biological age. Aging has a profound 46 

effect on DNAm pattern, and so this also affects gene expression, which results in susceptibility 47 

to diseases and various health outcomes. Predicted age, also known as “DNAm age” or “epigenetic 48 

age” has been found to be related to frailty [3], cognitive/physical fitness in the elderly [4], 49 

Parkinson’s disease, Alzheimer’s disease-related neuropathology [5], and can predict overall 50 

mortality in humans [6]. In addition to clinical applications, DNAm age has also received a great 51 

deal of attention in forensic epigenetic studies, because of its accuracy in age estimation. This can 52 

be implemented in forensic investigations to predict the age of unknown individuals, using their 53 

biological samples recovered from the crime scenes, which can provide extremely valuable 54 

intelligence information for a police investigation [7-9].   55 

DNAm is an epigenetic mechanism that involves the addition of a methyl group to the 5’ position 56 

of cytosine residues that are mostly found in form of cytosine-guanine dinucleotide sequences 57 

(known as CpG sites). Historically, the only way to study the association between chronological 58 

age and DNAm level was to measure the global decrease in the content of the 5’-methylated 59 

cytosine in aged cultured cells [10]. However, technologies to analyse DNAm in gene-specific and 60 

genome-wide manner have developed significantly in recent years. For instance, gene-specific 61 

assays such as EpiTect, SNaPshot, EpiTYPER and targeted bisulfite sequencing have become 62 

prevalent in DNAm-related studies for their sensitive and reliable quantification of the DNAm 63 



level [11-14]. However, genome-wide assays that provide the opportunity to quantify methylation 64 

level at a single base level, such as the Illumina Infinium HumanMethylation BeadChip 65 

technology, have become the main choice for many research groups carrying out epigenome-wide 66 

association studies (EWAS). The introduction of two Illumina HumanMethylation BeadChips, 67 

namely the HumanMethylation27 (27K), and HumanMethylation450K (450K) BeadChips, was 68 

crucial for identifying a huge number of AR CpG sites and genes in the literature. In addition, the 69 

public genomic databases have become a rich source of epigenome-wide DNAm data, from a large 70 

body of epigenetic studies based on different human tissues [7].  71 

The first two blood specific EWAS looking for an association with age, conducted by Rakyan et 72 

al. [15] and Bell et al. [16], were based on Illumina Infinium 27K BeadChip. A total of 775 age-73 

differentially methylated regions (aDMRs) were identified, 90% of them located within promoters 74 

of genes [15]. Moreover, it was demonstrated that AR CpG markers were predominantly 75 

hypermethylated with age, which may indicate that aberrant hypermethylation of the promoter 76 

regions of genes is associated with cancer, and AR diseases [17]. The aDMRs identified in both 77 

studies were limited to the methylation sites that were covered by the 27K probes (~27,000 CpG 78 

sites), which were relatively sparse and promoter-specific [16]. Thus, Illumina developed a new 79 

chip, the Infinium 450K BeadChip, which targeted ~450,000 CpG sites covering 99% of RefSeq 80 

genes [18], and a greater number of CpG islands, shores, FANTOM4 promoters [19], and 81 

enhancers [20]. This has allowed researchers to interrogate more genomic regions spanning a wide 82 

range of genes.  83 

Garagnani et al. [21] were the first to study aging in whole blood using the 450K BeadChip, and 84 

their study consisted of a small cohort of 64 individuals aged from 9 to 83 years old. Although 85 

they stated that they identified 163 AR CpG sites, only the top nine of these were reported in their 86 

paper [21]. These CpG sites were mapped to CpG islands located in the promoter region of three 87 

genes, namely, ELOVL2, FHL2 and PENK. Furthermore, a cross-sectional study of 965 88 

participants (aged 50-75 years), conducted by Florath et al. [22] also found 162 AR CpG sites, 89 

eight of which were the same to the nine CpG markers that were reported by Garagnani et al. 90 

(2012). The strong relationship between age and methylation level for the identified AR CpG sites 91 

prompted other researchers to exploit them for various applications, such as age estimation for 92 

forensic and health purposes [6,23-26]. For example, the first blood specific DNAm age prediction 93 



model was built by Hannum et al. [27]. Their model consisted of 71 CpG markers and was trained 94 

on 482 DNAm profiles (from individuals aged 19 to 101 years) assayed on the 450K BeadChip, 95 

along with clinical variables such as sex and Body Mass Index (BMI). The mean absolute deviation 96 

(MAD) between chronological age and estimated age for their model was 3.9 years when based 97 

on the training samples, and 4.9 years based on independent 174 testing samples [27].    98 

Recently, a new array, the Illumina MethylationEPIC (EPIC) BeadChip was introduced, 99 

containing over 860,000 probes, nearly double the number on the 450K. Not all the 450K probes 100 

were included in the new EPIC BeadChip, ~90% of them were included, but others were removed 101 

as a result of reports of poor performance [28]. The newly added probes provide a higher coverage 102 

of various genomic regions, such as RefSeq genes, ENCODE [29] and FANTOM5 enhancers [30], 103 

DNase hypersensitive sites, miRNA promoter regions, differentially methylated sites in tumor 104 

tissues, and non-coding regions such as CpG islands, shores, shelves, and open sea [31]. The EPIC 105 

BeadChip is a promising tool to further our understanding of DNAm mechanisms in human 106 

development and disease, and in particular the DNAm landscape of distal regulatory elements. In 107 

this paper, we perform a comprehensive evaluation of blood-specific AR CpG sites found on the 108 

new EPIC BeadChip, and identify their associated genes, which will provide new insights for 109 

researchers in various epigenetic and genetic disciplines. Enhancing the accuracy of DNAm based 110 

age-prediction models, by searching for new AR CpG sites on the EPIC BeadChip with better age 111 

prediction accuracy, will aid forensic investigations in criminal cases where biological samples of 112 

unknown origin have been recovered. For this reason, we build an age prediction model using the 113 

probes on the EPIC BeadChip, which we test to determine how well it performs in comparison to 114 

other models constructed using the previous Illumina HumanMethylation platforms (27K and 115 

450K).  116 

2 Materials and methods 117 

2.1 EPIC data sets  118 

A total of 756 DNAm profiles assayed on the EPIC BeadChip in individuals aged 0-88 years old, 119 

were assembled by combining three separate data sets retrieved from the National Centre for 120 

Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), which is an online genomic 121 

data repository. The accession number of each data set and brief description of the samples can be 122 



found in Table 1. To ensure identification of AR CpG sites was not biased towards a specific range 123 

of chronological ages, whole cord blood samples were included in this study, which represent time 124 

zero in human age (Figure 1).   125 

Table 1 Description of the three data sets used in this study. 

