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Abstract 

 

In this paper, we revisit the Earnings, Cover (the ratio of earnings over dividends) and Price/Earnings 

(P/E) Ratio models which we introduced in Part 4 of this series. Although we suggested that the 

significant decline in the Earnings Index over 2015-2016 might be followed by dividends and share 

prices, this has not happened.  Instead, Earnings have risen substantially over the years 2016 to 2018.  

Therefore, we revise our models based on the updated data and compare the new set of models with 

the one in Part 4 as well as with themselves.  We then compare different methods for forecasting 

Dividends and Share Prices. 
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1. Introduction 

 

1.1  In Part 4 of this series (Wilkie and Şahin, 2018), we modelled share Earnings, “Cover” 

(the ratio of earnings over dividends) and Price/Earnings (P/E) ratios as additions to the Wilkie model.  

We used data from 1962, based both on the old “FT 500” index (now the FTSE Non-financials index) 

and (from 1992) the FTSE All Share index, together forming what we called a “composite index”.  

We used data up to June 2016.  We observed in that paper that the Earnings Index had dropped greatly 

over the year from June 2015 to June 2016, by a little over 50%, or in log terms, a reduction of 0.72.  

Yet over the same period, share dividends had risen and share prices had declined but by very little.  

Cover, normally in the range 1.5 to 3 or so, had dropped below unity, to 0.89 and the P/E ratio had 

risen to more than 30.  Following our model, we would have expected share dividends and share 

prices to follow earnings in halving over the next few years.  However, this had not happened yet.  

We postulated that “the market” fully expected earnings to recover, and suggested a way of allowing 

for this, by including an artificial non-zero mean value for the earnings residual (EE) for 2017, of 

about 0.7.  This gave forecast for future earnings, dividends and share prices similar to those forecast 

as at June 2015. 

 

1.2  We now have data for two more years, up to June 2018.  Earnings have recovered 

enormously, rising by over 27% in 2016-17 and more than doubling in 2017-18, so that by June 2018 

our Earnings Index, was higher than ever before, higher even than the previous peak in September 

2011.  Cover is back to more than 2, and the P/E ratio back to a normal middle level of 13.57.  In 

Figure 1 we show graphs of the Retail Prices Index, All Share Price Index, 25 times the Dividend 
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Index and 17 times the Earnings Index, all from 2002 (so beyond the period of our composite index).  

In Figure 2 we show  the corresponding Dividend Yield, 10 times Cover, and the P/E Ratio.  These 

two Figures continue Figures 1 and 3 of the Part 4 paper. 

 

 

 
 

Figure 1.  Retail Prices Index and All Share Price Index, 25 times Dividend Index and 17 times 

Earnings Index. January 2002 to June 2018. 
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Figure 2.  Dividend Yield, 10 times Cover and P/E Ratio, for All Share Index. January 2002 to June 

2018. 

 

1.3  The large changes in the last two years suggest that we should revisit our model, and in 

this Supplement we do so, fitting the models for  Earnings, Cover and P/E Ratio.  It may be questioned 

why a model that is intended for long-term simulations, and should therefore be a stable one, should 

be investigated again so quickly.  Although one would normally like to keep the model unchanged, it 

seems to us appropriate to update the parameter values as frequently as one wishes, as new data 

emerges.  However, the very large changes in Earnings over the most recent years suggest that fuller 

investigation is needed in this case. 

 

 

2. Models for 1923 to 2018. 

 

2.1  We first, quickly, fit updated models for 1923 to 2018 for Retail Prices, Share Dividend 

Yields and Share Dividends, because we wish to compare the models for this longer period with those 

for 1963 to 2018, which is our primary interest.  For share data we use the FTSE All-Share index 

throughout, so our data is slightly different from the composite data we use for 1963 to 2018.  For all 

these series we use the same models as we have used previously.  However, we slightly simplify our 

notation, so that, for example, the mean QMU is renamed QM and the standard deviation QSD is 

renamed QS, and likewise for the other variables. 

