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The discrete unified gas kinetic scheme (DUGKS) was originally developed for single-

species flows covering all the regimes, while the gas mixtures are more frequently

encountered in engineering applications. Recently, the DUGKS has been extended to

binary gas mixtures of Maxwell molecules on the basis of the Andries-Aoki-Perthame

kinetic model (AAP) [P. Andries et al., J. Stat. Phys. 106, 993 (2002)]. However,

the AAP model cannot recover a correct Prandtl number. In this work, we extend

the DUGKS to gas mixture flows based on the McCormack model [F. J. McCormack,

Phys. Fluids 16, 2095 (1973)], which can give all the transport coefficients correctly.

The proposed method is validated by several standard tests, including the plane

Couette flow, the Fourier flow, and the lid-driven cavity flow under different mass

ratios and molar concentrations. Good agreement between results of the DUGKS

and the other well-established numerical methods shows that the proposed DUGKS

is effective and reliable for binary gas mixtures in all flow regimes. In addition, the

DUGKS is about two orders of magnitude faster than the DSMC for low-speed flows

in terms of the wall time and convergent iteration steps.
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I. INTRODUCTION

Gas mixture flows are frequently encountered in engineering applications, such as the

Micro-Electro-Mechanical-Systems (MEMS), solid oxide fuel cells and vacuum technologies.

Flows in those fields usually involve a wide range of Knudsen number (Kn), which is defined

as the ratio of the mean free path of molecules to the characteristic length. The difficulties

arise for flows in the transition (0.1 . Kn . 10) and free-molecular (Kn & 10) regimes, in

which the traditional hydrodynamic equations such as the Navier-Stokes equations fail to

describe the non-equilibrium effects due to the gas rarefaction of gas mixture flows1.

As well known, the multi-species Boltzmann equation is able to accurately describe gas

mixture flows in all regimes. However, solving the Boltzmann equation is difficult analytical-

ly. The direct simulation Monte Carlo (DSMC) method is a prevailing numerical technique

for solving the Boltzmann equation for high-speed flows in the transition and free-molecule

regimes2–6. While the statistical noise appearing in DSMC makes it unsuitable for low-

speed and unsteady flows. In addition, the computational costs of the DSMC method are

expensive in the near-continuum regime (Kn . 0.01), as the cell size and time step in the

DSMC are limited by the mean free path and the collision time of molecules, respectively.

Recently, some improvements have been made to ease the difficulties7–10. It is noted that

the deterministic Boltzmann solvers can also be applied to gas mixture flows in simple ge-

ometries by direct discretizing the full Boltzmann equation11–15. Although accurate results

can be obtained by these deterministic methods, they are generally very complicated and

computationally expensive.

As a consequence, great efforts have been devoted to developing Boltzmann model equa-

tions for gas mixtures by simplifying the collision term and retaining the physical properties

of the original collision term as much as possible. Similar to the Bhatnagar-Gross-Krook

(BGK)16 model for the single species, several BGK-type collision operators for gas mixtures

have been proposed17–20. In this type of model equations, the self-collision and cross-collision

effects are included in a single or multiple relaxation time operators. However, the agreement

between results of the Boltzmann equation and the BGK-type model for gas mixtures is dif-

ficult to achieve, since additional physical effects are brought about by cross collisions. Most

of the existing BGK-type models are not able to give the transport coefficients accurately,

except the McCormack model21 which linearizes the collision term with the assumption that
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the system slightly deviates from the equilibrium due to small perturbations. The moments

of the collision term of the McCormack model approximate the Boltzmann equation up to

the third order, and therefore the McCormack model can reproduce all transport coefficients

correctly. Owing to this advantage, the McCormack model has been widely applied to gas

mixture flows22–27.

Based on model equations, several types of kinetic method have already been developed

for gas mixture flows, such as the lattice Boltzmann method28,29, the discrete velocity meth-

ods (DVM)30,31, and the analytical version of the discrete ordinate method32,33. Besides, the

unified gas kinetic scheme (UGKS) for binary gas mixtures of hard sphere molecules has

been developed based on the Andries-Aoki-Perthame (AAP) kinetic model34,35.

Recently, the discrete unified gas kinetic scheme (DUGKS)36,37 was developed for single-

species flows covering a wide flow regimes. With the coupling of particle transport and

collision effects, the DUGKS exhibits the nice asymptotic preserving (AP) property38,39 thus

is suitable for different flow regimes. The DUGKS has already been applied successfully to

complex flows of single-species gases from continuum to rarefied regimes40–45. Very recently,

the DUGKS was extended to gas mixture flows of Maxwell molecules based on the AAP

model46. However, due to the limitation of the AAP model, the DUGKS can only recover

one transport coefficient correctly46.

The aim of this work is to further develop the DUGKS for binary gas mixtures based on

the McCormack model, such that the correct transport coefficients can be fully achieved.

The remaining of this paper is organized as follows. In Sec. II, the McCormack model

for binary gas mixtures will be introduced. Then the DUGKS for gas mixtures will be

constructed on the basis of the McCormack model in Sec. III. Several numerical tests are

performed in Sec. IV to validate the proposed method, followed by a summary in Sec. V.

II. THE MCCORMACK MODEL FOR GAS MIXTURES

The Boltzmann equation for a binary gas mixture with species A and B can be written

as47,

∂fα
∂t′

+ ξ ·∇fα = Qα(f, f), (1)
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where

Qα(f, f) =
∑
α=A,B

Qαβ(fα, fβ), Qαβ(fα, fβ) =

∫
R3

∫
B+

(f ′αf
′
β∗−fαfβ∗)Bαβ(N ·V , |V |)dξ∗dN .

(2)

In the above equation, the Greek letters α and β denote symbolically the gas species;

fα ≡ fα(x, ξ, t) represents the distribution function of species α with particle velocity ξ

at position x and time t in three-dimensional physical space; Qα(f, f) is the Boltzmann

collision operator for species α with Bαβ(N · V , |V |) being the collision kernel depending

on the intermolecular force between species α and β; ξ and ξ∗ are pre-collision velocities,

N is a unit vector and B+ is the semi-sphere defined by N · V = 0, where V = ξ − ξ∗ is

the relative velocity. According to the conservation laws of momentum and energy:mαξ +mβξ∗ = mαξ
′ +mβξ

′
∗,

mα|ξ|2 +mβ|ξ∗|2 = mα|ξ′|2 +m|ξ
′
∗|2,

(3)

the post-collision velocities ξ′ and ξ′∗ can be written asξ
′ = ξ − 2mαβ

mα
N [(ξ − ξ∗) ·N ],

ξ′∗ = ξ∗ +
2mαβ
mβ

N [(ξ − ξ∗) ·N ],
(4)

where mαβ is the reduced mass, which can be expressed in terms of the mass of species mα

as

mαβ =
mαmβ

(mα +mβ)
. (5)

Without loss of generality, we assume mA < mB.

For systems slightly deviate from equilibrium caused by small perturbations, the Mc-

Cormack model linearizes the full Boltzmann equation (1) by equaling the moments of the

third-order linearized collision operator to those of the full collision operator. As the con-

centration, pressure or temperature gradients are sufficiently small, the distribution function

of species α can be linearized as fα = fMα (ξ)(1 + hαε), where ε is far smaller than 1, fMα is

the absolute Maxwellian equilibrium distribution function written in terms of the constant

density n0α and temperature T0

fMα (ξ) = n0α

(
mα

2πkBT0

)3/2

exp

[
− mαξ

2

2kBT0

]
, (6)
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where kB is the Boltzmann constant and hα is the perturbation distribution function. Then

the linearized Boltzmann equation can be expressed as

∂hα
∂t′

+ ξ · ∂hα
∂x′

=
∑
β=A,B

Lαβh, α = A,B, (7)

where Lαβh is the linearized Boltzmann collision operator. It is noted that we only solve the

governing equation for hα in Eq. (7) instead that of fα in the present work. Therefore the

value of ε is irrelevant to the evolution of distribution function hα. Previous work4,5 have

demonstrated that the equation fα = fMα (ξ)(1 + hαε) can be satisfied with ε = 0.2.