Accession number DNA origin n (Prop. female) Median Age(range) Citation 

GSE103189 Whole cord blood 8 (0.38) 0 (0) Dou et al. [32] 

GSE123914 Whole blood 69 (1) 59 (51-65) Zaimi et al. [33] 

GSE116339 Whole blood 679 (0.59) 53 (23-88) Curtis et al. [34] 

 126 

 127 

 128 

Figure 1 Distribution and descriptive statistics relating to the chronological 129 
 ages of individuals who provided the samples used in this study. 130 

 131 
 132 

 133 

The first data set (GSE103189) was obtained from the study conducted by Dou et al. [32], which 134 

aimed to evaluate the cell composition and DNAm differences between cord blood buffy coat and 135 

whole cord blood samples, which revealed no significant differences between them and thus they 136 

can be analytically combined and compared. The next data set (GSE123914) was obtained from a 137 

longitudinal study by Zaimi et al., which aimed to examine the variation in DNAm level over a 1-138 

year period in whole blood samples collected from 35 healthy women [33]. It was shown in this 139 



study that the median intraclass correlation coefficient across all CpG sites was 0.19, which 140 

suggests a wide variation in DNAm stability over a 1-year period. The last data set (GSE116339) 141 

contained 679 whole blood samples, retrieved from a study conducted by Curtis et al. [34], which 142 

aimed to investigate whether exposure to polybrominated biphenyl (PBB) was associated with 143 

DNAm changes in peripheral blood samples. In this study, a total of 1,890 CpG sites were 144 

identified that were associated with total PBB levels [34].  145 

2.2 EPIC data processing  146 

The raw files of each data set were downloaded using GEOquery package, which runs in R 147 

software [35]. The downloaded files consist of raw signal intensities of the red and green channel. 148 

The files were imported into R and converted into methylated and unmethylated signals by 149 

applying the ‘read.metharray.exp’ function in the minfi package [36]. Although the number of 150 

CpG probes on the EPIC BeadChip is 865,918, the raw file comes with an additional 186,782 151 

probes (giving a total of 1,052,641 probes). These additional probes were designed for quality 152 

control measures, such as background correction, negative controls, bisulfite conversion controls, 153 

and hybridisation controls [37].  154 

As was the case on the 450K BeadChip, probes on the EPIC BeadChip also have two chemistry 155 

designs, Infinium I and II, which possess different DNAm value distributions, introducing 156 

unwanted variation into the methylation values [20]. Thus, the two probe designs need to be 157 

normalised to render them comparable to each other, which was done using subset quantile 158 

normalisation implemented in the preprocessQuantile function in the minfi package [38]. In 159 

addition to the probe type correction, the same function also filtered out probes that did not meet 160 

the quality control threshold and had a detection P-value > 0.05 in at least one sample. In addition, 161 

it filtered out samples with significantly lower values in one of the two signal intensities (red/green 162 

channels) compared to the other, which is a quality control measure used to identify sample 163 

outliers. The data consist of DNAm signals represented by a Beta value that varies between 0 164 

(hypomethylated) to 1 (hypermethylated), with a bimodal distribution. To ensure that the samples 165 

and probes were high quality, any sample that deviated from the normal bimodal pattern was 166 

removed from the data set. Finally, probes associated with SNPs and cross-reactive CpGs were 167 



removed from downstream analysis using the dropLociWithSnps and dropCrossReactiveProbes 168 

functions in the minfi package [36].  169 

2.2.1 Testing for potential confounders   170 

Given that variation in DNAm has been found to be associated with various factors such as cell 171 

type, gender, alcohol intake, smoking, obesity, and certain drugs, it is important to account for 172 

these factors as they may cause a confounding effect in EWAS [39]. One of the methods used to 173 

discover any hidden relationship between these covariates and the samples is Singular Value 174 

Decomposition (SVD). After implementing SVD on the combined data set, segregation was found 175 

between the samples, which was based on gender (Figure S2A). For this reason, CpG probes 176 

targeting sex chromosomes were filtered out from the downstream statistical analysis (Figure 177 

S2B). Another potential confounder in this study was the PBB level, which was measured in the 178 

blood samples in the third data set (GSE116339). Since it has been shown that the level of PBB in 179 

blood has a significant effect on 1,890 CpG sites, this could also have a confounding effect if it is 180 

found to be associated with chronological age. Thus, regression analysis was conducted between 181 

PBB level and chronological ages to reveal any linear association between them. Although the P-182 

value of the test was significant (P-value = 1.4x10-9), the R2 was extremely low (0.05), which 183 

indicates that age only explains 5% of the variation in the level of PBB in blood. Finally, batch 184 

effects were removed in the data set using a nonparametric empirical Bayes framework method 185 

implemented in the Combat function within the SVR package that runs on R software [40,41].    186 

2.2.2 Estimating and adjusting for cell type composition  187 

It has been demonstrated that the constituents of blood change with aging, thus many DNAm 188 

studies adjust for it by including the change in cell composition over time as a covariate in the 189 

regression model for statistical analysis [33-35]. The blood cell composition was estimated using 190 

an approach proposed by Housemen et al. [42], which is implemented in the estimateCellCounts 191 

function in the minfi package [36]. This function estimated the proportion of the six blood-cell 192 

types in each sample: CD8T, CD4T, natural killer cell, B cell, monocyte and granulocyte. The 193 

estimated cellular proportions were included in the final multivariate linear regression model.  194 



2.3 Statistical analysis  195 

2.3.1 Identifying AR CpG sites  196 

The DNAm Beta values in the data set were converted to M values (M= log2 Beta/(1-Beta)) using 197 

the M2Beta function in the wateRmelon package. This transformation was done in order to satisfy 198 

the normality and homoscedasticity assumptions of the downstream statistical analyses [43]. 199 

Spearman’s correlation coefficients between DNAm at each CpG probe and the chronological ages 200 

of the samples were calculated using R software. The selection criteria for AR CpG probe 201 

candidates were based on two criteria: absolute Spearman’s rho 0.6, and false discovery rate 202 

(FDR) at 0.05. The adjusted P-value was calculated using compute.FDR implemented in the 203 

brainwaver package. The resulting AR CpG probes were annotated using “Infinium 204 

MethylationEPIC v1.0 B4 Manifest File,” released by Illumina, which is based on the 205 

hg19/GRCh37 human genome assembly.  206 

2.3.2 Building age prediction models  207 

The EPIC BeadChip data were then used to build an age prediction model to determine whether 208 

the CpG probes it possesses have better age estimation capabilities compared to the probes found 209 

on the old Illumina HumanMethylation platforms such as 27K and 450K. The intended application 210 

of the age prediction model will determine the type of method that should be used to build it. For 211 

example, if the model will be used for health applications, the number of markers in the model 212 

would not pose an issue since the DNA in the sample would usually be in adequate quantities. 213 

However, for forensic applications, the number of markers in the model should be kept to a 214 

minimum as the quantity of DNA in the majority of forensic samples is low and surveying large 215 

numbers of makers requires reasonably large amounts of DNA, due to the destructive procedures 216 

involved in DNAm analysis. Therefore, two methods were used to build prediction models, elastic 217 

net regression, and multivariate linear regression.   218 

Using the sample function in R, the data set was randomly split into a training set and a testing set, 219 

with equal relative representation of the various age groups within the sets. The number of samples 220 

in the training set was 527, which is 70% of the original set, and 227 samples in the testing set 221 

