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Abstract—In this paper, we design a novel unsupervised archi-
tecture for automatic classification of the dominant polarization
in polarimetric SAR images. To this end, we leverage the ideas
developed in [1] and suitably exploit them to build a decision
logic capable of recognizing the dominant scattering mechanism
which characterizes the pixel under test. Specifically, we combine
the original data to generate three different sets of reduced-
size vectors, which feed a dominant eigenvalues classifier based
upon the Model Order Selection rules. Then, the outputs of the
latter classification schemes are exploited to infer, according to a
specific criterion, the dominant polarization. The performance
analysis is conducted on measured data and points out the
effectiveness of the newly proposed classification architecture also
showing that information about the dominant polarization can
be representative of the type of structure which gives raise to the
dominant backscattering mechanism.

Index Terms—Covariance matrix, eigenvalues decomposition,
model order selection rules, polarimetric SAR image classifica-
tion, structure classification.

I. INTRODUCTION

Polarimetric Synthetic Aperture Radar imaging (PolSAR)
has been demonstrated to have the capability to provide highly
reliable and valuable information for remote sensing [2]-[5],
allowing advanced discrimination and understanding of the
imaged scene. This radar imaging sensor acquires information
from a scene when vertical or horizontal polarization is trans-
mitted and/or received. Scattering mechanisms that rule the
de-polarization effect can be then identified and used to infer
about the observed scene. The exploitation of SAR polarimetry
is of particular relevance in civilian and defence applications.
In this former context, extended area monitoring and target
areas classification receive the widest attention by researchers.
A non-exhaustive list of applications of polarimetric SAR in
remote sensing includes biomass estimation [6], rice paddy
monitoring [7], snow and ice analysis [8], oil spill detec-
tion [4], land-use classification [9], crop monitoring, damage
assessment, deforestation, flood delineation, burn mapping,
disaster management, urban mapping and others [10].

In the classification context, the information extracted from
the polarimetric channels is typically used to characterize
different portions of the acquired scene in an automatic or
semi-automatic way [10]-[14]. Generally speaking, existing

strategies for scene classification from SAR images can be
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grouped into two main categories, namely unsupervised and
supervised algorithms, and have been extensively investigated
[9], [12], [15]-[21]. The former consists of clustering image
pixels by means of common characteristics/features and occurs
in an automatic way without any kind of aid from the user.
On the other hand, the latter exploits training pixels, which are
a-priori selected by the user to define the features identifying
a specific class [15], [16]. In [1], the problem of estimating
the number of dominant covariance eigenvalues (which are
representative of the scattering mechanisms) in polarimetric
SAR images was investigated assuming that the polarimetric
image pixels share the same covariance but different power
levels.

In this paper we propose a novel unsupervised approach
to classify dominant polarizations in polarimetric SAR im-
ages. Specifically, it suitably extends the Dominant Eigenvalue
Classification Scheme (DECS) proposed in [1] by integrating
reduced sized classifiers based upon Model Order Selection
(MOS) rules [22]. All the classification outcomes are then
processed by a decision logic able to identify the dominant
polarization in a pixel'. The effectiveness of the proposed
framework is demonstrated on real PolSAR data in which
manmade structures and vegetation have been identified. The
expected returned dominant polarization can be intuitively
inferred through general knowledge of the electromagnetic
scattering mechanism. The results show the capability of the
proposed approach to classify correctly the dominant polariza-
tion in all the investigated cases. Remarkably, they can feed a
further processing stage for automatic target recognition, land
use classification, etc. without the intervention of a human
operator.

The remainder of the paper is organized as follows?: Section
II introduces the problem formulation, the classification archi-
tecture is described in Section III. The analysis on real POISAR
data is reported in Section IV. Finally, Section V contains some
concluding remarks and outlines future research tracks.

INote that algorithm proposed in [1] can only identify the order relations
existing between the eigenvalues of the polarimetric covariance matrix without
providing any information about the dominant polarization.