Furthermore, the deviated macroscopic quantities of species α from equilibrium values,

such as the deviated molecular number density n′α, flow velocity u′α, shear stress P ′αik(i, k =

x, y, z), temperature T ′α, and heat flux q′α can be calculated from the moments of hα. For

convenience, we introduce the following dimensionless quantities:

x =
x′

H
, cα =

√
mα

2kBT0
ξ, t =

t′

H/v0
, nα =

n′

n0αε
,

uα =
u′α
U
, Pαxy = −

P ′αxy
2p0αε

, Tα =
T ′α
T0ε

, qα =
q′α

p0αv0ε
,

(8)

where H is the characteristic length, U is characteristic speed, p0α = n0αkBT0 is the partial

pressure of the species α, and v0 =
√
m/2kBT0 is the molecular velocity of the mixture

with m = C0mA + (1 − C0)mB being the mean molecular mass of the mixture and C0 =

n0A/(n0A + n0B) the equilibrium molar concentration of the light species.

Then the dimensionless governing equation of species α can be obtained

∂hα
∂t

+ ĉα ·
∂hα
∂x

= H

√
m

2kBT0

∑
β=A,B

Lαβh = H

√
m

2kBT0
Lαh, α = A,B, (9)

where ĉα =
√
m/mαcα and the linearized collision operator Lαβh of the McCormack model

is given as

Lαβh =− γαβhα + γαβnα

+ 2

√
mα

m

[
γαβuαi − ν(1)αβ (uαi − uβi)− ν(2)αβ (qαi −

mα

mβ

qβi)

]
cαi

+

[
γαβTα − 2

mαβ

mβ

(Tα − Tβ)ν
(1)
αβ

](
c2α −

3

2

)
+ 2

[
(γαβ − ν(3)αβ )Pαik + ν

(4)
αβPβik

]
cαicαk

+
8

5

√
mα

m

[
(γαβ − ν(5)αβ )qαi + ν

(6)
αβ

√
mβ

mα

qβi −
5

8
ν
(2)
αβ (uαi − uβi)

]
cαi

(
c2α −

5

2

)
,

(10)
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where the quantities ν
(n)
αβ are given by

ν
(1)
αβ =

16

3

mαβ

mα

nβΩ11
αβ, (11a)

ν
(2)
αβ =

64

15

(
mαβ

mα

)2

nβ

[
Ω12
αβ −

5

2
Ω11
αβ

]
, (11b)

ν
(3)
αβ =

16

5

m2
αβ

mαmβ

nβ

[
10

3
Ω11
αβ +

mβ

mα

Ω22
αβ

]
, (11c)

ν
(4)
αβ =

16

5

m2
αβ

mαmβ

nβ

[
10

3
Ω11
αβ − Ω22

αβ

]
, (11d)

ν
(5)
αβ =

64

15

(
mαβ

mα

)3
mα

mβ

nβ

[
Ω22
αβ +

(
15

4

mα

mβ

+
25

8

mβ

mα

)
Ω11
αβ −

1

2

mβ

mα

(
5Ω12

αβ − Ω13
αβ

)]
, (11e)

ν
(5)
αβ =

64

15

(
mαβ

mα

)3(
mα

mβ

)3/2

nβ

[
−Ω22

αβ +
55

8
Ω11
αβ −

5

2
Ω12
αβ +

1

2
Ω13
αβ

]
, (11f)

where Ωση
αβ is the omega integral48, which depends on the intermolecular potential. For the

hard sphere model, it is defined by48

Ωση
αβ =

(η + 1)!

8

[
1− 1 + (−1)σ

2(σ + 1)

](
πkBT

2mαβ

)1/2

(dα + dβ)2, (12)

where dα is the molecular diameter of species α. In Eq. (11), the parameter γαβ is propor-

tional to the collision frequency between species α and β and appears only in the form of

combinations

γA = γAA + γAB, γB = γBB + γBA. (13)

So it is convenient to define γA and γB only, which can be related to the viscosity in the

same formation with that of the Shakhov model22,49,50

γα =
p0α
µα

, (14)

where µα is the partial viscosity given as

µα = p0α
Sβ + ν

(4)
αβ

SαSβ − ν(4)αβ ν
(4)
βα

, Sα = ν(3)αα − ν(4)αα + ν
(3)
αβ , β 6= α. (15)

The viscosity of the mixture is given by

µ = µA + µB. (16)
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Once the perturbation distribution function hα is known, the deviated quantities can be

calculated as

nα =

∫
f 0
αhαdcα, (17a)

uα =

√
m

mα

∫
cαf

0
αhαdcα, (17b)

Pαik =

∫ (
cαicαk −

1

3
c2αδik

)
f 0
αhαdcα, (17c)

Tα =

∫ (
2

3
c2α − 1

)
f 0
αhαdcα, (17d)

qα =
1

2

√
m

mα

∫
cα

(
c2α −

5

2

)
f 0
αhαdcα, (17e)

where f 0
α = π−3/2exp(−c2α). The deviated quantities of the mixture are then determined by

n(x) =
n′A + n′B
n0ε

= C0nA(x) + (1− C0)nB(x), (18a)

u(x) =
mAn0Au

′
A +mBn0Bu

′
B

n0mU
=
C0mAuA(x) + (1− C0)mBuB(x)

m
, (18b)

Pik(x) =
P ′Aik + P ′Bik

2p0ε
= C0PAik(x) + (1− C0)PBik(x), (18c)

T (x) =
n0AT

′
A + n0BT

′
B

n0ε
= C0TA(x) + (1− C0)TB(x), (18d)

q(x) =
q′A + q′B
p0v0ε

= C0qA(x) + (1− C0)qB(x), (18e)

where p0 = n0kBT0 and n0 = n0A +n0B are the pressure and number density of the mixture,

respectively.

For D (< 3) dimensional problems, the kinetic equation (9) can be simplified by intro-

ducing reduced distribution functions. Specially, the perturbation distribution function hα

can be expressed as hα = hα(x, cα,ηα, t), where x = (x1, . . . , xD) and cα = (cα1, . . . , cαD).

In addition, ηα = (cα(D+1), . . . , cα3) is a vector of length L = 3 − D, consisting of the rest

components of the three-dimensional velocity space (cα1, cα2, cα3). Since the evolution of the

perturbation distribution function hα depends only on the D-dimensional velocity and is

irrelevant to ηα, two reduced distribution functions are used to remove the dependence of

the passive variable51,52

gα(x, cα, t) =
1

π(L/2)

∫
hαexp

(
−η2α

)
dηα, (19a)

θα(x, cα, t) =
1

π(L/2)

∫ (
η2α −

L

2

)
hαexp

(
−η2α

)
dηα. (19b)
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The evolution equations for gα and θα can be deduced from Eq. (9)

∂gα
∂t

+ ĉα ·
∂gα
∂x

= H

√
m

2kBT0
L̃αg, (20a)

∂θα
∂t

+ ĉα ·
∂θα
∂x

= H

√
m

2kBT0
L̃αθ, (20b)

where L̃αg and L̃αθ are the reduced collision terms defined as

L̃αg =
1

π(L/2)

∫
Lαh · exp

(
−η2α

)
dηα = Gα − γαgα, (21a)

L̃αθ =
1

π(L/2)

∫ (
η2α −

L

2

)
Lαh · exp

(
−η2α

)
dηα = Θα − γαθα, (21b)

where the complicated formulas of L̃αg and L̃αθ are expressed in a simple form by introducing

Gα and Θα, which have the following forms

Gα =γαnα + 2

√
mα

m

[
γαuαi − ν(1)αβ (uαi − uβi)− ν(2)αβ (qαi −

mα

mβ

qβi)

]
cαi

+

[
γαTα − 2

mαβ

mβ

(Tα − Tβ)ν
(1)
αβ

](
c2α +

L

2
− 3

2

)
+ 2

[
(γα − ν(3)αα + ν(4)αα + ν

(3)
αβ )Pαik + ν

(4)
αβPβik

]
cαicαk

+ 2
[
(γα − ν(3)αα + ν(4)αα + ν

(3)
αβ )Pαττ + ν

(4)
αβPβττ

]
cατcατ

+
8

5

√
mα

m

[
(γα − ν(5)αα + ν(6)αα − ν

(5)
αβ )qαi + ν

(6)
αβ

√
mβ

mα

qβi −
5

8
ν
(2)
αβ (uαi − uβi)

]
cαi

(
c2α +

L

2
− 5

2

)
,

(22)

and

Θα =− γαθα +

[
γαTα − 2

mαβ

mβ

(Tα − Tβ)ν
(1)
αβ

](
5L

4
− 1

2
− L2

4

)
− 1

2

[
(γα − ν(3)αα + ν(4)αα + ν

(3)
αβ )Pαττ + ν

(4)
αβPβττ

]
+

8

5

√
mα

m

[
(γα − ν(5)αα + ν(6)αα − ν

(5)
αβ )qαi + ν

(6)
αβ

√
mβ

mα

qβi −
5

8
ν
(2)
αβ (uαi − uβi)

]
cαi

(
5L

4
− 1

2
− L2

4

)
,

(23)

for i, k = 1, . . . , D and τ = (D + 1), . . . , 3.