 

2.2  For Retail Prices we have: Q(t) is the index in June of year t; QL(t) = ln(Q(t)), and I(t) = 

QL(t) – QL(t–1).  Then we put: 

 

  I(t) = QM + QA.(I(t–1) – QM) + QS.QZ(t) 
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Fitting from 1923 to 2018 we get values of the parameters changed very little from those found in 

2016: 

 

  QA = 0.571383; QM = 0.042408; QS = 0.038154. 

 

2.3  For Dividend Yields we use what we called in Part 4 the “Unadjusted series”. Y(t) is the 

yield (as a fraction, not a percentage) in June of year t; YL(t) = ln(Y(t)); YML = ln(YM).  Then: 

 

  YN(t) = YA.YN(t–1) + YS.YZ(t) 

 

  YL(t) = YW.I(t) + YML + YN(t) 

 

Fitting from 1923 to 2018 we get parameter values also little changed: 

 

  YW= 1.418031; YA = 0.652530; YM = 0.036258; YS = 0.157234. 

 

2.4  For the Dividend Index, D(t); DL(t) = ln(D(t)); K(t) = DL(t) – DL(t–1).  Then we use a 

moving average of past inflation: 

 

  DM(t) = DD.I(t) + (1 – DD).DM(t–1) 

 

  K(t) = DW.DM(t) + DX.I(t) + DM + DY.YE(t–1) + DB.DE(t–1) + DS.DZ(t) 

with DX fixed as 1 – DW 

 

  DL(t) = DL(t–1) + K(t) 

 

Fitting from 1923 to 2018 we get parameter values again little changed: 

 

DW = 0.419145; DD = 0.161770; DM = 0.011908; DY  = –0.199313; DB  = 0.475977; 

DS =0.071772 

 

 

3. Models for 1963 to 2018. 

 

3.1  First we refit the first three series using only the data for 1963 to 2018.  In general we 

prefer to use parameter values based on the longer series, but in order to compare models, as we do 

below, we wish to fit them over the same periods.  We then use the fitted values for these series in 

the subsequent calculations; this affects only the values of YE, which are used in the formulae for L 

and V. 

 

3.2  There are two considerations here about log likelihoods.  When one is comparing various 

models in which the residuals all assumed to be Normally distributed, the constant term in each log 

likelihood, –ln(2.π) / 2, can be omitted, and we have often done this in the past.  However, when 

comparing models with differing assumptions about the distribution of residuals, this term cannot be 

omitted, so. in anticipation of future requirements, we have changed our practice so as to always 

include it.  It is only the difference in log likelihoods that matters; the absolute values are not 

important. 

 

3.3  Secondly, when we are comparing sequential, or “cascade” models in which the model 

for each variable may depend on the values of the residuals for earlier variables in the sequence, it is 

desirable to be clear about what exactly one is comparing.  So in the following comments, we first 
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calculate the log likelihoods for all variables, using the values of the parameters found for the periods 

ending in 2016 but applied to the data ending in 2018, and then optimise the values for all variables, 

based on the data ending in 2018.  All comparisons are on this basis. 

 

3.4  For the first two series discussed in Section 2, we now get parameter values which are not 

very close to those for 1923 to 2018, but not too far away: 

 

  QA = 0.692132; QM = 0.053292;QS = 0.033431 

 

  YW= 1.488622; YA = 0.696261; YM = 0.036742; YS = 0.163887 

 

3.5  For the Dividend series in 2016 we got parameter values with DW negative and rather 

large, which seemed unsatisfactory, so we tried alternatives, such as putting DB = 0, and found a 

reasonable model.  However, the large value of DD that we got meant that mostly current inflation 

was used, and rather little of past inflation, so the answers were not unreasonable.  However, if we 

put DW = 0 so that DX = 1, we would use only current inflation and ignore the past moving average 

and the value of DD would not matter.  This would have been a much better solution previously.  

Using this model we now get: 

 

DW = 0, DX = 1, DM = 0.0097801; DY  = –0.180357; DB  = 0.389381; DS =0.065517 

 

This is much more satisfactory and so we shall use this new model in what follows. 