2The adopted notation uses boldface for vectors a (lower case) and matrices
A (upper case). The trace and the determinant of a square matrix are
denoted by tr (-) and det(-), respectively, whereas (-)T indicates the conjugate
transpose. Symbol O denotes the the null vector with suitable size, while || - ||
is the Euclidean vector norm. Finally, @ ~ CN ' (m, M) means that @ is
a complex circular N-dimensional normal vector with mean m and positive
definite covariance matrix M € CN*N



TO SUBMIT ON IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

II. DATACUBE CONSTRUCTION AND PRELIMINARY
DEFINITIONS

A polarimetric SAR image, assuming a monostatic SAR
acquisition mode, is a (L x M)-dimensional matrix whose
entries are 3-dimensional complex vectors. Each component
of these vectors represents the returns acquired by a specific
polarimetric channel, namely HH channel for the first compo-
nent, HV channel for the second component, and VV channel
for the third component. Therefore, the sensor provides a 3-
D data stack of size L x M x 3 which is referred to in the
following as datacube.

The classification problem addressed here is aimed at iden-
tifying the dominant polarimetric component for each pixel of
the datacube. This information can be used to infer the kind
of structures present in the observed scene. To this end, for
the generic pixel under test, a rectangular neighborhood® A
of size K > N is extracted and a suitable function of these
vectors is devised for classification purposes. For simplicity, let
us denote the elements of A by x;, i = 1,..., K, and assume
that «; ~ CN'3(0,02C), where C is the positive definite
covariance matrix structure and o; > 0 is a scaling factor
[13]. Note that o; is representative of the reflectivity strength
of each pixel.

Finally, the classification problem at hand can be written as

1 : A is characterized by the VV polarization,
2 : A is characterized by the HH polarization, (D)
Hs : A is characterized by the HV polarization.

In the next section, we devise a classification architecture to
solve the above ternary hypothesis test which takes advantage
of the hidden information carried by the polarimetric vectors.

III. DESIGN OF THE CLASSIFICATION ARCHITECTURE
AND PARAMETER ESTIMATION

The herein proposed procedure leverages the ideas devel-
oped in [1] and suitably enriches them to obtain a decision
logic capable of recognizing the dominant polarization of the
scattering events represented by .A. Specifically, in [1], the
authors consider the following multiple hypothesis test

Hlt/\lz)\gz)\g,:)\,

Hy: A > Xo = A3, 2
H3: A =X > A3,

:>\12>\22)\33

where A1 > Ay > A3 are the eigenvalues of C' arranged in
decreasing order (note that the above hypothesis test contains
nested hypotheses since Hy C Hy and Hs C H,), and propose
a classification scheme (DECS), which identifies the dominant
covariance eigenvalues. This preliminary information can be
exploited to infer the dominant polarization. As a matter of
fact, if Hy or Hg are selected, then an eigenvalue classification
scheme can be applied to new reduced-size vectors obtained by
considering suitable 2-dimensional combinations of the com-
ponents of the original vectors. In this case, the classification

3In order not to burden the notation, in the following we omit the subscript
of the generic pixel under test.

problem is binary and each eigenvalue is associated with a
specific polarization. Finally, these classification results can
be jointly used to establish the dominant polarization.

Summarizing, the resulting architecture can be obtained
by adding a new branch to the processing chain of DECS.
Such branch is formed by cascading a reduced-size eigenvalue
classifier and a decision scheme which combines previously
selected hypotheses to choose the dominant polarization.

Let us begin from the reduced-size classifier and consider
a generic pixel under test along with the set of surrounding
vectors, xi,...,ZTx say. As previously stated, the entries
of x; contain the responses of the polarimetric channels in
a specific order, namely x;, = [z;nH i HV xiyv]T ~
CN3 (O,O'Z-QC), where x; ap € C is the component cor-
responding to the AB polarization with A, B € {H,V}.
Now, in order to compare the polarization strength each
other, for each polarimetric vector, we consider all the 2-
combinations of the three original components to construct the
following 2-dimensional vectors x; , = [z; wu xiyv]T ~
CN2(0,07C,), ip = [imn xi,Hv}T ~ CN3(0,02Cy),
and Tie = [l‘i,vv $i7Hv]T ~ CNQ(O,O’%CC), where a =
HHVV,b=HHHV, and ¢ = VV HV. Moreover, C,, Cy,
and C are obtained by removing the second, the third, and
first row and column from C, respectively. Thus, we deal with
three sets of data.