According to Eq. (17), the macroscopic quantities can be given by the moments of the
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reduced distribution functions as

nα =
1

π(D/2)

∫
gαexp

(
−c2α

)
dcα, (24a)

uαi =
1

π(D/2)

√
m

mα

∫
cαigαexp

(
−c2α

)
dcα, (24b)

Pαik =
1

π(D/2)

∫
cαicαkgαexp

(
−c2α

)
dcα, (24c)

Pαii =
1

π(D/2)

∫
1

3

[(
2c2αi − c2αk −

L

2

)
gα − θα

]
exp
(
−c2α

)
dcα, (24d)

Tα =
1

π(D/2)

∫ [(
2

3
c2α − 1 +

L

3

)
gα +

2

3
θα

]
exp
(
−c2α

)
dcα, (24e)

qαi =
1

π(D/2)

√
m

mα

∫
1

2
cαi

[(
c2α −

5

2
+
L

2

)
gα + θα

]
exp
(
−c2α

)
dcα, (24f)

where i, k = 1, . . . , D and i 6= k.

III. DISCRETE UNIFIED GAS KINETIC SCHEME

A. Finite-volume discretization

The DUGKS for binary gas mixtures is constructed based on the two reduced kinetic

equations (20), which can be rewritten as

∂φα
∂t

+ ĉα ·
∂φα
∂x

= Qα = H

√
m

2kBT0
L̃αφ = ω(Φα − γαφα), (25)

where φα = gα or θα, Φα = Gα or Θα, and ω = H
√
m/(2kBT0). To solve Eq. (25), the

computation domain is first divided into a set of control volumes (cells). Then integrating

Eq. (25) over a control volume Vj centered at xj from time tn to tn+1, with the midpoint

rule for the time integration of the convective term and trapezoidal rule for the collision

term, leads to the following scheme

φn+1
α,j (cα)− φnα,j(cα) = − ∆t

|Vj|
Fn+1/2
α,j (ĉα) +

∆t

2

[
Qn
α,j(cα) +Qn+1

α,j (cα)
]
, (26)

which can be rewritten as

φn+1
α,j (cα)− ∆t

2
Qn+1
α,j (cα) = φnα,j(cα) +

∆t

2
Qn
α,j(cα)− ∆t

|Vj|
Fn+1/2
α,j (ĉα), (27)

where ∆t = tn+1− tn is the time step, |Vj| is the volume of the cell Vj, and the term Fn+1/2
α,j

is the flux of distribution function across the cell interface

Fn+1/2
α,j (ĉα) =

∫
∂Vj

(ĉα · n)φα(x, cα, tn+1/2)dS, (28)
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where n is the outward unit vector normal to the cell surface ∂Vj and φnα,j and Qn
α,j in

Eq. (26) are the cell averaged values of φα and Qα defined by

φnα,j(cα) =
1

|Vj|

∫
Vj

φα(x, cα, tn)dx, (29a)

Qn
α,j(cα) =

1

|Vj|

∫
Vj

Qα(x, cα, tn)dx. (29b)

The updating rule given by Eq. (26) is implicit due to the term Qn+1
α,j . In order to remove

the implicitness of the collision term and obtain an explicit form as in the original DUGKS

for single gas flows, we introduce two new distribution functions

φ̃α = φα −
∆t

2
Qα =

(
1 +

∆t

2
ωαγα

)
φα −

∆t

2
ωαΦα, (30a)

φ̃+
α = φα +

∆t

2
Qα =

(
1− ∆t

2
ωαγα

)
φα +

∆t

2
ωαΦα. (30b)

Then Eq. (26) can be rewritten as

φ̃n+1
α,j = φ̃+,n

α,j −
∆t

|Vj|
Fn+1/2
α,j (ĉα). (31)

In the simulations, we can track the evolution of φ̃α instead of the original distribution

function φα to avoid the implicity of Eq. (26).

The macroscopic quantities can be calculated from the moments of g̃α and θ̃α according

to Eqs. (24) and (30). The moments of Φα are also involved, which have complicated

formations due to the complex expressions of Φα. Details for solving the equation system

for the macroscopic quantities can be found in Appendix A. According to the linearized

expression of the collision term, the equation system for the macroscopic quantities can be

solved explicitly.

B. Flux evaluation

The key in DUGKS is to evaluate the flux Fn+1/2 when updating φ̃n+1
α,j as shown in

Eq. (31). According to Eq. (28), Fn+1/2(ĉα) is determined by the distribution function

φα(x, cα, tn+1/2) at the cell interface. To this end, we integrate Eq. (25) along the charac-

teristic line from time tn to tn+1/2,

φα(xb, cα, tn + s)− φα (xb − ĉαs, cα, tn) =
s

2
[Qα(xb, cα, tn + s) +Qα (xb − ĉαs, cα, tn)] ,

(32)
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where s = ∆t/2, xb is the interface center of cell j, and the trapezoidal rule is employed again

to evaluate the collision term. The implicity caused by the term Q
n+1/2
α can be removed by

introducing another two auxiliary distribution functions,

φ̄α = φα −
∆s

2
Qα =

(
1 +

∆s

2
ωγα

)
φα −

∆s

2
ωΦα, (33a)

φ̄+
α = φα +

∆s

2
Qα =

(
1− ∆s

2
ωγα

)
φα +

∆s

2
ωΦα. (33b)

Then Eq. (32) can then be rewritten as

φ̄α(xb, cα, tn+1/2) = φ̄+
α (xb − ĉαs, cα, tn) , (34)

where

φ̄+
α (xb − ĉαs, cα, tn) = φ̄+

α (xj, cα, tn) + (xb − xj − ĉαs) · δj, (35)

where (xb − ĉαs) ∈ Vj and δj is the slope of φ̄+
α in cell j. We take the one-dimensional

case for example. The distribution function φα at the cell interface xb = xj+1/2 can be

reconstructed by approximating the distribution function φ̄+
α as

φ̄+
α (xb − ĉαs, cα, tn) =

φ̄
+
α (xj, cα, tn) + (xb − xj − ĉαs) · δj, ĉα > 0,

φ̄+
α (xj+1, cα, tn) + (xb − xj+1 − ĉαs) · δj, ĉα < 0.

(36)

The slope δj can be approximated by the the van Leer limiter53 for discontinuous problems.

Once the distribution function φ̄α at the interface is known, the original distribution function

φα can be obtained according to Eq. (33),

φα(xb, cα, tn+1/2) =
2

2 + sωγα
φ̄α(xb, cα, tn+1/2) +

sω

2 + sωγα
Φα(xb, cα, tn+1/2). (37)

Note that the macroscopic quantities used to evaluate the distribution function Φα can be

obtained from φ̄α, which is similar to the previous treatment of cell averaged macroscopic

variables presented in Appendix A.

In numerical simulations, the velocity space is discretized into a set of discrete velocities

cαk(k = 1, 2, . . . , b). Usually, the proper quadrature rules are chosen to discretize the velocity

space and approximate the moments. For example, the number density nα of species α can

be obtained as

nα =
1

π(D/2)

∑
k

wkg̃α(cαk)exp
(
−c2αk

)
, (38)
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where wk are the quadrature weights.

It is noted that the time step in DUGKS is determined only by the Courant-Friedrichs-

Lewy(CFL) condition, i.e.,

∆t = η
xmin

max (|ĉA|, |ĉB|)
, (39)

where 0 < η < 1 is the CFL number and xmin is the minimal mesh size. The particle

transport and collision effects are coupled in determining the numerical flux across a cell

interface, so that the time step ∆t of the DUGKS is not limited by the particle collision

time but determined by the CFL number. Due to its nice asymptotic preserving (AP)

property38,54, the DUGKS can change self-dynamically from the hydrodynamic to the free-

molecular flow regimes. It is also noted that the midpoint and trapezoidal rules used in

Eqs. (26) and (32), as well as the linear reconstruction of the distribution function at the

cell interface, ensure a second-order accuracy in both temporal and spatial discretizations.