 

3.6  We can fit the Earnings index only using the data from 1963.  We have the index, E(t); 

EL(t) =  ln(E(t)); and L(t) = EL(t) – EL(t–1).  The model we chose in Part 4 was: 

 

  L(t) = EQ.I(t) + (1 – EQ).I(t–1) + EY.YE(t–1) + EM + ES.EZ(t) 

 

Fitting from 1963 to 2018 we get a log likelihood of 17.42, with parameter values: 

 

  EQ = 2.906977; EY = –0.411423; EM = 0.012336; ES = 0.177276. 

 

These are not very different from the values we found in Part 4, using data up to 2016, which were: 

 

  EQ = 2.8494; EY = –0.3887; EM = –0.0041; ES = 0.1516. 

 

The standard deviation of the residuals, ES, is rather higher than before, not surprisingly because of 

the large deviations in the last two years.  Applying the 2016 parameters to all the data up to 2018 

gives a log likelihood of 15.55, so the improvement of 1.87 is not very large, and one might consider 

the revisions not justifiable.  However, when we inspect the autocorrelations of the residuals, EE(t), 

in the more recent series, we see a first autocorrelation of 0.0906, not very high, and a second of          

–0.2954, with a partial autocorrelation coefficient of –0.3061; assuming normality this is significant 

at 5% but not very much so (z = –2.1926).  But almost all of the contribution to this large second 

coefficient comes from the residual in 2018 (a large positive value) versus that in 2016 (a large 

negative).  We note that the residuals are by no means normal; the skewness is –0.2913 not 

exceptional, but the kurtosis is 10.30, a very large value.  We are reluctant to build into the model an 

autocorrelation, adding a term EB2.EE(t–2), on the basis of only two year’s extreme values.  But it is 

worth investigating. 

 

First we add two autocorrelation terms for the residuals and put: 

 

 L(t) = EQ.I(t) + (1 – EQ).I(t–1) + EY.YE(t–1) + EB1.EE(t–1) + EB2.EE(t–2)+ EM + ES.EZ(t) 
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Fitting again from 1963 to 2018 we get a log likelihood of 22.55. a useful improvement of 5.13, with 

parameters: 

 

 EQ = 2.100436; EY = –0.353314; EB1 = –0.007177; EB2 = –0.508116; EM = 0.008169; 

ES = 0.161750. 

 

However, the value of EB1 is very small and quite insignificant (S.E. = 0.1535), so in our next trial 

we omit it and get a new log likelihood of 22.55, the same as before; the new parameter values are 

quite similar to those above: 

 

  EQ = 2.108208; EY = –0.357198; EB2 = –0.504656; EM = 0.008149; ES = 0.161753. 

 

The improvement in log likelihood is 5.13 for one parameter, which is good, and the value of EB2 is 

very significant (S.E. = 0.1300) so it is worth keeping this model for the time being.  We call the 

model for Earnings without EB2 “E1” and the model with EB2 “E2”.  But we remind ourselves that 

significance in all this fitting depends on the normality of the residuals, and we calculate the log 

likelihood on the basis of normality.  We might get different answers if we assumed a fatter-tailed 

distribution, but that is beyond the scope of this paper.  We are aware of this serious problem in the 

whole of our model, where many variables have fatter-tailed residuals; we are actively investigating 

this and intend to present our findings in future papers in this series.  

 

3.7  Cover is defined as the ratio of the Earnings Index to the Dividend Index, V(t), VL(t) = 

ln(V(t)), VML = ln(VM).  Our model from Part 4 is: 

 

VN(t) = VA.VN(t–1) + VE1.EE(t) + VE2.EE(t–1) + VY1.YE(t) + VY2.YE(t–1) + VS.VZ(t) 

 

  VL(t) = VML  + VW.I(t) + VN(t) 

 

This elaborate model includes EE(t) and EE(t–1), and the values of these are different in the two 

Earnings models, and call the resulting models for Cover, “V1” and “V2”. 