(30%). The sample size of both the training and testing sets in these types of study are important 222 



considerations. The sizes of these data sets in this study were considered to be sufficient, as 223 

demonstrated and suggested by Horvath [44] who studied the factors that influence the accuracy 224 

of age prediction. They found that the sample size is not significantly (P-value = 0.21) correlated 225 

with the accuracy of age prediction, as long as it is 100 or greater. That is, the prediction accuracy 226 

reaches plateau when the sample sizes of both training and testing sets exceed 100 samples. Elastic 227 

net regression was performed using the glmnet package in R, and the parameters used were those 228 

recommended by Horvath (2013). The feature (CpG marker) selection was based on ten-fold cross-229 

validation, that is, in each fold the training set was split into ten parts, one part served as training 230 

set and the rest as validation sets. Then the average error and standard deviation over the ten-folds 231 

was computed, and the best subset of markers was determined as the set with the lowest estimation 232 

error. The selected subset of CpG markers was then validated on the 227 independent testing 233 

samples, and the mean absolute deviation (MAD) between the predicted and chronological age 234 

was calculated.  235 

To build an age prediction model with a minimum number of CpG markers, age was linearly 236 

regressed on the DNAm level at each CpG site in the training data set, and then markers with R2 237 

>0.5 at FDR <0.05 were selected. The selected markers were input into a stepwise regression to 238 

select the best subset for use in the age prediction model. The stepwise regression was carried out 239 

using the leaps package in R, which constructs predictive models with all possible subsets of the 240 

input CpG sites, then selects the model with the lowest Bayesian Information Criterion (BIC) 241 

value, which would have the best predictive ability. The selected CpG markers were then 242 

combined in a multivariate linear regression to build the model, and then validated on the testing 243 

data set. The model was re-evaluated by bootstrap analysis to ensure its prediction robustness. This 244 

involves sampling the testing data set with replacement 10,000 times and calculating MAD values 245 

between the predicted age and the chronological age for each bootstrap cohort. From the 246 

distribution of the bootstrap observations, the mean of the MAD value was calculated along with 247 

the 95% confidence intervals around that mean. 248 

 249 



3 Results 250 

3.1 EPIC data sets  251 

The purpose of this investigation was to identify AR CpG markers on the EPIC BeadChip. The 252 

analysis initially included 756 samples from three different data sets, however two blood samples 253 

(samples GSM3228582, and GSM3228722) from GSE116339 had abnormal Beta value 254 

distributions, as shown in the density plot (Figure S1), and thus were removed from the 255 

downstream analysis. The number of samples remaining for analysis was 754 samples, and the 256 

number of CpG sites after probe filtration was 816,127 probes. Testing for confounding variables 257 

was performed by examining how PBB level variation can be explained by age. The results (Table 258 

2) showed that age only explains 5% (P-value <1.4x10-9) of the variation in PBB levels in blood. 259 

Batch effects were removed using the Combat function in R and then visualised using SVD to 260 

ensure there was no hidden structure in the data set (Figure S2).  261 

 262 

Table 2 Linear regression analysis between PBB levels in each sample and 

the chronological age of the individual donor. 

 

Term 
Estimate     

(n = 673) 
P-value R-squared P-value 

(Intercept) -2.20 0.00 0.05 0.00 

Age 0.03 0.00   

 263 

 264 

3.1.1 Estimating and adjusting for cell type composition  265 

The composition of different cell types in each sample was estimated and then tested for 266 

association with chronological age. As can be seen in Figure 2, CD4+ T cells, and natural killer 267 

(NK) cells had the strongest correlation with age (rho = -0.35 and 0.32 respectively) compared to 268 

the other cell types (monocytes, CD4+, granulocytes, and B-cells), which gave rho values of 0.19. 269 

Therefore, if not adjusted, the change in DNAm level at AR CpG sites could be explained by the 270 

change in cell composition, rather than by aging in individuals. For this reason, and to avoid 271 

identifying false positive AR markers, each identified AR CpG site in this study was adjusted for 272 

cell composition using multivariate linear regression.  273 

 274 

 275 



 276 

  

  

  

Figure 2 Blood cell composition change with age. The estimated proportions of the six blood cells; (A) monocytes (Mono), (B) 

B cells, (C) natural killer (NK) cells, (D) granulocytes (Gran), (E) CD8+ T cells, and (F) CD4+ T cells in the samples are plotted 

against age. Spearman’s correlation coefficients are reported for each composition proportion estimate and age. The red lines 

are weighted regression (Loess) lines fit to the data.  
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3.2 AR CpG markers on the EPIC BeadChip  278 

AR CpG sites were selected on the basis of the Spearman’s rank correlation test between 279 

chronological age and DNAm level, based on M values. The cut-off value for selecting AR 280 

markers was an absolute Spearman’s coefficient (rho) > 0.6 at FDR <0.05, as recommended by 281 

various studies [45-47]. A total of 52 AR CpG sites passed these conditions (Figure 3A), 19 of 282 

which were positively correlated (hypermethylated) and 33 negatively correlated 283 

(hypomethylated) with age (Table S1). The AR CpG sites with the top two highest correlation 284 

coefficients, were located in the ELOVL2 gene, which is the most prominent gene associated with 285 

age in various tissues, as found in a number of studies (Figure 3B) [21,25,48]. Many of the markers 286 

we identified were also identified in other studies that used a similar study design but using the 287 

Illumina HumanMethylation450K BeadChip. For example, of the nine AR markers discovered by 288 

Garagnani et al. (2012), five were also identified in our study. However, of the remaining four 289 

sites, one was dropped by SNP filtration and three had abs(rho) <0.5. In another study, Florath et 290 

al. (2015) identified 162 AR CpG sites, of which ten were absent from the EPIC BeadChip, two 291 

were dropped after SNP filtration, and only 53 were found with abs(rho) >0.5. In comparing the 292 

correlation coefficients of the same AR probes on the two different platforms (450K and EPIC), it 293 

was observed that the magnitude of the coefficient values was smaller on the EPIC platform, and 294 

for some probes their age association is no longer observed. For instance, nine markers identified 295 

by Xu et al. (2015) as highly AR CpG sites (with at least 0.8 abs(rho)) on the 450K platform, were 296 

found to have abs(rho) <0.38 on the EPIC BeadChip, which is under the threshold for significant 297 

association with age.  298 

 299 

 300 



 

   

Figure 3 (A) Manhattan plot of P-values from Spearman’s correlation test between DNAm level at each CpG site and 

chronological ages in the data set. (B) Scatter plots for the top three AR CpG sites found on the EPIC BeadChip. 