Following the lead of [13], we can remove the de-
pendence on o? by dividing each vector with respect
to the respective  Euclidean norm to obtain z;, =

x; T, Ti.
T Zob = Jao) 24 Zie T, > Whose
probablhty density functlon (pdf) can be ertten as [1]
F(Z,:Cy) = [det (C)] I, {ir (C;'Si,)} ", where
Zy € [z1y,...,2Ky], ¥ € {a,b,c}, and Siy = ZiyZi,
The classifier, fed by the transformed data, selects one of the
following hypotheses

Hiy: dy=Xoy =
Hyy: Ay > Aoy,

Ays

Yy € {a,b,c} : 3)

where A\, > 0, k = 1,2, are the eigenvalues* of C,. To
this end, we resort to the MOS rules [22] whose expression
contains a fitting term represented by the compressed log-
likelihood under each hypothesis and a penalty term depending
on the number of unknown parameters. The former can be
written noticing that

1) under H, ,: the likelihood function does not depend on
the unknown parameter \,. In fact, it is possible to show

K 2\ 2
that f(Z,;Cy) =[[,_, ( =1;
2) under H ,: the Maximum Likelihood Estimate of C,
Ziy2],

I
and, hence, the expressmn of the compressed log-
likelihood is log f(Z,;C,) = —Klogdet [C’y} -

~—1
2525 logr [ C, sm,]

6y say, is the fixed point of C',,

It is worth recalling that the eigenvalues of the covariance matrix provide
information about the scattering phenomena [10].
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As for the penalty factor, the number of unknown parameters
under Hy , is 0, while under H; ,, the number of unknown
parameters is 3.

Gathering the above results, the expression of the MOS-
based classifier is given by

H, = {_210gf(zy§6y)+77kp(i)}» €]

E arg max

{H1,y,Hay}
where kp(¢) is the number of unknown parameters under the
H;,i=1,2, hypothesis, and n = 2 for AIC,n=1+p, p>1
for GIC, and 1 = log K for BIC. The acronyms AIC, BIC,
and GIC stand for Akaike Information Criterion, Bayesian
Information Criterion, and Generalized Information Criterion,
respectively [22]. The above classifier is referred to in the
following as RS-DECS. Finally, denote by Xi}y, 1= 1,2,
y = a, b, c, the eigenvalues of éy, then the decision scheme
that combines the information provided by the considered
classifiers returns the dominant polarization according to the
following line of reasoning:

o HH is selected as the dominant polarization if: DECS
returns Hy and (Hz 4, Hop, Hi o) hold; DECS returns

Hs and (Hs 4, Hy ., Hy ) hold and A;, > A; .; DECS
returns Hz and (Hyp, Ho ., H1,,) hold and ;\17;, > 5\176;

e HV is selected as the dominant polarization if: DECS
returns Hy and (Hzp, Ha ¢, Hy o) hold; DECS returns

Hy and (Hy 4, Hy ., Hy ) hold and A;, < A;.; DECS
returns Hs and (Hs o, Hap, H1 ) hold and /A\u, > 5\1,(1;

e VV is selected as the dominant polarization if: DECS
returns Hy and (Hz 4, Ho, Hip) hold; DECS returns

Hy and (Hay, Ha e, Hy o) hold and A; 5 < A; .; DECS
returns Hsz and (Hs o, Hap, H1 ) hold and 5\175, < 5\1,(1.

The entire architecture is depicted in Figure 1, where Z =
[”%—1“, e H%—g”} and H is the hypothesis selected by the
preliminary stage represented by DECS. The RS-DECS stages
return H, € {H;, : i =1,2, y = a,b, c}, which are, then,
used by the final stage to identify the dominant polarization®.

IV. NUMERICAL EXAMPLES, DISCUSSION, AND
PERFORMANCE

In this section, we investigate the performance of the
proposed architecture over three different regions of interest
(ROIs) drawn from SAR data collected by an unmanned
aerial vehicle synthetic aperture radar of the United States
National Aeronautics and Space Administration. This air-
borne system owns full-polarimetic SAR capabilities and
works in the L-band with a range-azimuth resolution of 5
meters. Moreover, the look direction is left, the acquisition
heading is 85.754562°, and the altitude is 0.12 - 10° m.
For additional details, the interested reader is referred to
the metadata file “SanAnd-08519-14145-008-141009-L090-
CX-01.ann”. In fact, we exploit the SAR image with ID num-
ber® SanAnd-08519-14145-008-141009-L090-CX-01. Specif-
ically we consider the areas reported in Figures 2 and

SNote that in the case of a polarization basis transformation, the processing
scheme returns the dominant component which is related to the original
dominant polarization through a one-to-one transformation.