 

We start with V1, in which we use the residuals from E1.  Fitting from 1963 to 2018 we get a log 

likelihood of 75.2, with parameter values: 

 

 VA = 0.920230; VE1 = 0.876203; VE2 = –0.072063; VY1 = –0.123775; VY2= –0.234595; 

VW = 1.702445; VM = 1.655723; VS = 0.061479. 

 

These are different from those found in 2016, but not hugely so.  However, the log likelihood is 9.14 

bigger, a very significant improvement. 

 

With V2, using the residuals from E2 we get a log likelihood of 56.11, with parameter values: 

 

 VA = 0.723960; VE1 = 0.807971; VE2 = 0.078191; VY1 = –0.139468; VY2= –0.181683;  

VW = 1.153817; VM = 1.695593; VS = 0.088548. 

 

This has a much worse log likelihood (20.62 worse), rather different parameters and a bigger value 

of VS.  So for Cover the model V1 is better, and in combination with the Earnings model, the total 

log likelihood is much worse.  So inclines us strongly towards E1 and V1. 
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3.8  We can derive the P/E Ratio from Dividend Yield and Cover (the product of the three is 

unity), but we can instead model it directly without reference to either Y(t) or V(t).  We denote it as 

M(t), for “multiple”, and have ML(t) = ln(M(t)), MML = ln(MM), and a model 

 

MN(t) = MA.MN(t–1) + ME1.EE(t) + ME2.EE(t–1) + MS.MZ(t) 

 

ML(t) = MML + MW.I(t) + MN(t)  

 

This is a simpler model than for Cover, V, but it also includes EE(t) and EE(t–1), so again we need 

two models, which we call “M1” and “M2”. 

 

We start with M1, optimising up to 2018,  and we get log likelihood of 20.35, with parameter values: 

 

 MW = –2.839668; ME1 = –0.871112; ME2 = 0.065955; MA = 0.720612; MM = 16.334475; 

MS = 0.168232. 

 

These are different from those for 2016, but also not hugely so.  But the log likelihood using the 2016 

parameters is 16.48, so the new parameters improve it by 3.87. 

 

With M2 we get a log likelihood of 20.78, 0.43 better. with parameter values: 

 

 MW = –2.462687; ME1 = –0.943416; ME2 = –0.058085; MA = 0.63586; MM = 15.892657; 

MS = 0.166911. 

 

This has a very slightly better log likelihood, with fairly similar parameters to those in M1.   Modelling 

M directly avoids needing a model for V, so we can ignore the large deterioration in log likelihood 

for V.  Allowing for the improvement in log likelihood for E, and the very modest improvement for 

M, the model with E2 and M2 is rather better.  Note that the value of ME2 in both cases is small, 

much less than the standard error, so could be omitted.  This was not the case in 2016. 

 

 

4 Comparisons between the models  

 

4.1  We have now a multiplicity of models.  Our primary interest is in the Dividend Index, D, 

and the Share Price Index, P.  All the other items are additional information, not ends in themselves.  

We can calculate forecast or simulated values of D and P in three different ways, but we shall first 

postulate a null hypothesis, H0, where the Share Price Index, P, is modelled as a simple random walk. 

 

4.2  We put PL(t) = ln(P(t)), and PLD(t) = PL(t) – PL(t–1).  We then put: 

 

  PLD(t) = PM + PS.PZ(t) 

 

For the period from 1923 to 2018 we get PM = 0.054884, PS = 0.176511, and for the period from 

1963 to 2018 we get PM = 0.070038, PS = 0.167866,  If we start at t = 0, with P(0) known, we get: 

E[PL(t)] = PL(0) = t.PM and Var[PL(t)] = t.PS2.  This does not give us D(t), unless we model also 

Y(t), but we do not go down this road here. 

 

4.3  Our three methods of getting P(t) and D(t) are described below.  In each case we assume 

that we include Q(t) and Y(t) first. 