 301 

3.2.1 Novel AR CpG sites on EPIC BeadChip  302 

From the 52 identified AR CpG sites in this study, 21 CpG sites were from the newly added probes 303 

on the EPIC BeadChip, and so these can be considered novel AR CpG sites since they have not 304 

been reported in the literature before (Table 3). In addition, they map to 18 genes, nine of which 305 

(LHFPL4, SLC12A8, EGFEM1P, GPR158, TAL1, KIAA1755, LOC730668, DUSP16, and 306 

FAM65C) have also never been reported in the literature as being associated with age. The majority 307 

of these sites (16) were hypomethylated, and five were hypermethylated with age (Figure 4). The 308 

highest positively correlated novel AR CpG site was cg17268658 with rho = 0.76 (P-value 1.9x10-309 

141), associated with the FHL2 gene, which has been reported in many age association studies 310 

[22,24,26]. The highest negatively correlated CpG site was cg07323488 with rho = -0.69 (P-value 311 

(A) 

(B) 

FDR cutoff   

      line 



2.6x10-106), which is linked to a pseudogene known as EGFEM1P. Scatter plots of age versus 312 

DNAm level for the top four most highly correlated AR CpG sites can be seen in (Figure  5).  313 

To account for cell type heterogeneity in blood, the estimated cell composition proportions were 314 

included in the multiple linear regression model, and the adjusted estimate was calculated [49]. 315 

For the 21 novel AR CpG markers, the adjusted estimates after the addition of cell compositions 316 

as covariates alongside age in the regression models were within 5% of the original estimates (from 317 

the simple regression model that had only age as predictor). This indicates that the DNAm levels 318 

at the identified CpG sites were associated with age and not confounded by cell type composition 319 

[50].  320 

 321 

 322 

 323 

 324 
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 332 



Table 3 The 21 novel AR CpG sites from the newly added probes on the Illumina EPIC BeadChip, identified by Spearman’s 

correlation test with a cutoff value of abs(rho) >0.6 at FDR <0.05. Probes are sorted from the highest positively to the highest 

negatively correlated with age.   
 

Probe's ID UCSC1 Ref. Gene name Genomic Location Chr.2 Pos.3 Spearman's rho 

cg17268658 FHL2 TSS200 chr2 106015745 0.76 

cg24866418 LHFPL4 Body chr3 9594082 0.66 

cg13206721 GPR158 TSS1500 chr10 25463350 0.64 

cg12841266 LHFPL4 Body chr3 9594093 0.63 

cg27099280 CELF6 1stExon chr15 72612204 0.63 

cg03650729 TAL1 5'UTR chr1 47692625 -0.6 

cg15109150 FAM65C TSS1500 chr20 49308830 -0.6 

cg09240238 LOC730668 Body chr22 46402573 -0.6 

cg16789844 PDE1C TSS200 chr7 32339213 -0.61 

cg01855540 DUSP16 TSS1500 chr12 12716653 -0.61 

cg17015290 KIAA1755 Exon Body chr20 36850842 -0.61 

cg03776853     chr22 36461577 -0.61 

cg23719650     chr3 193988507 -0.62 

cg25167618 SLC12A8 Body chr3 124840296 -0.63 

cg11218872     chr3 193988737 -0.63 

cg08587685 ABLIM1 Body chr10 116392206 -0.63 

cg08745595 F5 TSS1500 chr1 169556012 -0.64 

cg05179292 C1R Body chr12 7244621 -0.64 

cg17403084 PXN TSS1500 chr12 120704034 -0.64 

cg13552692 CCDC102B 5'UTR chr18 66389447 -0.67 

cg07323488 EGFEM1P Body chr3 168185313 -0.69 

1 Based on UCSC Genome Browser database 

2
 Chromosome  

3 
Position based on the human assembly GRCh37, also known as hg19. 
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Figure 4 Heat map illustrating methylation level at 21 novel AR CpG markers for each sample in the training 

data set, ordered by chronological age across samples. The methylation level in each sample is indicated by 

the Z-score, where red indicates a site is hypermethylated and blue is hypomethylated. Hierarchical clustering 

of the CpG markers is presented on the left-hand side of the heat map. 
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Figure  5 Scatter plots of M values versus chronological age for the top two positively and two negatively correlated 

AR CpG sites from the newly added probes on the EPIC BeadChip.   

 354 
 355 

3.3 Blood specific age prediction models  356 

In several previous studies where age has been modelled as a function of CpG methylation status 357 

for sites in the genome, elastic net regression has been used to perform both feature selection and 358 

model building [27,44]. Elastic net regression is ideal for constructing predictive models in cases 359 

where the training data has many observations relative to the number of samples [27]. Elastic net 360 

regression was performed on the dataset of 816,127 CpG sites and selected 425 AR CpG sites 361 

(Table S2) across 527 blood samples. The prediction model containing the selected markers was 362 

evaluated on the training data set using one round of ten-fold cross-validation. The prediction 363 

accuracy of the model containing the 425 CpG markers based on the training data set was equal to 364 

0.68 years (MAD). Furthermore, its performance was evaluated using an independent validation 365 

data set containing 227 blood samples, which resulted in an MAD of 2.6 years, and a Pearson’s 366 



correlation coefficient (r) between the predicted and chronological age of 0.97 (95% CI: 0.96–367 

0.98).  368 

To build an age prediction model with the minimum number of AR CpG markers, two steps were 369 

carried out. The first step was regressing age on DNAm level at each CpG site in the training data 370 

set, and then markers with R2 >0.5 at FDR <0.05 were selected. Ten CpG markers met this 371 

condition, and only two of them were from the newly added probes on the EPIC BeadChip. The 372 

second step was to select the best subset of these sites to build an age prediction model. The 373 

stepwise regression selected six markers as the best subset for age prediction, which contained 374 

only one newly added EPIC BeadChip probe (Table 4). This model explained 81% of the total 375 

DNAm levels in the blood samples with prediction accuracy of 4.5 years MAD based on the 376 

training data set, and 4.6 years based on the testing data set. The accuracy rate based on bootstrap 377 

analysis was 4.5 years, with 95% confidence intervals (CI) of 4.56 to 4.57 years. The correlation 378 

(r) between predicted age and chronological age was 0.9 (95% CI: 0.88 – 0.93) (Figure 6). Finally, 379 

to avoid gender bias in age prediction, male and female samples in the testing data were separated 380 

and their MAD values were assessed separately, to determine whether the difference between them 381 

was significant. A t-test showed that there was a non-significant (P-value = 0.3) difference in the 382 

prediction accuracy for males (MAD = 4.4 years) compared to females (MAD = 4.9 years).   383 

 384 

Table 4 Multivariate linear regression analysis between DNAm levels at six CpG 

sites and age in the training data set. The CpG marker in bold is the only site 

exclusively found on the EPIC BeadChip.   

Term 
Estimate     

(n = 673) 
P-value R-squared P-value 

(Intercept) 56.10 0.00 0.81 0.00 

cg18933331 -9.86 0.00   

cg10501210 -2.68 0.00   

cg06639320 6.58 0.00   

cg24866418 5.55 0.00   

cg16867657 7.50 0.00   

cg17110586 8.14 0.00   

 385 
 386 
 387 
 388 
 389 



  

 
 

Figure 6 Performance of the multivariate linear regression model consisting of six AR CpG markers. The histograms show age 

range in the data and the scatter plots show the accuracy of the model in A) The training set of 527 samples, and B) The testing 

set of 227 samples. 