It has been demonstrated that the DUGKS has a second-order accuracy in space55,56.

C. Algorithm

In summary, the calculation procedure of the DUGKS for binary gas mixtures described

by the McCormack model from tn to tn+1 can be listed as follows:

1. Compute φ̃+,n
α and φ̄+,n

α in each cell according to Eqs. (30) and (33), respectively.

2. Reconstruct the distribution function φ̄+
α (xb − ĉαs, ξ, tn) according to Eq. (35).

3. Determine the distribution function φ̄α(xb, cα, tn+1/2) according to Eq. (34).

4. Compute the quantities appeared in the collision term at cell interface xb at time

tn+1/2 according to Eqs. (24) and (33).

5. Compute the original distribution function at each cell interface xb at time tn+1/2, i.e.,

φα(xb, cα, tn+1/2), according to Eq. (37).

6. Compute the flux Fn+1/2 through each cell interface from φα(xb, cα, tn+1/2) according

to Eq. (28).

7. Update the cell-averaged distribution function φ̃α in each cell according to Eq. (31).

12



IV. NUMERICAL EXAMPLES

In this section, the proposed DUGKS will be applied to several problems, including the

Couette flow, the lid-driven cavity flow, and the Fourier flow over a wide range of Knudsen

number. In each test, different mass ratios and molar concentrations will be considered.

For the the Couette and lid-driven cavity flow, the flow field is assumed to be steady

when the maximum relative change of the velocity field of the two species in two successive

steps is less than 10−10, i.e.,

max

(
|un+1
A − unA,|
|unA|

,
|un+1
B − unB|
|unB|

)
< 10−10, (40)

where the maximum is taken over the whole domain. For the Fourier flow, the flow field is

steady when the maximum relative change of the quantity qA and qB in two-successive steps

is less than 10−10.

Two groups of binary gas mixtures of noble gases with different mass ratios are considered,

i.e., neon-argon (Ne-Ar) and helium-xenon (He-Xe). The molecular masses of these gases

are mHe = 4.0026, mNe = 20.1791, mAr = 39.948, and mXe = 131.293 in atomic units. The

hard sphere model is chosen as the intermolecular potential. For Ne-Ar and He-Xe mixtures,

the molecular diameter ratios are dB/dA = 1.406 and 2.226 at an equilibrium temperature

T0 = 300K. All flows are characterized by the following rarefaction parameter57

δ =
Hp0
µv0

, (41)

where µ is the mixture viscosity at temperature T0 according to Eq. (16). Since the Knudsen

number is defined as Kn = λ/H, where λ is the mean free path of the mixture and can be

given as29

λ =
µ

p0

√
πkBT0

2m
. (42)

Then rarefaction parameter δ and the Knudsen number Kn have the following relationship:

δ =
√
π/(2Kn).

A. Couette flow

Now we apply the DUGKS to the plane Couette flow of binary gas mixtures for different

rarefaction degrees. As shown in Fig. 1, two parallel plates with a constant temperature

13
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FIG. 1: Schematic of the plane Couette flow.

T0 are located at y = ±H/2, respectively. The top and bottom walls move with velocities

±U/2 in the x direction, respectively. Here we assume that the plate velocities are much

smaller than the characteristic molecular velocity v0 of mixture, i.e.,

ε =
U

v0
� 1. (43)

The periodic boundary conditions are imposed on the inlet and outlet of the channel. The

Maxwell diffuse-specular boundary condition is applied to describe the gas-wall interaction.

For the linearized Couette flow, the boundary conditions have the following forms

g(out)α (y = ±H/2) = (1− aα)g(in)α (y = ±H/2)± aα
√
mα

m
cαx, (44a)

θ(out)α (y = ±H/2) = 0, (44b)

where aα is the accommodation coefficient of the species α, the superscripts ’out’ refers to

the molecules leaving the plates’ surface after hitting the walls and ’in’ refers to the molecules

moving to the walls. In this paper, we assume the plates are fully diffusive (i.e., aα = 1) for

all cases. In this case, we focus on the shear stress Pxy of the mixture according to Eq. (18)

and the velocity uαx of species α according to Eq. (24).

Several values of δ are considered, i.e., δ = 0.1, 1, 10, 100, and 1000 (Kn = 8.86, 0.886,

0.0886, 0.00886, and 0.00089 correspondingly). The half-range Gauss-Hermite quadrature58

is adopted for each species with 8 × 8 velocity points for δ = 1000 and 28 × 28 for δ =

100, 10, 1. The trapezoidal rule59,60 is used to discretize velocity space (cαx, cαy ∈ [−4, 4])

with 32 × 32 nonuniform grid points for δ = 0.1 for each species. The physical space is

divided nonuniformly into Nx = 2 grid points in the x direction and Ny = 21 in the y

direction, in which the location of the volume center (xi, yj) is generated by the following

14



formulations,

xi =
(ζi + ζi+1)

2
, yj =

(ζj + ζj+1)

2
(45)

where

ζi =
1

2
+

tanh [a(i/Nx,y − 0.5)]

2tanh(a/2)
, i = 0, 1, ..., Nx,y − 1, (46)

with a being the constant used to determine the distribution of the mesh. The mesh near

the walls can be refined by increasing a. Here we set a = 1 in the x direction and 3.5 in the

y direction. The CFL number is set to be 0.4 in the following cases.

The results of δ = 0.1, 1, and 10 from the present DUGKS will be compared with the

DVM solutions of the McCormack model22,27, where the spatial derivative is approximated

by the second-order upwind finite-difference method and the physical space is discretized by

100 points nonuniformly. It is noted that the mesh size in DUGKS is not needed to be smaller

than the mean free path of molecules, thus coarser meshes can be employed in the DUGKS

than those in the traditional DVM for flows in continuum and near-continuum regimes61,62.

Comparisons have been made between the DUGKS and the traditional third-order time-

implicit Godunov DVM (GDVM) by Wang et al.63. Results show that the DUGKS requires

less spatial resolution than that of the GDVM to achieve the same numerical accuracy in the

near-continuum regimes. Besides, mesh independence in the spatial and molecular velocity

spaces have been carefully evaluated. It is noted that the GDVM does not give a converged

result in the continuum regime due to the large dissipation. In this test, the cases of δ = 100

and 1000 are also simulated and the cell size of DUGKS for δ = 1000 are about 13 to 99

times of the mean free path. Actually, as δ = 1000, the flow is continuous and can be

described by the Navier-Stokes equations. Analytical solutions of velocity and shear stress

in hydrodynamic regime have been given as22

ux = y, Pxy =
1

2δ
, (47)

which will also be included in this paper to compare with the DUGKS results.

The velocity profiles for the Ne-Ar mixture with molar concentration C0 = 0.5 are demon-

strated in Fig. 2. It is clear that the results predicted by the DUGKS agree well with those

by the DVM at δ = 0.1, 1, and 10 for the small mass ratio case. To illustrate the influence

of the mass ratio, the velocity of the He-Xe mixture is also shown in Fig. 3. It can be seen

that the nonlinearity of the velocity profiles near the wall is successfully captured by both
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FIG. 2: Velocity profiles of the Couette flow for the Ne-Ar mixture with C0 = 0.5.

the DUGKS and the DVM under large mass ratio. We also present the results of DUGKS

for δ = 100 under both small and large mass ratios in Figs. 2(d) and 3(d). The results of

δ = 1000 are similar to those of δ = 100 and are not presented here. It can be seen that dif-

ferences between velocity of each species become very small due to sufficient intermolecular

collisions with increasing δ.

The influence of the molar concentration C0 on the gas velocity at the plate is displayed

in Table I with δ = 0.1, 1, 10, 100, and 1000. As can be seen, the relative differences in the

Ne and Ar velocities between the DUGKS and the DVM are both less than 0.1% for all

values of C0 as δ = 0.1, 1, and 10. As δ = 100 and 1000, the DUGKS results show that
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FIG. 3: Velocity profiles of the Couette flow for the He-Xe mixture with C0 = 0.5.

the molar concentration C0 almost has no clear influence on the velocities of Ne and Ar.