 

 (H1) Model D(t) directly, as with the original model, and then P(t) = D(t) / Y(t), 

or PL(t) = DL(t) – YL(t) 
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 (H2) Model E(t) and V(t) with any of our models, and put D(t) = E(t) / V(t) 

or DL(t) = EL(t) – VL(t), then PL(t) = DL(t) – YL(t) 

 

 (H3) Model E(t) and M(t) directly with any of our  models and put P(t) = E(t).M(t) 

or PL(t) = EL(t) + ML(t) and DL(t) = PL(t) + YL(t) 

 

With Model H0 we use only share prices and ignore dividends and earnings.  With Model H1 we use 

dividends but not earnings, and with Model H3 we use earnings, but not dividends.  With Model H2, 

we use both dividends and earnings.  One could argue that with Model H2 we use more information, 

so it is bound to be better.  However, we can see from Figure 1 that the Earnings Index is much more 

unstable than Dividends and rather more so than Prices.  The numbers back this up.  So possibly an 

unstable Earnings model detracts from accurate forecasting rather than adding to it.  However, with 

all our modelling we are not only interested in getting good future mean forecasts, but also good 

future estimates of variability. 

 

4.4  We investigate this in two ways.  First, we calculate the expected values and variances of 

the different variables for k years ahead (k = 1 to K), using the fitted models, with Initial Conditions 

as at June 2018.  Secondly, we go through the past data, taking each year in turn, and forecasting the 

expected value, using the fitted models, but with Initial Conditions as at each past June date and going 

k years ahead (k = 1 to K).  We then compare the forecast value with the future actual value, as far as 

there are years of data available.  We calculate the differences between forecast and actual values, 

and for each value of k we calculate  the “root mean square” (RMS), the square root of the average 

squared difference.  This is “in-sample” testing , not revising the parameters at each stage. 

 

4.5  We restrict our results to the share price index, P(t), or rather to its logarithm, PL(t), since, 

assuming that all the innovations are normally distributed, so also is PL(t).  We calculate, using the 

laborious formulae in Part 2 (Wilkie and Şahin, 2016) , Appendix A, and in Part 4 (Wilkie and Şahin, 

2018), Appendix A, the expected value, variance and standard deviation of PL(2018 + k) conditional 

on F2018, all that is known as at June 2018, and we denote them PLE(k), PLV(k) and PLSD(k).  Then 

for each year t between 1923 (or 1963, depending on the model used) and 2017, we calculate the 

expected value of PL(t, k) conditional on Ft, all that is known in June of year t.  We call this PLH(t, 

k) (H for “hat” or expected value). Then for each year where we have data, we calculate EPL(t, k) = 

PL(t + k) – PLH(t, k), i.e. the error between the actual outcome in year t + k and the expected value 

as at year t.  We square the values of EPL(t, k) and for each value of k we sum the squares, divide by 

the number of available observations, nk, and take the square root, giving the “root mean square” of 

the errors,.  We call this RMS(k).  Thus 

 

  RMS(k) = √ {∑ (PL(t + k) – PLH(t, k))2 / nk} 

 

4.6  For the data starting in 1923, we have 96 years of observations to 2018.  But if we go 

ahead k years from each starting year, we have only nk = 96 – k available end years.  For this data we 

let k go up to K = 50, thus a little more than half.  For the data starting in 1963, we have 56 years of 

data, so we let k go up to 30, also a little over half.  But it will be observed that our values of EPL(t, 

k) are by no means independent.  For k = 1, the one step ahead forecast, we do have independent 

observations, but for k = 2, each observation shares a year with its neighbours on each side, and as k 

increases there are more overlaps.   When we reach k = 50 (or 30), we have half dozen years in the 

middle that appear in every value of EPL(t, k).  If we wished to use only independent observations, 

with no overlap, we would have fewer and fewer available.  We do not claim that our calculations 

provide strong evidence, but they do give some slight evidence, and are the best we can do. 
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4.7  We treat our periods separately, 1923 to 2018 and 1963 to 2018, using the fitted models 

for each throughout.  We have two versions for 1963 to 2018, using Earnings Model E1 and Earnings 

Model E2.  We have four ways of modelling PL for the later period, but only two of these (H0 and 

H1) are available for the earlier period.  We compare PLSD(k) and RMS(k) for each model within 

each period and version. 