 390 
 391 

4 Discussion  392 

In this present study, we examined 754 whole blood DNAm profiles assayed on the EPIC 393 

BeadChip, and found 52 AR CpG sites, of which 31 were from the 27K and 450K platforms, and 394 

21 were novel AR sites added to the EPIC BeadChip. Apart from these novel sites, all identified 395 

AR sites were previously found by different studies who used blood DNAm profiles assayed on 396 

the 450K BeadChip. However, their correlation coefficient values on the EPIC BeadChip were 397 

lower compared to their values on the 450K array. Although these differences between studies are 398 

expected, and may be due to differences in sample size, age range, and the ethnicity of individuals, 399 

B) 

A) 



an unexpected outcome was that some AR CpG sites with high correlation coefficients on the 400 

450K platform were not associated with age on the EPIC BeadChip. Probes that completely lost 401 

their association with age in this study were originally identified in studies with sample sizes below 402 

the recommended, which is 100 samples [44]. For example, the number of samples in Xu et al. 403 

(2015) was 16 samples, and all their identified AR CpG sites were found to be weakly (abs(rho) < 404 

0.38) associated with age in our study. This suggests that AR probes identified in studies with a 405 

small sample size would be more likely to be sample-specific than tissue-specific.  406 

The 21 novel AR CpG sites identified in our study map to 18 genes, nine of which have already 407 

been found to be associated with age, namely ELOVL2, FHL2, CELF6, F5, ABLIM1, PXN, 408 

PDE1C, C1R, and CCDC102B. This indicates that in some cases, adding new probes targeting 409 

different genomic locations within the same gene confirms the results obtained from previous 410 

EWAS, which, in our case, confirmed the association of these genes with age. In contrast, eight of 411 

the remaining nine genes (LHFPL4, SLC12A8, GPR158, TAL1, KIAA1755, LOC730668, 412 

DUSP16, and FAM65C) were previously targeted by probes that have been shown not to be 413 

associated with age. However, by targeting different genomic locations within these same genes, 414 

significant age association has been identified. The final gene identified in this study was from a 415 

gene newly-targeted on the EPIC BeadChip, EGFEM1P.    416 

From the nine newly identified AR genes, two become hypermethylated with age (LHFPL4 and 417 

GPR158), and seven become hypomethylated with age. LHFPL4 is located on chromosome three 418 

and encodes a subset of the superfamily of tetraspan transmembrane proteins, which is a critical 419 

regulator of postsynaptic GABA clustering in hippocampal pyramidal neurons [51]. Its differential 420 

methylation has previously been found to be a biomarker for the early detection of cervical cancer 421 

[52]. GPR158 is located on chromosome ten and encodes a G protein-coupled receptor, which is 422 

implicated in many physiological and disease processes [53]. The protein encoded by DUSP16 on 423 

chromosome 12 is a dual specificity phosphatase, implicated in various cellular processes 424 

including cell differentiation [54]. EGFEM1P is a pseudogene located on chromosome three and 425 

was shown by one study to be differentially methylated in obese asthmatics, and by another to be 426 

significantly hypermethylated in patients with chronic lymphatic leukemia [55,56]. KIAA1755 427 

encodes for an uncharacterised protein, and contains a SNP variant (rs6127471) that has been 428 

associated with individuals who have increased heart rate [57,58]. FAM65C encodes a protein that 429 



is a member of extracellular complex that generally regulates cellular processes in response to 430 

stimuli, but its main molecular function is still obscure [59].   431 

The hypomethylated CpG site linked to LOC730668, which is a Dynein Heavy Chain-Like 432 

pseudogene located on chromosome 22, has been reported in two different studies to be 433 

differentially hypomethylated in individuals with temporal lobe epilepsy, and in individuals with 434 

psoriatic epidermis [60,61]. Studying genes without knowing how they correlate with 435 

chronological age could introduce false positives. Thus, if not adjusted, age could be a potential 436 

confounder in case-control studies. For example, a study conducted by Fluhr et al. [62] found 437 

SLC12A8 (which was significantly hypermethylated with age in our study) to be differentially 438 

methylated in children with juvenile myelomonocytic leukemia (JMML). However, this study was 439 

based on children with JMML versus healthy adults, and the AR markers would be expected to be 440 

differentially methylated between children and adults regardless of JMML-status. Another 441 

example is the TAL1 gene located on chromosome one, which encodes a protein that has been 442 

associated with Precursor T-Cell Acute Lymphoblastic Leukemia and T-Cell Childhood Acute 443 

Lymphocytic Leukemia. In a study conducted by Musialik et al. [63], methylation levels in the 444 

promotor of the TAL1gene were found to be slightly elevated in patients aged  ten years with 445 

Precursor B-cell acute lymphoblastic leukemia, suggesting it was a potential predictor for the 446 

disease. Again, since methylation level was not adjusted for age, this association could be 447 

confounded by age.  448 

Recently, the search for AR CpG sites and attempts to build DNAm-based age prediction models 449 

with high accuracy have been of major interest within the fields of forensic science, and 450 

epidemiology. For this reason, this study examined whether the EPIC BeadChip contains AR CpG 451 

markers with a better prediction accuracy than those found on the previous Illumina platforms 452 

(27K and 450K). Two methods were used to build age prediction models, elastic net regression 453 

and multivariate linear regression. The optimum model selected by elastic net regression contained 454 

a set of 425 CpG sites, 160 (38%) of them were probes that were newly-added to the EPIC 455 

BeadChip. This model had a high prediction accuracy, based on the validation set, of 2.6 years 456 

(MAD). Comparing this result with a study conducted by Hannum et al. (2013) that had a similar 457 

experimental design but used Illumina 450K data, their prediction model, also selected by elastic 458 

net regression, consisted of 71 CpG markers with a prediction accuracy of 4.89 years (MAD). 459 



Building a prediction model for use in forensic investigations requires a small number of markers 460 

due to the minute quantities of DNA that is frequently recovered from forensic samples [64]. The 461 

six AR CpG sites selected by stepwise regression, which contained only one CpG marker that was 462 

newly added to the EPIC BeadChip, had a MAD value of 4.6 years based on the validation set. A 463 

review of the literature shows that the range of MAD values achieved by forensic researchers for 464 

models based on blood samples was 3.2 to 7.9 years, using two to 17 CpG markers [65-67]. 465 

Therefore, the prediction accuracy of data generated using the EPIC BeadChip falls within the 466 

MAD values reported in previous studies.  467 

5 Conclusions  468 

The purpose of the study presented here was to use blood-based EPIC BeadChip methylation data 469 

to identify AR CpG markers from probes that were new on this platform. We identified 52 AR 470 

CpG sites, 21 of which were novel AR CpG sites that mapped to 18 genes, nine of which have 471 

never been reported in the literature as being associated with age. This finding will provide new 472 

insights for researchers in both clinical and forensic epigenetics. For instance, in clinical 473 

epigenetics this will allow researchers to account for the aging effect of these genes, which will 474 

significantly limit the false positives in their genome- and epigenome-wide association studies. In 475 

addition, although the newly introduced probes on the EPIC BeadChip did not improve the age-476 

prediction accuracy when compared to the other models in the literature, the identification of new 477 

genomic sites harboring AR CpG sites can be further studied by forensic geneticists using targeted 478 

bisulfite sequencing, which may result in the discovery of additional AR sites with high age 479 

prediction accuracy, that can be exploited for forensic purposes.    480 

Conflict of interest statement    481 

The authors declare that they have no conflict of interest.  482 

 483 

References: 484 

[1] M. Jung, G.P. Pfeifer, Aging and DNA methylation, BMC Biology. 13 (2015) 1. 485 

doi:10.1186/s12915-015-0118-4. 486 



[2] C. López-Otín, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer, The Hallmarks of 487 