5The reader is referred to https://www.asf.alaska.edu/about/how-to-cite-
data/ for data downloading.

3. The triangle labeled P1 in each figure represent a ref-
erence point useful to select the considered areas. This
point is geolocated at the coordinates (Datum world geode-
tic system 1984 European petroleum survey group 4230)
lat: 33.855028° N, lon: 116.568656° W for Figure 2. The
reference point P1 of Figure 3 is geolocated at the following
coordinates: lat: 33.820785° N, lon: 116.503983° W. The set
A is formed by selecting the pixels belonging to a square
window of size 5 x 5 and centered on the pixel under test.
Moreover, DECS and RS-DECS incorporate BIC since it
does not require any additional tuning parameter and provides
excellent classification capabilities as shown in [1].

The considered ROIs are indicated in Figure 2 through two
yellow squares labeled 1 and 2. In the detail, ROI 1 contains
vertical structures represented by the wind turbines of Palm
Springs wind farm, whereas in ROI 2 the vertical structures
are associated with a train. Finally, the ROI 3 is reported in
Figure 3 and contains horizontal structures associated with
airport landing strips.

Let us begin by applying the classification scheme to ROIs 1
and 2 where the predominant structures are vertical. The Pauli-
RGB magnitude of a portion of ROI 1 corresponding to some
big wind turbines of the Palm Springs wind farm is shown
in Figure 4, where the vertical structures are represented by
the small bright regions. The classification performance of the
proposed architecture can be found in Figure 5. Note that the
colorbars represent an indication of (possibly the logarithm of)
the normalized pixel energy. Inspection of the figure highlights
that the latter correctly selects the VV polarization (yellow
cross markers) as the dominant component in the areas where
the wind turbines (which yield double-bounces) are present.
To be more quantitative, the proposed method identifies all
the 26 turbines belonging to the considered region with 0
false alarms. The image containing the yellow markers is
superimposed to the SLC image in magnitude representing
the single polarimetric channel s11. The Pauli-RGB magnitude
image of ROI 2 is shown in Figure 6, where the bright vertical
strip represents a train. The classification results are shown
in Figure 7 where the red cross markers indicating the VV
polarization are displaced along the boundary of the train,
namely in correspondence with the vertical metallic structures.
Again, the image containing the markers is superimposed to
the SLC image in magnitude representing the single polarimet-
ric channel s11. Note that the markers seem slightly shifted in
range due to the layover and double-bounce scattering effects
taking place because of the slant characteristic of the SAR
acquisition geometry.

The last study case concerns the classification of single-
bounce scattering events associated with the HH polarimetric
channel. Specifically, the last ROI contains an airport runway,
where the dark areas represent the landing strips (see Figure
8 where the sll polarimetric channel is considered). The
classification map of the single-bounce scattering events is
showed in Figure 9, where the red cross markers follow the
walk of the airport runway. Specifically, the correctly detected
pixels are 1366 out of 2317, while the number of false alarms
are 443 out of 1533 pixels outside the runway.
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V. CONCLUSIONS

In this paper, we focused on the problem of dominant
polarization classification in polarimetric SAR images. To this
end, the hidden information enclosed in the polarimetric data
has been extracted by creating reduced-size vectors which
allowed to classify the dominant eigenvalue for each pair of
polarizations. Then, this information has been exploited by
a decision logic to infer the resulting dominant polarization.
The numerical examples, carried out on measured polarimetric
SAR data, have highlighted that the proposed classification
architecture can correctly recognize the dominant scattering
mechanisms associated with the structures present in the
observed scene. Future research might consider the design of
object/target recognition algorithms for low-resolution images
which take advantage of the information provided by the
herein proposed classification architecture.
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Fig. 1. Block scheme for the proposed classification architecture.

Fig. 2. Orthorectified polarimetric Pauli color coded SAR image of the area
containing the wind-farm and the train (rectangle boxes 1 and 2, respectively).

Fig. 3. Orthorectified polarimetric Pauli color coded SAR image of the area
containing the airport (rectangle box 3).
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