 

4.8  In Figure 3 we show results for 1923 to 2018, with H0 and H1.  The standard deviations 

PLSD(k) are shown with solid lines.  That for H0 is in black, for H1 in red.  The values of RMS(k) 

are shown with dots, of the same colours.  The black line for H0, the random walk model, increases 

as the square root of k.  The red line is quite a bit lower, showing that the model with dividends and 

dividend yield should give much lower variation of the values of PL in the future.  They are almost 

the same for k = 1, showing that there is nearly no difference over the first year. 

 

4.9  The black dots for RMS(k) are lower than the black line, and the red dots generally lower 

than the red line, and for large k the values shown by the dots are about the same.  We have already 

explained the serious lack of independence in the calculations of RMS(k), and we do not lay much 

significance in these ‘in sample’ results.  But they are of the same order of size as the theoretical 

standard deviations. 

 

 
 

Figure 3.  Values of PLSD(k) and RMS(k), for k =1 to 50, 1923 to 2108, models H0 and H1. 

 

4.10  In Figure 4 we show results for 1963 to 2018, with all four hypotheses, using  Models 

E1,V1 and M1.  We use black and red again for H0 and H1, then green for H2 and blue for H3.  The 

black and red lines and dots are fairly close in value to those in Figure 1, but they look rather different 

because the horizontal axis is restricted to k = 30 years. 
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4.11  The blue line for H3 is much the highest, which suggests that using Earnings and 

P/E ratios is a poor way of forecasting share prices.  But for short terms the green line for H2 is a 

little below the red one, suggesting that modelling Earnings as well as Dividends does add some 

value.  However, beyond k = 12, the green line rises, even going above the black one, so perhaps 

Earnings are sufficiently unstable to detract in the long run.  The dots, showing the in sample test 

values, are all lower than their corresponding lines, and the red, green and blue dots are in almost the 

same places. 

 

 

 

 

 

 

 
Figure 4.  Values of PLSD(k) and RMS(k), for k =1 to 30, 1963 to 2108, Earnings model E1, models 

H0 to H3. 

 

4.12  In Figure 5 we show the same results as in Figure 4, but using  Models E2, V2 and M2.  

The results are very different.  Now the blue line for H3 is the lowest all the way long, with the green 

one a little above it.  Investigation shows that this is caused by the EB2 term in the earnings model.  

An innovation, EE, that enters the formula for L(t) passes through to EL(t).  Two years later half of it 

is reversed, since our estimate of the value of EB2 is close to –0.5.  This damps the longer term 

variance of E considerably.  The values for the coloured dots are very close together, as before, and 

the green and blue values so close that we show the green points by a star, rather than a circle. 

 

4.13  This is not a nice result.  Had we completed our investigations in 2015 we would have 

omitted the big reduction in earnings in 2016 and the recovery in 2017 and 2018, and we would have 

had no significant autocorrelation in the residuals of the Earnings model.  We do not like such an 

extreme model based on really only one event.  Further, the drop in earnings affected only a small 

number of very large companies, mainly in the oil and mining sectors.  These companies are indeed 

greatly affected by fluctuations in the oil price and in the prices of other commodities, and a downturn 

in such prices might well precede a downturn in the whole world economy.  But what we seem to 

have had is an almost artificial reduction in earnings, rapidly reversed.  The fact that few companies 
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cut dividends at that time (though some did) suggests that the directors of those companies were 

confident of a recovery.  We would not like to base a whole model in such a single event. 

 

 

 

 

 
 

Figure 5.  Values of PLSD(k) and RMS(k), for k =1 to 30, 1963 to 2108, Earnings model E2, models 

H0 to H3. 

 

 

5 Central Forecasts 

 

5.1  We also consider the central forecasts, by which we mean the values obtained by putting 

all future innovations to zero.  These are the mean values when we have a linear, normally distributed, 

model, but when we take exponentials, as in going from DL(t) = ln(D(t)) to D(t) = exp(DL(t)), the 

resulting distribution is lognormal, and the central forecast is not the mean.  Starting as at June 2018 

our different methods now give us different forecasts in the shorter term. 