At sufficiently high δ, the species velocities become indistinguishable. In addition, with a

fixed δ, the mixture velocity doesn’t change with C0. Furthermore, good agreement can be

found between the DUGKS results and the analytical solution listed in the 3rd, 5th, and

7th columns of Table I as δ = 1000 and C0 varies from 0.1 to 0.9, which confirms that the

DUGKS can capture the continuous flow behaviors.

The shear stresses Pxy of the Ne-Ar and He-Xe mixtures are summarized in Table II

under different values of δ and C0. From the theoretical prospect, the shear stress of each

mixture should be constant due to the momentum conservation of the mixture. While slight
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TABLE I: Species velocity uNe and uAr and mixture velocity um at y = H/2 for the Ne-Ar

mixture with concentration of the light species C0 and rarefaction parameter δ.

δ uNe uAr um

Present Ho et al.27 Present Ho et al.27 Present Ho et al.27

C0 = 0.1

0.1 0.0634 0.0633 0.0736 0.0736 0.0731 0.0730

1 0.2340 0.2341 0.2535 0.2536 0.2525 0.2525

10 0.4358 0.4361 0.4417 0.4420 0.4414 0.4417

100 0.4923 — 0.4930 — 0.4930 —

1000 0.4989 0.5 0.4989 0.5 0.4989 0.5

C0 = 0.5

0.1 0.0663 0.0663 0.0773 0.0773 0.0736 0.0736

1 0.2399 0.2399 0.2598 0.2598 0.2531 0.2531

10 0.4374 0.4377 0.4432 0.4435 0.4413 0.4416

100 0.4928 — 0.4935 — 0.4932 —

1000 0.4991 0.5 0.4992 0.5 0.4992 0.5

C0 = 0.9

0.1 0.0712 0.0712 0.0834 0.0833 0.0734 0.0734

1 0.2492 0.2492 0.2694 0.2695 0.2528 0.2529

10 0.4404 0.4407 0.4459 0.4463 0.4413 0.4417

100 0.4928 — 0.4935 — 0.4929 —

1000 0.4989 0.5 0.4990 0.5 0.4989 0.5

deviations from theoretical values are likely to appear in the numerical results. Therefore

the average shear stress P av
xy =

∫ H/2
−H/2 Pxy(y)dy is needed here. The maximum variation of

the shear stress between the plates is calculated as

∆Pxy = max
−H/2≤y≤H/2

∥∥∥∥Pxy(y)− P av
xy

P av
xy

∥∥∥∥ , (48)

which is less than 0.2%, indicating a good numerical accuracy of the proposed DUGKS. It

is clear that the results obtained from the DUGKS agree great well with those from the

reference data22 for both the Ne-Ar and He-Xe mixtures at δ = 0.1, 1, and 10. The relative
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TABLE II: The shear stress Pxy in the Couette flow of the Ne-Ar and He-Xe mixtures

under different rarefaction parameter δ and concentration of the light species C0.

δ C0 = 0.1 C0 = 0.5 C0 = 0.9

Present Sharipov et al.22 Present Sharipov et al.22 Present Sharipov et al.22

Ne-Ar

0.1 0.2601 0.2601 0.2575 0.2576 0.2594 0.2594

1 0.1688 0.1689 0.1674 0.1675 0.1685 0.1685

10 0.0415 0.0415 0.04138 0.04139 0.04146 0.04147

100 0.0049 — 0.00481 — 0.0049 —

1000 0.000498 0.0005 0.000498 0.0005 0.000498 0.0005

He-Xe

0.1 0.2527 0.2527 0.2163 0.2163 0.1919 0.1919

1 0.1655 0.1655 0.1482 0.1482 0.1360 0.1360

10 0.04127 0.04128 0.03998 0.03999 0.03898 0.03898

100 0.0049 — 0.00482 — 0.00486 —

1000 0.000499 0.0005 0.000498 0.0005 0.000498 0.0005
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FIG. 4: The normalized stress of the Couette flow for gas mixtures under different

rarefaction parameter δ with C0 = 0.5.
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differences in shear stress are less than 0.2% for all considered values of molar concentration

C0 as δ = 0.1, 1, and 10, meaning a good agreement between the DUGKS and DVM based

on the McCormack model at both small and large mass ratios. Furthermore, the DUGKS

results show that the relative differences in shear stress of the Ne-Ar and He-Xe mixtures

are very small under all considered C0 at δ = 100 and 1000. The analytical solution of shear

stress [see Eq. (47)] is also listed in the 3rd, 5th, and 7th columns of Table II as δ = 1000

for both the Ne-Ar and He-Xe mixtures. Comparisons with the analytical solutions show

that the DUGKS is accurate in the continuum regime.

The influence of the rarefaction parameter δ on the shear stress is presented in Fig. 4

with C0 = 0.5 for the Ne-Ar and He-Xe mixtures. As δ varies from 0.01 to 100, excellent

agreement is observed between the DUGKS and the DVM results based on the McCormack

model for both the Ne-Ar and the He-Xe mixtures.

TABLE III: The shear stress Pxy in the Couette flow of the He-Ar mixture under different

rarefaction parameter δ and concentration of the light species C0.

δ C0 = 0.25 C0 = 0.5 C0 = 0.75

AAP DSMC Present AAP DSMC Present AAP DSMC Present

0.1 0.2458 0.2442 0.2469 0.2305 0.2310 0.2335 0.2207 0.2233 0.2254

1 0.1599 0.1616 0.1628 0.1490 0.1555 0.1565 0.1425 0.1519 0.1528

10 0.04054 0.04108 0.04108 0.03931 0.04073 0.04064 0.03892 0.04044 0.04036

20 0.02239 0.02255 0.02255 0.02199 0.02244 0.2242 0.02188 0.02231 0.02233

40 0.01182 0.01185 0.01185 0.01170 0.01184 0.01182 0.01167 0.01182 0.01179

To further investigate the differences between various kinetic models for mixtures, numer-

ical comparisons are performed among the AAP model, the linearized Boltzmann equation

(LBE), the McCormack model and the full Boltzmann equation. The Couette flows for bi-

nary gas mixtures are used as comparison cases. The results of the AAP model are obtained

from our previous work46 and are shown again to make comparison with those of the other

models. The LBE is solved by the DVM27, and the Boltzmann equation is by the DSMC

method4.

Figure 5 shows the velocity profiles obtained from the AAP model, the LBE and the

McCormack model for the Ne-Ar and He-Xe mixtures. As δ = 0.1, the velocity profile of Ne
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FIG. 5: Velocity profiles of the Couette flow for the Ne-Ar and He-Xe mixtures with

C0 = 0.5.
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from the McCormack model agrees well that of the LBE, while the relative difference of the

Ar velocity between the two models is about 9%. On the contrary, the relative difference

of the Ne velocity between the LBE and the AAP model is 9%, while the velocity profile

of Ar between these two models have a good agreement. Similar pattern can be found for

the He-Xe mixture at δ = 0.1. It can be seen that the larger the mass ratio, the larger the

differences among these models in the near free-molecular regime. As δ = 1, the difference

in Ne velocity increases slightly between the LBE and the McCormack model, while that for

the Ar velocity decreases obviously. On the contrary, the velocity profiles of the Ne between

the LBE and the AAP model have a better agreement, while the relative difference of the

Ar velocity between these two models increases. As for the He-Xe mixture at δ = 1, good

agreement can be found between the LBE and the McCormack models. However, the results

of the AAP and the LBE models differ significantly in this case. When δ = 10, all these

models agree well for the Ne-Ar mixture, while obvious difference can be found between

the LBE and the AAP model for the He-Xe mixture in this case, where the LBE and the

McCormack model show good agreement.

The shear stresses Pxy obtained from the AAP model, the McCormack model and the

DSMC method4 is displayed in Table III for the He-Ar mixture whose mass ratio is 9.98. The

rarefaction parameter δ ranges from 0.1 to 40 and C0 = 0.25, 0.5 and 0.75. Good agreement

between the McCormack model and the DSMC can be observed and the maximum relative

difference is less than 1%, except for δ = 0.1 where the relative difference is about 1%. As

for the AAP model, the relative difference with the DSMC method experiences an increase

first and then decrease as δ varies from 0.1 to 40. The maximum relative difference between

the AAP model and the DSMC method exceeds 6% at δ = 1 when C0 = 0.25 and 0.75.