Aging, Cell. 153 (2013) 1194–1217. doi:10.1016/j.cell.2013.05.039. 488 

[3] L.P. Breitling, K.-U. Saum, L. Perna, Ben Schöttker, B. Holleczek, H. Brenner, Frailty is 489 

associated with the epigenetic clock but not with telomere length in a German cohort, 490 

Clinical Epigenetics. 8 (2016) 21. doi:10.1186/s13148-016-0186-5. 491 

[4] R.E. Marioni, S. Shah, A.F. McRae, S.J. Ritchie, G. Muniz-Terrera, S.E. Harris, et al., 492 

The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth 493 

Cohort 1936, Int. J. Epidemiol. 44 (2015) 1388–1396. doi:10.1093/ije/dyu277. 494 

[5] M.E. Levine, A.T. Lu, D.A. Bennett, S. Horvath, Epigenetic age of the pre-frontal cortex 495 

is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related 496 

cognitive functioning, Aging (Albany NY). 7 (2015) 1198–1211. 497 

doi:10.18632/aging.100864. 498 

[6] B.H. Chen, R.E. Marioni, E. Colicino, M.J. Peters, C.K. Ward-Caviness, P.-C. Tsai, et al., 499 

DNA methylation-based measures of biological age: meta-analysis predicting time to 500 

death, Aging (Albany NY). 8 (2016) 1844–1865. doi:10.18632/aging.101020. 501 

[7] W. Parson, Age Estimation with DNA: From Forensic DNA Fingerprinting to Forensic 502 

(Epi)Genomics: A Mini-Review, Ger. 64 (2018) 326–332. doi:10.1159/000486239. 503 

[8] A. Vidaki, D. Ballard, A. Aliferi, T.H. Miller, L.P. Barron, D.S. Court, DNA methylation-504 

based forensic age prediction using artificial neural networks and next generation 505 

sequencing, Forensic Science International: Genetics. 0 (2017) 225–236. 506 

doi:10.1016/j.fsigen.2017.02.009. 507 

[9] A. Freire-Aradas, C. Phillips, M.V. Lareu, Forensic individual age estimation with DNA: 508 

From initial approaches to methylation tests, Forensic Science Rev. 29 (2017) 121. 509 

[10] V.L. Wilson, P.A. Jones, DNA methylation decreases in aging but not in immortal cells, 510 

Science. 220 (1983) 1055–1057. doi:10.1126/science.6844925. 511 

[11] S.K. Mawlood, L. Dennany, N. Watson, B.S. Pickard, The EpiTect Methyl qPCR Assay 512 

as novel age estimation method in forensic biology, Forensic Science International. 264 513 

(2016) 132–138. doi:10.1016/j.forsciint.2016.03.047. 514 

[12] H. Spiers, E. Hannon, S. Wells, B. Williams, C. Fernandes, J. Mill, Age-associated 515 

changes in DNA methylation across multiple tissues in an inbred mouse model, 516 



Mechanisms of Ageing and Development. 154 (2016) 20–23. 517 

doi:10.1016/j.mad.2016.02.001. 518 

[13] S.R. Hong, S.-E. Jung, E.H. Lee, K.-J. Shin, W.I. Yang, H.Y. Lee, DNA methylation-519 

based age prediction from saliva: High age predictability by combination of 7 CpG 520 

markers, Forensic Science International: Genetics. 29 (2017) 118–125. 521 

doi:10.1016/j.fsigen.2017.04.006. 522 

[14] A. Aliferi, D. Ballard, M.D. Gallidabino, H. Thurtle, L. Barron, D. Syndercombe Court, 523 

DNA methylation-based age prediction using massively parallel sequencing data and 524 

multiple machine learning models, Forensic Science International: Genetics. 37 (2018) 525 

215–226. doi:10.1016/j.fsigen.2018.09.003. 526 

[15] V.K. Rakyan, T.A. Down, S. Maslau, T. Andrew, T.-P. Yang, H. Beyan, et al., Human 527 

aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin 528 

domains, Genome Res. 20 (2010) 434–439. doi:10.1101/gr.103101.109. 529 

[16] J.T. Bell, P.-C. Tsai, T.-P. Yang, R. Pidsley, J. Nisbet, D. Glass, et al., Epigenome-Wide 530 

Scans Identify Differentially Methylated Regions for Age and Age-Related Phenotypes in 531 

a Healthy Ageing Population, PLOS Genet. 8 (2012) e1002629. 532 

[17] V.K. Rakyan, T.A. Down, N.P. Thorne, P. Flicek, E. Kulesha, S. Gräf, et al., An integrated 533 

resource for genome-wide identification and analysis of human tissue-specific 534 

differentially methylated regions (tDMRs), Genome Res. 18 (2008) 1518–1529. 535 

doi:10.1101/gr.077479.108. 536 

[18] K.D. Pruitt, T. Tatusova, G.R. Brown, D.R. Maglott, NCBI Reference Sequences 537 

(RefSeq): current status, new features and genome annotation policy, Nucleic Acids 538 

Research. 40 (2012) D130–D135. 539 

[19] J. Severin, A.M. Waterhouse, H. Kawaji, T. Lassmann, E. van Nimwegen, P.J. Balwierz, 540 

et al., FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, 541 

microRNAs, expression dynamics and regulatory interactions, Genome Biology. 10 542 

(2009) R39. doi:10.1186/gb-2009-10-4-r39. 543 

[20] M. Bibikova, B. Barnes, C. Tsan, V. Ho, B. Klotzle, J.M. Le, et al., High density DNA 544 

methylation array with single CpG site resolution, Genomics. 98 (2011) 288–295. 545 

doi:10.1016/j.ygeno.2011.07.007. 546 



[21] P. Garagnani, M.G. Bacalini, C. Pirazzini, D. Gori, C. Giuliani, D. Mari, et al., 547 

Methylation of ELOVL2 gene as a new epigenetic marker of age, Aging Cell. 11 (2012) 548 

1132–1134. doi:10.1111/acel.12005. 549 

[22] I. Florath, K. Butterbach, H. Müller, M. Bewerunge-Hudler, H. Brenner, Cross-sectional 550 

and longitudinal changes in DNA methylation with age: an epigenome-wide analysis 551 

revealing over 60 novel age-associated CpG sites, Human Molecular Genetics. 23 (2014) 552 

1186–1201. doi:10.1093/hmg/ddt531. 553 

[23] S. Horvath, M. Gurven, M.E. Levine, B.C. Trumble, H. Kaplan, H. Allayee, et al., An 554 

epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease, Genome 555 

Biology. 17 (2016) 171. doi:10.1186/s13059-016-1030-0. 556 

[24] R. Zbieć-Piekarska, M. Spólnicka, T. Kupiec, A. Parys-Proszek, Ż. Makowska, A. 557 