 

5.2  We start by showing in Table 1 the expected values of L(t), the annual change in Earnings, 

for the next 10 years from June 2018 on the basis of the alternative models for Earnings described in 

Section 3.3.  We use all the parameters fitted above, including the estimate of QM of 0.042408, or an 

inflation rate of about 4¼%.  This seems high in present circumstances, and one might prefer a value 

of 0.025, or 2½%, about 1¾% lower.  Using this value reduces all the forecast rates by about 1¾% 

and one can keep this in mind.  Using the simpler model, E1, there is a slightly above average rise in 

Earnings in 2019, of 0.0605, falling quickly to the long-term mean of about 5½%. 
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5.3  Using E2 the one-year forecast falls to –0.0241.  This is because there was a large residual 

of about 0.24 in 2017, and this is multiplied by the EB2 factor of about –0.5, reducing the expected 

value of L for 2019.  The larger residual of about 0.75 in 2018 then affects the expected value for 

2020 negatively too.  It seems uncomfortable to us to build in such auto-regression, mainly on the 

basis of a single event, and this result confirms this view. 

 

5.4  One must remember that the model knows nothing about current political and economic 

events, such as Brexit and President Trump’s economic policies, which might well cause a reduction 

in company earnings; but these have nothing to do with the auto-regression.  One  must remember 

also that the standard deviation, ES, is about 0.16, so there is a 95% range of about ±30%, and the 

outturn might well be a long way away from the forecast mean. 

 

Table 1.  Central forecast values of L(t), increase in E(t), using different models for Earnings 

 
 Earnings E1 Earnings E2 

   

1 0.0605 –0.0241 

2 0.0560 –0.0995 

3 0.0555   0.0503 

4 0.0552   0.0504 

5 0.0550   0.0505 

6 0.0549   0.0505 

7 0.0548   0.0505 

8 0.0548   0.0505 

9 0.0548   0.0505 

10 0.0548   0.0506 

 

5.5  In Table 2 we show forecasts values for K(t), the annual increase in the Dividend Index, 

D(t), first using models E1 and V1 for Earnings and Cover and then models E2 and V2.  In each case 

we use the three versions for calculating D(t) described in section 4.3.  Method H1 models Dividends 

without reference to Earnings, so it is the same in each version for E.  It can be seen that there is a 

noticeable difference in the models.  Method H1 shows a modest increase of 0.0326, creeping up 

towards a longer term value of 0.0530.  Method H2, using E1 and V1 for Earnings and Cover, gives 

a much larger increase, of 0.1132; the rationale for this is that the high value of Earnings in June 

2018, with an above-average value for Cover, of 2.02, allows a possible increase in Dividends in 

2019.  Method H3 using Earnings and P/E ratios to get Prices than backing out Dividends through 

the Dividend Yield, Y(t), gives a yet higher value of 0.1410; in June 2018 the P/E ratio was 13.57, 

lower than the average, so there is some opportunity for the Multiple to rise and thus give an increase 

in Prices. 

 

5.6  Using V2 for Earnings gives negative forecast values for K(t) in the first two years, 

consequentially on the negative values for L(t) shown in Table 1, but the variations here are smaller.  

Remember again that the standard deviation of K(t) on any model is around 0.06 or 0.07, less than 

for L(t), but still large enough for the actual outturn to be quite a bit away from these central values. 
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Table 2.  Central forecast values of K(t), increase in D(t), using different models for Earnings, 

and different models for calculating Dividends and Prices 

 
 Both 

Models 

Models E1, V1, M1 Models E2, V2. M2 

 Dividends-

H1 

Dividends-H2 Dividends-H3 Dividends-H2 Dividends-H3 

      