The above comparisons show that the McCormack model approximates solutions of the

LBE and the original Boltzmann equation better than the AAP model for the large mass

ratio case in the transition and near-continuum flow regimes.

B. Fourier flow

The second case is the Fourier flow of binary gas mixtures. The flow domain is confined

by two parallel plates placed at y = ±H/2 as shown in Fig. 6. Both plates are stationary

and have the temperature Tc = T0 −∆T/2 at y = −H/2 and Th = T0 + ∆T/2 at y = H/2,
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FIG. 6: Schematic of the plane Fourier flow.

where the temperature difference ∆T is much smaller than the equilibrium temperature T0,

i.e., ε = ∆T/T0 � 1. The plates are fully diffusive and the periodic boundary conditions

are imposed on the inlet and outlet of the channel. The Maxwell diffuse-specular boundary

condition is applied to describe the gas-wall interaction. For the linearized Fourier flow, the

boundary conditions have the following forms

nα(y = ±H/2) = ± 2√
π

∫
g(in)α (y = ±H/2)exp(−c2αx − c2αy)cαydcαxdcαy, (49a)

g(out)α (y = ±H/2) = (1− aα)g(in)α (y = ±H/2)

+ aα
{
nα(y = ±H/2)± [(c2αx + c2αy)/2− 0.75]

}
, (49b)

θ(out)α (y = ±H/2) = (1− aα)θ(in)α (y = ±H/2)± 0.25aα. (49c)

In this case, the deviated nα, concentration C, deviated temperature Tα and heat flux qαy

are the interests, where the concentration C is defined as

C(y) =
C ′ − C0

C0ε
= (1− C0) [nA(y)− nB(y)] , (50)

with

C ′ =
n0A + n′A

n0A + n0B + n′A + n′B
. (51)

The physical space is divided nonuniformly into 2 grid points in the x direction and 21 in the

y direction and the constant a in Eq. (46) have the same values with those of the Couette

flow. Consequently, the mesh size for this problem is also larger than the molecular mean

free path as δ = 1000. The velocity space is discretized by the same rule with the same

number of velocity points with those of the Couette flow. The CFL number is 0.4 in this

case.

The number density profiles for the Ne-Ar and He-Xe mixtures with C0 = 0.5 at δ = 0.1,

1, 10, and 100 (Kn = 8.86, 0.886, 0.0886, and 0.00886 correspondingly) are shown in Figs. 7
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FIG. 7: The number density in the Fourier flow for the Ne-Ar mixture with C0 = 0.5.

and 8. Good agreement can be found between the DUGKS and the DVM based on the

McCormack model27 under both small and large mass ratios, respectively, as δ = 0.1, 1, and

10. Moreover, the DUGKS results at δ = 100 are displayed in Figs. 7(d) and 8(d). It is

clear that differences in number densities of Ne and Ar near the hot wall increase with δ.

Besides, the influence of the molar concentration C0 on the number density has also been

displayed in Table IV. The relative differences in the number density of Ne, Ar, and the

mixture between the two numerical methods all increase with δ for all considered values of

C0 and the maximum difference of them is less than 0.5%. When the rarefaction parameter

δ is fixed, the number density of each species increases with the molar concentration C0,
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FIG. 8: The number density in the Fourier flow for the He-Xe mixture with C0 = 0.5.

while that for the mixture varies slightly.

Figures 9 and 10 show the temperature variation of the Ne-Ar and He-Xe mixtures with

C0 = 0.5 as δ = 0.1, 1, 10, and 100. It can be seen that the proposed DUGKS results

agree well with those of the DVM based on the McCormack model27. The DUGKS results

in Figs. 9(d) and 10(d) show that differences in temperature between species turn to vanish

for δ = 100. The influence of the molar concentration C0 on the temperature of each species

and the mixture is investigated in Table V. Similar with that of the number density, the

maximum relative differences between the temperature of Ne, Ar, and the mixture from the

two kinetic schemes is no more than 0.2% for all considered values of C0 as δ = 0.1, 1, and
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TABLE IV: The number density nNe, nAr, and mixture velocity n at y = H/2 for the

Ne-Ar mixture with different C0 and δ.

δ −nNe −nAr −n

Present Ho et al.27 Present Ho et al.27 Present Ho et al.27

C0 = 0.1

0.1 0.0482 0.0481 0.0577 0.0576 0.0568 0.0566

1 0.1576 0.1577 0.1946 0.1947 0.1909 0.1910

10 0.3079 0.3093 0.4073 0.4094 0.3974 0.3993

100 0.3710 — 0.4990 — 0.4862 —

1000 0.3929 — 0.5102 — 0.4985 —

C0 = 0.5

0.1 0.0508 0.0507 0.0624 0.0624 0.0566 0.0566

1 0.1681 0.1680 0.2160 0.2159 0.1921 0.1920

10 0.3373 0.3375 0.4624 0.4631 0.3998 0.4003

100 0.4066 — 0.5660 — 0.4863 —

1000 0.4251 — 0.5717 — 0.4984 —

C0 = 0.9

0.1 0.0552 0.0551 0.0705 0.0705 0.0567 0.0566

1 0.1846 0.1847 0.2494 0.2496 0.1911 0.1912

10 0.3808 0.3826 0.5474 0.5508 0.3974 0.3994

100 0.4649 — 0.6780 — 0.4862 —

1000 0.4815 — 0.6510 — 0.4985 —

10. Once the rarefaction parameter δ is fixed, the temperature of each species increases with

the molar concentration C0, while that for the mixture has small change. Besides, it is clear

that the temperature of species and mixtures vary slightly as δ increases from 100 to 1000

under all values of C0. The analytical solution of temperature variation25 is available for

δ = 1000 and listed in the 3rd, 5th, and 7th columns of Table V as δ = 1000 and C0 varies

from 0.1 to 0.9. It can be seen that the DUGKS result agrees well with the benchmark

solution of the Navier-Stokes equations.
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FIG. 9: Temperature profiles in the Fourier flow for the Ne-Ar mixture with C0 = 0.5.

In Fig. 11, the molar concentration C of the Ne-Ar and He-Xe mixtures, which is defined

as the deviated concentration of the light species from its equilibrium value, are shown and

compared with the results from the DVM27,64. Due to the thermodiffusion, the light species

mainly concentrate on the hot plate, whereas the heavy species concentrate on the cold

plate65. Again the results predicted by the present DUGKS are in close agreement with

those of the DVM. Furthermore, the DUGKS also gives the results for δ = 100, which show

that differences of the molar concentration C of the Ne-Ar and He-Xe mixtures increase

with δ.

The variation of heat flux qy in the Ne-Ar and He-Xe mixtures are presented in Table VI
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FIG. 10: Temperature profiles in the Fourier flow for the He-Xe mixture with C0 = 0.5.

with varying mole fraction of the light species C0 in each mixture for δ = 0.1, 1, 10, 100, and

1000. From the data reported in Table VI, it is clear that the heat flux qy decreases with

the increasing rarefaction parameter δ for all considered C0. Besides, for a fixed rarefaction

parameter δ, the heat flux qy turns to increase at first and then decrease with the increasing

C0 and the maximum value of qy can be found at C0 = 0.5. The results of the DUGKS and

the DVM based on the McCormack model are nearly identical for both small and large mass

ratios as δ = 0.1, 1, and 10. In the case of δ = 1000, the analytical solution of heat flux is

included for comparisons in the 3rd, 5th, and 7th columns of Table VI for both the Ne-Ar
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TABLE V: Species temperature TNe and TAr and mixture velocity T at y = H/2 for the

Ne-Ar mixture with different C0 and δ.