Pałeczka, et al., Development of a forensically useful age prediction method based on 558 

DNA methylation analysis, Forensic Science International: Genetics. 17 (2015) 173–179. 559 

doi:10.1016/j.fsigen.2015.05.001. 560 

[25] R. Zbieć-Piekarska, M. Spólnicka, T. Kupiec, Ż. Makowska, A. Spas, A. Parys-Proszek, 561 

et al., Examination of DNA methylation status of the ELOVL2 marker may be useful for 562 

human age prediction in forensic science, Forensic Science International: Genetics. 14 563 

(2015) 161–167. doi:10.1016/j.fsigen.2014.10.002. 564 

[26] S.-E. Jung, S.M. Lim, S.R. Hong, E.H. Lee, K.-J. Shin, H.Y. Lee, DNA methylation of 565 

the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age 566 

prediction from blood, saliva, and buccal swab samples, Forensic Science International: 567 

Genetics. 38 (2019) 1–8. doi:doi.org/10.1016/j.fsigen.2018.09.010. 568 

[27] G. Hannum, J. Guinney, L. Zhao, L. Zhang, G. Hughes, S. Sadda, et al., Genome-wide 569 

methylation profiles reveal quantitative views of human aging rates, Molecular Cell. 49 570 

(2013) 359–367. doi:10.1016/j.molcel.2012.10.016. 571 

[28] L.M. McEwen, M.J. Jones, D.T.S. Lin, R.D. Edgar, L.T. Husquin, J.L. MacIsaac, et al., 572 

Systematic evaluation of DNA methylation age estimation with common preprocessing 573 

methods and the Infinium MethylationEPIC BeadChip array, Clinical Epigenetics. 10 574 

(2018) 123. doi:10.1186/s13148-018-0556-2. 575 



[29] L. Siggens, K. Ekwall, Epigenetics, chromatin and genome organization: recent advances 576 

from the ENCODE project, Journal of Internal Medicine. 276 (2014) 201–214. 577 

doi:10.1111/joim.12231. 578 

[30] M. Lizio, J. Harshbarger, H. Shimoji, J. Severin, T. Kasukawa, S. Sahin, et al., Gateways 579 

to the FANTOM5 promoter level mammalian expression atlas, Genome Biology. 16 580 

(2015) 22. doi:10.1186/s13059-014-0560-6. 581 

[31] R. Pidsley, E. Zotenko, T.J. Peters, M.G. Lawrence, G.P. Risbridger, P. Molloy, et al., 582 

Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-583 

genome DNA methylation profiling, Genome Biology. 17 (2016) 208. 584 

[32] J. Dou, R.J. Schmidt, K.S. Benke, C. Newschaffer, I. Hertz-Picciotto, L.A. Croen, et al., 585 

Cord blood buffy coat DNA methylation is comparable to whole cord blood methylation, 586 

(2018) 1–10. doi:10.1080/15592294.2017.1417710. 587 

[33] I. Zaimi, D. Pei, D.C. Koestler, C.J. Marsit, I. De Vivo, S.S. Tworoger, et al., Variation in 588 

DNA methylation of human blood over a 1-year period using the Illumina 589 

MethylationEPIC array, Epigenetics. 13 (2018) 1056–1071. 590 

doi:10.1080/15592294.2018.1530008. 591 

[34] S.W. Curtis, D.O. Cobb, V. Kilaru, M.L. Terrell, E.M. Kennedy, M.E. Marder, et al., 592 

Exposure to polybrominated biphenyl (PBB) associates with genome-wide DNA 593 

methylation differences in peripheral blood, Epigenetics. 14 (2019) 52–66. 594 

doi:10.1080/15592294.2019.1565590. 595 

[35] S. Davis, P.S. Meltzer, GEOquery: a bridge between the Gene Expression Omnibus 596 

(GEO) and BioConductor, Bioinformatics. 23 (2007) 1846–1847. 597 

doi:10.1093/bioinformatics/btm254. 598 

[36] M.J. Aryee, A.E. Jaffe, H. Corrada-Bravo, C. Ladd-Acosta, A.P. Feinberg, K.D. Hansen, 599 

et al., Minfi: a flexible and comprehensive Bioconductor package for the analysis of 600 

Infinium DNA methylation microarrays, Bioinformatics. 30 (2014) 1363–1369. 601 

doi:10.1093/bioinformatics/btu049. 602 

[37] J. Fortin, T. Triche, K. Hansen, Preprocessing, normalization and integration of the 603 

Illumina HumanMethylationEPIC array with minfi | Bioinformatics | Oxford Academic, 604 

Bioinformatics. 33 (2017) 558–560. 605 



[38] N. Touleimat, J. Tost, Complete pipeline for Infinium® Human Methylation 450K 606 

BeadChip data processing using subset quantile normalization for accurate DNA 607 

methylation estimation, Http://Dx.Doi.org/10.2217/Epi.12.21. 4 (2012) 325–341. 608 

doi:10.2217/epi.12.21. 609 

[39] A.E. Teschendorff, C.L. Relton, Statistical and integrative system-level analysis of DNA 610 

methylation data, Nature Publishing Group. (1AD) 1–19. doi:10.1038/nrg.2017.86. 611 

[40] W.E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data 612 

using empirical Bayes methods, Biostatistics. 8 (2007) 118–127. 613 

doi:10.1093/biostatistics/kxj037. 614 

[41] Z. Sun, H. Chai, Y. Wu, W.M. White, K.V. Donkena, C.J. Klein, et al., Batch effect 615 

correction for genome-wide methylation data with Illumina Infinium platform, BMC 616 

Medical Genomics 2011 4:1. 4 (2011) 1. doi:10.1186/1755-8794-4-84. 617 

[42] E.A. Houseman, W.P. Accomando, D.C. Koestler, B.C. Christensen, C.J. Marsit, H.H. 618 

Nelson, et al., DNA methylation arrays as surrogate measures of cell mixture distribution, 619 

BMC Bioinformatics 2010 11:1. 13 (2012) 86. doi:doi.org/10.1186/1471-2105-13-86. 620 

[43] P. Du, X. Zhang, C.-C. Huang, N. Jafari, W.A. Kibbe, L. Hou, et al., Comparison of Beta-621 

value and M-value methods for quantifying methylation levels by microarray analysis, 622 

BMC Bioinformatics 2010 11:1. 11 (2010) 587. doi:10.1186/1471-2105-11-587. 623 

[44] S. Horvath, DNA methylation age of human tissues and cell types, Genome Biology. 14 624 

(2013) R115. doi:10.1186/gb-2013-14-10-r115. 625 

[45] C.I. Weidner, Q. Lin, C.M. Koch, L. Eisele, F. Beier, P. Ziegler, et al., Aging of blood can 626 

be tracked by DNA methylation changes at just three CpG sites, Genome Biology. 15 627 

(2014) R24. doi:10.1186/gb-2014-15-2-r24. 628 

[46] C.M. Koch, W. Wagner, Epigenetic-aging-signature to determine age in different tissues, 629 