1 0.0326 0.1132 0.1410 –0.0150 –0.0026 

2 0.0479 0.0590 0.0682 –0.0675 –0.0681 

3 0.0493 0.0595 0.0641   0.0738   0.0705 

4 0.0503 0.0597 0.0612   0.0677   0.0635 

5 0.0510 0.0596 0.0592   0.0631   0.0589 

6 0.0516 0.0593 0.0578   0.0597   0.0559 

7 0.0521 0.0591 0.0569   0.0572   0.0540 

8 0.0525 0.0588 0.0562   0.0554   0.0528 

9 0.0528 0.0585 0.0558   0.0541   0.0520 

10 0.0530 0.0582 0.0555   0.0531   0.0515 

 

5.7  In Table 3 we show comparable values for the increase in P(t), the share prices in the next 

10 years.  Since the Prices index is related to the Dividend Index through the Yield, Y(t), which has 

the same model throughout, the values here follow the pattern of those in Table in the same way in 

each column.  The value of Y(t) in 2018 was slightly below the average level, so the forecast is for a 

small rise in Yield, so that prices rise a little more slowly than Dividends. 

 

Table 3.  Central forecast values of increase in P(t), using different models for Earnings, 

and different models for calculating Dividends and Prices 

 
 Both 

Models 

Models E1, V1, M1 Models E2, V2, M2 

 Dividends-

H1 

Dividends-H2 Dividends-H3 Dividends-H2 Dividends-H3 

1 0.0120 0.0926 0.1204 0.0120 –0.0356 

2 0.0349 0.0460 0.0552 0.0349 –0.0805 

3 0.0410 0.0513 0.0559 0.0410   0.0656 

4 0.0451 0.0545 0.0560 0.0451   0.0625 

5 0.0477 0.0562 0.0559 0.0477   0.0598 

6 0.0495 0.0572 0.0557 0.0495   0.0576 

7 0.0508 0.0577 0.0555 0.0508   0.0559 

8 0.0516 0.0579 0.0554 0.0516   0.0546 

9 0.0522 0.0579 0.0552 0.0522   0.0535 

10 0.0527 0.0579 0.0551 0.0527   0.0528 

 

 

5.8  These results suggest that it is reasonable to prefer the method that uses more information, 

so method H2, using information about both Earnings and Dividends may be felt best.  As we show 

in section 4 it is also the method that gives the lower standard errors of the forecasts in the first few 

years. 
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6 Conclusions 

 

6.1  Because of the very large changes in Earnings over the years 2015 to 2018, we have 

investigated new models for Earnings, Cover and P/E Ratios.  We get rather different values for the 

parameters of our earlier models, and also introduce a possible new model for Earnings with an 

autoregressive term in the residual.  We also investigate different models for forecasting Dividends 

and Prices.  Share Earnings do not enter the cash flows of investors, whereas Dividends and Prices 

do, so it is not necessary to use Earnings unless they improve the forecasts for the other items.  We 

have shown that knowledge of Earnings does help a little, not a lot.  We prefer the simpler model for 

Earnings, without autoregression, since that is based on only one event.  Investigation of the very fat-

tailed distribution of Earnings is postponed to a later paper in this series.  We rather prefer the model 

for forecasting that derives Dividends from Earnings and Cover, but others may reasonably prefer 

one of the other methods we describe. 

 

6.2  However, this investigation raises deeper questions.  The recent very large changes in 

Earnings made a further investigation worth while.  But if just one event occurs which is outside the 

usual pattern of a variable, it is not easy to decide whether one should: 

 

change the parameter values, 

 

change the structure of the model, 

 

change the distribution of the residuals (which we intend to consider in a future paper), 

 

introduce an ad hoc intervention variable (as we did with the model for Base Rate, B(t), after 

the big drop in 2009), 

 

or even consider that a new regime has started which would require a quite different model (as 

happened with exchange rates when the post-World-War II Bretton-Woods system was replaced in 

the early 1970s with floating exchange rates). 

 

6.3  If supervisors are expecting companies or their actuaries to allow for an estimate of a 

1 in 200 event, and there is only one series involved (so no spreading of risk), can anyone estimate 

that plausibly without perhaps 400 years of data from a constant regime (on the ad hoc statistical rule 

that to forecast n years ahead, one should have 2n years of past data); this is an almost impossible 

requirement with any economic series. 
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