δ TNe TAr T

Present Ho et al.27 Present Ho et al.27 Present Ho et al.27

C0 = 0.1

0.1 0.0570 0.0569 0.0641 0.0640 0.0634 0.0633

1 0.2020 0.2020 0.2135 0.2136 0.2124 0.2124

10 0.4040 0.4045 0.4086 0.4093 0.4083 0.4088

100 0.4871 — 0.4877 — 0.4876 —

1000 0.4986 0.5 0.4987 0.5 0.4986 0.5

C0 = 0.5

0.1 0.0590 0.0589 0.0673 0.0673 0.0632 0.0631

1 0.2057 0.2056 0.2207 0.2205 0.2132 0.2131

10 0.4071 0.4065 0.4132 0.4127 0.4401 0.4096

100 0.4876 — 0.4882 — 0.4878 —

1000 0.4985 0.5 0.4986 0.5 0.4986 0.5

C0 = 0.9

0.1 0.0623 0.0622 0.0728 0.0727 0.0633 0.0632

1 0.2106 0.2106 0.2296 0.2296 0.2125 0.2125

10 0.4075 0.4081 0.4148 0.4154 0.4083 0.4088

100 0.4875 — 0.4885 — 0.4876 —

1000 0.4986 0.5 0.4987 0.5 0.4986 0.5

and He-Xe mixtures. The solution of heat flux in hydrodynamic limit is given as25

q =
mκ

2kBµ
, (52)

where κ is the heat conductivity of the mixture66. Results show that the DUGKS can

accurately capture flow behaviors in the continuum regime.
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FIG. 11: Concentration of the light species in the Fourier flow for the Ne-Ar and He-Xe

mixtures with C0 = 0.5.

C. Lid-driven cavity flow

We now test the two-dimensional lid-driven cavity flow of binary gas mixtures. The flow

domain considered is a two-dimensional square cavity with the length of walls being H in the

Cartesian coordinate system (x, y). The upper wall located at y = +H/2 moves along the x

direction at velocity Uw, which is much smaller than the characteristic molecular velocity v0,

while the other three (located at x = ±H/2, y = −H/2) are fixed. The temperature of all

the walls are kept at T0, and they are fully diffusive. In this case, the boundary conditions
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TABLE VI: The heat flux qy in the Fourier flow of the Ne-Ar and He-Xe mixtures with

different C0 and δ.

δ C0 = 0.1 C0 = 0.5 C0 = 0.9

Present Sharipov et al.25 Present Sharipov et al.25 Present Sharipov et al.25

Ne-Ar

0.1 0.5429 0.5430 0.5588 0.5588 0.5444 0.5445

1 0.4057 0.4058 0.4171 0.4172 0.4068 0.4069

10 0.1363 0.1364 0.1396 0.1397 0.1367 0.1368

100 0.01822 — 0.01864 — 0.01828 —

1000 0.00188 0.00189 0.00193 0.00194 0.00189 0.00190

He-Xe

0.1 0.7501 0.7500 1.3011 1.3011 1.0145 1.0145

1 0.5580 0.5582 0.9837 0.9839 0.7882 0.7883

10 0.1834 0.1834 0.03293 0.03303 0.2873 0.2875

100 0.02431 — 0.04436 — 0.04029 —

1000 0.00255 0.00252 0.00461 0.00461 0.00423 0.00422

have the following forms,

nα(x = ±H/2) = ± 2√
π

∫
g(in)α (x = ±H/2)exp(−c2αx − c2αy)cαxdcαxdcαy, (53a)

g(out)α (x = ±H/2) = (1− aα)g(in)α (x = ±H/2) + aαnα(x = ±H/2), (53b)

θ(out)α (x = ±H/2) = 0, (53c)

nα(y = ±H/2) = ± 2√
π

∫
g(in)α (y = ±H/2)exp(−c2αx − c2αy)cαydcαxdcαy, (53d)

g(out)α (y = −H/2) = (1− aα)g(in)α (y = −H/2) + aαnα(y = −H/2), (53e)

g(out)α (y = +H/2) = (1− aα)g(in)α (y = +H/2) + aα

[
nα(y = +H/2) + 2

√
mα

m
cαx

]
, (53f)

θ(out)α (y = ±H/2) = 0. (53g)

We also simulate this problem using the DSMC67 to validate the proposed DUGKS. In

this case, we focus on the velocity profiles of the mixtures. The DSMC is a stochastic

particle-based method, where macroscopic quantities are obtained by averaging appropriate
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microscopic properties of the simulated molecules. Therefore, the simulated results exhibits

statistical noise due to finite sampling in the presence of thermal fluctuations. According to

the equilibrium statistical mechanics, the ”noise-to-signal” ratio Eu in the estimate of the

fluid velocity can be written as68

Eu =
1

Ma
√
γMN0

, (54)

where Ma is the Mach number of the DSMC simulations, M is the number of sampling steps,

and N0 is the average number of simulated molecules in each cell. With our configurations

(Ma = 0.01 and N0 = 100), to achieve smoother velocity profiles, the error is set to be

Eu = 0.05%, for which about M = 2.4× 108 independent samples are needed. The physical

space is divided into a uniform grid with 60 × 60 cells, whose results show very slight

difference with those on a refined grid with 100 × 100 cells. As δ = 100, the mesh size of

the DUGKS is about 1.9 times of the mean free path for this case. The velocity space of

each species is discretized by the Newton-Cotes quadrature with 101 × 101 velocity points

distributed uniformly in [−4, 4]×[−4, 4] for δ = 0.1, 1, and 10. The half-range Gauss-Hermite

quadrature58 is employed for δ = 100 with 28× 28 velocity points. The CFL number is 0.5

for all the cases.

The velocity profiles across the cavity center of the Ne-Ar and He-Xe mixtures with

C0 = 0.5 and δ = 0.1, 1, 10, and 100 (Kn = 8.86, 0.886, 0.0886, and 0.00886 correspondingly)

are shown in Figs. 12 and 13. Results predicted by the present DUGKS are in close agreement

with those of the DSMC for both the Ne-Ar and He-Xe mixtures as δ varies from 0.1 to 100,

except for the He-Xe mixture at δ = 10, where some deviations can be found in the velocity

in the x direction along the vertical center line of the cavity in comparison with that of the

DSMC.

Besides, in order to evaluate the computational efficiency, the CPU time and numbers of

iteration of the DUGKS and the DSMC under the same computational mesh are measured

and displayed in Table VII. The DUGKS code runs with 24 cores to reach the steady state

defined in Eq. (40). The DSMC67 runs with the MPI using 24 cores to reach the noise state

defined in Eq. (54). It is clear that the DUGKS is significantly faster than the DSMC for

this problem.
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FIG. 12: Velocity profiles along the center lines in the cavity flow for the Ne-Ar mixture

with C0 = 0.5.

V. CONCLUSIONS

In this paper, a discrete unified gas kinetic scheme for binary gas mixtures has been

developed for binary gas mixtures on the basis of the McCormack model, which can recover

all the correct transport coefficients accurately. With the intrinsic coupling of molecular

collision and transport processes in determining of the flux across the cell interface, the

computational time step and mesh size are not limited by the mean collision time and mean

free path of gas molecules, respectively, so that the multiscale flow physics of gas mixtures
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FIG. 13: Velocity profiles along the center lines in the cavity flow for the He-Xe mixture

with C0 = 0.5.

can be efficiently and self-adaptively captured from the hydrodynamic to the free-molecular

flow regimes.

The proposed method is validated by several problems, including the Couette flow, the

Fourier flow, and the lid-driven cavity flow for Ne-Ar and He-Xe mixtures. For the Couette

and Fourier flows ranging from near-continuum to free molecular regimes, good agreement

can be observed from the results of the DUGKS and the DVM based on the McCormack

model for both small and large mass ratios. As for the 2D lid-driven cavity flow, the

DUGKS results agree well with those of the DSMC. In addition, the DUGKS is more than
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TABLE VII: Wall time (in seconds) and iteration steps of reaching steady states. 24 cores

are employed by the DUGKS and the DSMC.

δ Ne-Ar He-Xe

DUGKS DSMC DUGKS DSMC

time step time step time step time step

0.1 4313 7432 1,634,891 2.4× 108 6522 10077 1,527,409 2.4× 108

1 3102 4525 1,666,654 2.4× 108 8476 14215 1,541,555 2.4× 108

10 4692 7277 1,672,260 2.4× 108 10000 18031 1,562,775 2.4× 108

100 1738 29925 1,816,130 2.4× 108 5035 109316 1,655,976 2.4× 108

two orders of magnitude faster than the DSMC for low-speed flows in terms of the wall

time and convergent iteration steps. The presented results about classical test problems are

essential to convince the audience that DUGKS is a good scheme for numerically solving

the McCormack model.

Note that compared to most of the other kinetic models, the McCormack model can re-

produce all transport kinetic coefficients, which ensures the reliability of this model equation.