Aging (Albany NY). 3 (2011) 1018–1027. doi:10.18632/aging.100395. 630 

[47] C. Xu, H. Qu, G. Wang, B. Xie, Y. Shi, Y. Yang, et al., A novel strategy for forensic age 631 

prediction by DNA methylation and support vector regression model, Scientific Reports. 632 

5 (2015) 17788. doi:10.1038/srep17788. 633 

[48] R.C. Slieker, C.L. Relton, T.R. Gaunt, P.E. Slagboom, B.T. Heijmans, Age-related DNA 634 

methylation changes are tissue-specific with ELOVL2 promoter methylation as exception, 635 

Epigenetics & Chromatin. (2018) 1–11. doi:10.1186/s13072-018-0191-3. 636 



[49] A.E. Jaffe, R.A. Irizarry, Accounting for cellular heterogeneity is critical in epigenome-637 

wide association studies, Genome Biology. 15 (2014) R31. doi:10.1186/gb-2014-15-2-638 

r31. 639 

[50] Y. Liu, M.J. Aryee, L. Padyukov, M.D. Fallin, E. Hesselberg, A. Runarsson, et al., 640 

Epigenome-wide association data implicate DNA methylation as an intermediary of 641 

genetic risk in rheumatoid arthritis, Nature Biotechnology. 31 (2013) 142–147. 642 

doi:10.1038/nbt.2487. 643 

[51] E.C. Davenport, V. Pendolino, G. Kontou, T.P. McGee, D.F. Sheehan, G. López-644 

Doménech, et al., An Essential Role for the Tetraspanin LHFPL4 in the Cell-Type-645 

Specific Targeting and Clustering of Synaptic GABAA Receptors, Cell Rep. 21 (2017) 646 

70–83. doi:10.1016/j.celrep.2017.09.025. 647 

[52] S.S. Wang, D.J. Smiraglia, Y.-Z. Wu, S. Ghosh, J.S. Rader, K.R. Cho, et al., Identification 648 

of novel methylation markers in cervical cancer using restriction landmark genomic 649 

scanning, Cancer Res. 68 (2008) 2489–2497. doi:10.1158/0008-5472.CAN-07-3194. 650 

[53] N. Patel, T. Itakura, J.M. Gonzalez, S.G. Schwartz, M.E. Fini, GPR158, an orphan 651 

member of G protein-coupled receptor Family C: glucocorticoid-stimulated expression 652 

and novel nuclear role, Plos One. 8 (2013) e57843. doi:10.1371/journal.pone.0057843. 653 

[54] T. Musikacharoen, K. Bandow, K. Kakimoto, J. Kusuyama, T. Onishi, Y. Yoshikai, et al., 654 

Functional involvement of dual specificity phosphatase 16 (DUSP16), a c-Jun N-terminal 655 

kinase-specific phosphatase, in the regulation of T helper cell differentiation, The Journal 656 

of Biological Chemistry. 286 (2011) 24896–24905. doi:10.1074/jbc.M111.245019. 657 

[55] D. Rastogi, M. Suzuki, J.M. Greally, Differential epigenome-wide DNA methylation 658 

patterns in childhood obesity-associated asthma, Scientific Reports. 3 (2013) 2164. 659 

doi:10.1038/srep02164. 660 

[56] C. Baer, R. Claus, L.P. Frenzel, M. Zucknick, Y.J. Park, L. Gu, et al., Extensive promoter 661 

DNA hypermethylation and hypomethylation is associated with aberrant microRNA 662 

expression in chronic lymphocytic leukemia, Cancer Res. 72 (2012) 3775–3785. 663 

doi:10.1158/0008-5472.CAN-12-0803. 664 

[57] M. den Hoed, M. Eijgelsheim, T. Esko, B.J.J.M. Brundel, D.S. Peal, D.M. Evans, et al., 665 

Identification of heart rate–associated loci and their effects on cardiac conduction and 666 

rhythm disorders, Nature Genetics. 45 (2013) 621–631. 667 



[58] L. Weinhold, S. Wahl, M. Schmid, A Statistical Model for the Analysis of Beta Values in 668 

DNA Methylation Studies, (2016). 669 

[59] W. Sun, T. He, C. Qin, K. Qiu, X. Zhang, Y. Luo, et al., A potential regulatory network 670 

underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle, 671 

Scientific Reports. 7 (2017) 11G. 672 

[60] S.F.C. Miller-Delaney, K. Bryan, S. Das, R.C. McKiernan, I.M. Bray, J.P. Reynolds, et 673 

al., Differential DNA methylation profiles of coding and non-coding genes define 674 

hippocampal sclerosis in human temporal lobe epilepsy, Brain. 138 (2015) 616–631. 675 

doi:10.1093/brain/awu373. 676 

[61] D. Verma, A.-K. Ekman, C. Bivik Eding, C. Enerbäck, Genome-Wide DNA Methylation 677 

Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis, J. Invest. 678 

Dermatol. 138 (2018) 1088–1093. doi:10.1016/j.jid.2017.11.036. 679 

[62] S. Fluhr, M. Boerries, H. Busch, A. Symeonidi, T. Witte, D.B. Lipka, et al., CREBBP is 680 

a target of epigenetic, but not genetic, modification in juvenile myelomonocytic leukemia, 681 

Clinical Epigenetics. 8 (2016) 50. doi:10.1186/s13148-016-0216-3. 682 

[63] E. Musialik, M. Bujko, P. Kober, A. Wypych, K. Gawle-Krawczyk, M. Matysiak, et al., 683 

Promoter methylation and expression levels of selected hematopoietic genes in pediatric 684 

B-cell acute lymphoblastic leukemia, Blood Res. 50 (2015) 26–32. 685 

doi:10.5045/br.2015.50.1.26. 686 

[64] A. Vidaki, B. Daniel, D.S. Court, Forensic DNA methylation profiling—Potential 687 

opportunities and challenges, Forensic Science International: Genetics. 7 (2013) 499–507. 688 

doi:10.1016/j.fsigen.2013.05.004. 689 

[65] J.-L. Park, J.H. Kim, E. Seo, D.H. Bae, S.-Y. Kim, H.-C. Lee, et al., Identification and 690 

evaluation of age-correlated DNA methylation markers for forensic use, Forensic Science 691 

International: Genetics. 23 (2016) 64–70. doi:10.1016/j.fsigen.2016.03.005. 692 

[66] Y. Huang, J. Yan, J. Hou, X. Fu, L. Li, Y. Hou, Developing a DNA methylation assay for 693 

human age prediction in blood and bloodstain, Forensic Science International: Genetics. 694 

17 (2015) 129–136. doi:10.1016/j.fsigen.2015.05.007. 695 

[67] J. Naue, H.C.J. Hoefsloot, O.R.F. Mook, L. Rijlaarsdam-Hoekstra, M.C.H. van der 696 

Zwalm, P. Henneman, et al., Chronological age prediction based on DNA methylation: 697 



Massive parallel sequencing and random forest regression, Forensic Science International: 698 

Genetics. 31 (2017) 19–28. doi:10.1016/j.fsigen.2017.07.015. 699 