Comparisons have been performed between the AAP model and the McCormack model for

simulating Couette flows over a wide range of the rarefaction parameter. Numerical results

show that the McCormack model approximates the LBE and the full Boltzmann equation

better than the AAP model in the transitional and near-continuum regimes for large mass

ratio cases. However, the McCormack model can only be applied to the flows that slightly

deviate from equilibrium, and is therefore unsuitable for nonlinear problems. In the future

work, more advanced kinetic models for binary gas mixtures, such as the recently proposed

BGK-type models69,70, will be employed by the DUGKS to get further insights into the

kinetic models for mixtures and study nonlinear problems in all the flow regimes.
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Appendix A: Macroscopic quantities solving for the 2D problem

We take the 2D Fourier flow as an example to show how to calculate the macroscopic

quantities [see Eq. (24)] needed at the cell center and interface using the moments of the

distribution functions φ̃α and φ̄α, respectively. For this problem, the isotropy in the xz plane

is considered in Eqs. (A3) and (A4), i.e.,

Pαxx = Pαzz. (A1)

Besides, the stress tensor Pαik(α = A,B; i, k = x, y, z) is traceless, which can be expressed

as

Pαxx + Pαyy + Pαzz = 0. (A2)

Thus the terms Gα and Θα in Eqs. (22) and (23) have the following forms according to

Eq. (A1) and (A2)

Gα =γαnα + 2

√
mα

m

[
γαuαx − ν(1)αβ (uαx − uβx)− ν(2)αβ (qαx −

mα

mβ

qβx)

]
cαx

+ 2

√
mα

m

[
γαuαy − ν(1)αβ (uαy − uβy)− ν(2)αβ (qαy −

mα

mβ

qβy)

]
cαy

+

[
γαTα − 2

mαβ

mβ

(Tα − Tβ)ν
(1)
αβ

] (
c2αx + c2αy − 1

)
+ 4

[
(γα − ν(3)αα + ν(4)αα + ν

(3)
αβ )Pαxy + ν

(4)
αβPβxy

]
cαxcαy

+ 2
[
(γα − ν(3)αα + ν(4)αα + ν

(3)
αβ )Pαyy + ν

(4)
αβPβyy

](
c2αy −

1

2
c2αx −

1

4

)
+

8

5

√
mα

m

[
(γα − ν(5)αα + ν(6)αα − ν

(5)
αβ )qαx + ν

(6)
αβ

√
mβ

mα

qβx −
5

8
ν
(2)
αβ (uαx − uβx)

]
cαx
(
c2αx + c2αy − 2

)
+

8

5

√
mα

m

[
(γα − ν(5)αα + ν(6)αα − ν

(5)
αβ )qαy + ν

(6)
αβ

√
mβ

mα

qβy −
5

8
ν
(2)
αβ (uαy − uβy)

]
cαy
(
c2αx + c2αy − 2

)
,

(A3)

and

Θα =
1

2

[
γαTα − 2

mαβ

mβ

(Tα − Tβ)ν
(1)
αβ

]
− 1

2

[
(γα − ν(3)αα + ν(4)αα + ν

(3)
αβ )Pαyy + ν

(4)
αβPβyy

]
+

4

5

√
mα

m

[
(γα − ν(5)αα + ν(6)αα − ν

(5)
αβ )qαx + ν

(6)
αβ

√
mβ

mα

qβx −
5

8
ν
(2)
αβ (uαx − uβx)

]
cαx

+
4

5

√
mα

m

[
(γα − ν(5)αα + ν(6)αα − ν

(5)
αβ )qαy + ν

(6)
αβ

√
mβ

mα

qβy −
5

8
ν
(2)
αβ (uαy − uβy)

]
cαy.

(A4)
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Then the moments of the linear term Gα can be given as

∫
Gαf

r
αdcα = γαnα, (A5a)∫

cαiGαf
r
αdcα = γαuαi − ν(1)αβ (uαi − uβi)− ν(2)αβ

(
qαi −

√
mα

mβ

qβi

)
, (A5b)∫

cαxcαyGαf
r
αdcα =

[(
γα − ν(3)αα + ν(4)αα − ν

(3)
αβ

)]
Pαxy + ν

(4)
αβPβxy, (A5c)∫ (

c2αy + c2αx − 1
)
Gαf

r
αdcα

=
1

2

[(
γα − ν(3)αα + ν(4)αα − ν

(3)
αβ

)
Pαyy + ν

(4)
αβPβyy

]
+

[
γαTα − 2

mαβ

mβ

(Tα − Tβ) ν
(1)
αβ

]
, (A5d)∫ (

2c2αy − c2αx −
1

2

)
Gαf

r
αdcα

=
5

2

[(
γα − ν(3)αα + ν(4)αα − ν

(3)
αβ

)
Pαyy + ν

(4)
αβPβyy

]
+

1

2

[
γαTα − 2

mαβ

mβ

(Tα − Tβ) ν
(1)
αβ

]
, (A5e)∫

cαi
(
c2αy + c2αx − 2

)
Gαf

r
αdcα

=
8

5

√
mα

m

[(
γα − ν(5)αα + ν(6)αα − ν

(5)
αβ

)
qαi + ν

(6)
αβ qβi −

5

8
ν
(2)
αβ (uαi − uβi)

]
, (A5f)

where f rα = π−1exp
(
−c2αx − c2αy

)
, i = x, y, and α, β = A,B. In addition, the moments of

Θα have the following forms,

∫
Θαf

r
αdcα

= −1

2

[(
γα − ν(3)αα + ν(4)αα − ν

(3)
αβ

)
Pαyy + ν

(4)
αβPβyy

]
+

1

2

[
γαTα − 2

mαβ

mβ

(Tα − Tβ) ν
(1)
αβ

]
,

(A6a)∫
cαiΘαf

r
αdcα =

2

5

√
mα

m

[(
γα − ν(5)αα + ν(6)αα − ν

(5)
αβ

)
qαi + ν

(6)
αβ qβi −

5

8
ν
(2)
αβ (uαi − uβi)

]
,

(A6b)

Next, according to Eq. (30), the moments of the of distribution functions g̃α and θ̃α can
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be obtained as∫
g̃αf

r
αdcα = nα, (A7a)∫

cαig̃αf
r
αdcα = uαi +

∆t

2
ωα

[
ν
(1)
αβ (uαi − uβi) + ν

(2)
αβ

(
qαi −

√
mα

mβ

qβi

)]
, (A7b)∫

cαxcαyg̃αf
r
αdcα =

[
1 +

∆t

2
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(
ν(3)αα − ν(4)αα + ν

(3)
αβ

)]
Pαxy −

∆t

2
ωαν

(4)
αβPβxy, (A7c)

2

3

∫ [(
c2αy + c2αx − 1

)
g̃α + θ̃α

]
f rαdcα = Tα + ∆tωα

mαβ

mβ

(Tα − Tβ) ν
(1)
αβ , (A7d)

1

3
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2c2αy − c2αx −

1

2

)
g̃α − θ̃α

]
f rαdcα
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[
1 +
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2
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(3)
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Pαyy −
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2
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(4)
αβPβyy, (A7e)

1

2

∫
cαi

[(
c2αy + c2αx − 2

)
g̃α + θ̃α

]
f rαdcα

=

√
mα

m

[
qαi +

∆t

2
ωα

(
ν(5)αα − ν(6)αα + ν

(5)
αβ

)
qαi −

∆t

2
ν
(6)
αβ qβi +

5∆t

16
ωαν

(2)
αβ (uαi − uβi)

]
. (A7f)

Once the distribution functions g̃α and θ̃α are known, the number density nα of species α can

be calculated from Eq. (A7a). The velocity uAi, uBi and heat flux qAi, qBi can be obtained

from solving the linear equation set consisted by Eqs. (A7b) and (A7f) for α, β = A,B.

The macroscopic quantities PAxy and PBxy can be calculated from the linear equation set

consisted by Eq. (A7c) for α, β = A,B. Similarly, the macroscopic quantities PAyy and PByy

and TA and TB can be solved from Eqs. (A7e) and (A7d), respectively.

At last, the moments of the distribution functions ḡα and θ̄α have the same expressions

with those of the distribution functions g̃α and θ̃α, except that the term ∆t in Eq. (A7) is

replaced by ∆t/2 due to the definition of ḡα and θ̄α according to Eq. (33). Similarly, the

macroscopic quantities on the interface at half time step can be solved from the moments

of ḡα and θ̄α.
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