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ABSTRACT. In this paper we give an example of a triangulated category, linear over a field of characteris-
tic zero, which does not carry a DG-enhancement. The only previous examples of triangulated categories
without a model have been constructed by Muro, Schwede and Strickland. These examples are however not
linear over a field.

1. INTRODUCTION

1.1. Main result. The only known examples of triangulated categories without model (not even topo-
logical) are given in [9]. The examples in loc. cit. are not linear over a field and furthermore they depend
on some special properties of the number 2. In particular they satisfy 2 ≠ 0 but 4 = 0.

In this paper we discuss triangulated categories over a field k of characteristic zero.1 In this case the
appropriate notion of a model is a DG-enhancement [3, 4, 8], or what amounts to the same thing2: anA∞-
enhancement (see §11). Our main result is an example of a k-linear triangulated category which does
not carry an A∞-enhancement. This in particular answers positively what is described as a challenging
question in the survey [4] by Canonaco and Stellari, namely Question 3.8. Our example also provides a
negative answer to Question 3.3 of their survey.

To describe the example we have to introduce some notation. Fix a natural number n ≥ 3 and let k be
either a field of characteristic zero or an infinite field of characteristic > n. Let R = k[x1,… , xn] and let
K be the quotient field ofR. Furthermore letR["] be theR-linear DG-algebra with |"| = −n+2, "2 = 0,
d" = 0. Let C(R,R) be the Hochschild cochain complex of R and let HHn(R,R) = Hn(C(R,R)). Let
T nR∕k = ∧

n
R Derk(R,R). The HKR theorem furnishes an inclusion T nR∕k ⊂ Z

nC(R,R) which induces an
isomorphism T nR∕k ≅ HHn(R,R). For � ∈ T nR∕k we let R� be the k["]-linear A∞-deformation of R["]
whose only non-trivial higher multiplication is given by "�.

Theorem 1.1 (see §11.3). Assume n ≥ 14 and � ≠ 0. Then there exists a triangulated category without
A∞-enhancement with semi-orthogonal decomposition ⟨D(K), D(R�)⟩.

In the next few sections we discuss in more detail the ingredients that go into the construction of this
example.
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1.2. Pre-triangulated An-categories. An A∞-category [7] is a DG-graph equipped with higher com-
positions (mi)i≥1 which satisfy certain natural quadratic relations.3 If only mi with i ≤ n are defined, then
we obtain the corresponding notion of an An-category. As a general principle, for any A∞-notion there
is a corresponding An-notion in which we consider only operations with ≤ n arguments and we require
the axioms to only hold for expressions with ≤ n arguments. Facts about A∞-categories remain valid for
An-categories as long as they only involve such expressions. It is useful to note that if a is anAn-category
for n ≥ 3 then its “homotopy category”H0(a) is an honest category.

A DG-category is an A∞-category with mi = 0 for i > 2. In their seminal paper [3] Bondal and
Kapranov introduced pre-triangulated DG-categories which, in particular, have the property that their
homotopy category is canonically triangulated. Their most striking insight is that, whereas a triangulated
category is an additive category with extra structure, a pre-triangulated DG-category is a DG-category
with extra properties.

It is well understood how to define the analogous notion of a pre-triangulated A∞-category (see [2]).
AnA∞-category is pre-triangulated if the natural functor a → Tw a is a quasi-equivalence, where Tw a is
the category of twisted complexes over a. It is easy to see that this is equivalent to a being closed under
suspensions, desuspensions and cones of closed maps, up to isomorphism in H0(Tw a). Stating these
properties explicitly requires only a finite number of higher operations on a and so they make sense for
An-categories for n ≫ 0.

For any A∞-category a,H0(Tw a) is canonically triangulated and hence if a is pre-triangulated then4
H0(a) is also canonically triangulated. Now it is intuitively clear that it should be possible to prove
this using only a finite number of the higher operations on a. It then follows that it must be possible to
define for n ≫ 0 a notion of a pre-triangulated An-category which induces a canonical triangulation on
its homotopy category.

Unfortunately, carrying out this program naively using explicit equations seems to be a nightmare.
Therefore we are forced carry over some more advanced technology from the A∞-context. This is done
in §5, §6. The main difficulty we face is that the definition of Tw a depends on higher compositions in a
of unbounded arity and therefore does not generalize to An-categories. Luckily this issue can be solved
by considering twisted complexes of uniformly bounded length. In fact we only need Tw≤1 a, which
consists of twisted complexes of length two. This leads to our first main result.

Theorem 1.2 (Lemma 6.6, Definition 6.10, Theorem 8.3). If a is an An-category then Tw≤1 a is an
A
⌊(n−1)∕2⌋-category. If n ≥ 7 then we say that a is pre-triangulated ifH∗(a) → H∗(Tw≤1 a) is a graded

equivalence. If a is pre-triangulated and n ≥ 13 thenH0(a) is canonically triangulated.

The number 13 seems quite high and we are rather curious if it can be reduced.

1.3. Gluing. We have already pointed out that if a is an An-category then its “pre-triangulated hull”
Tw a is not well-defined. So while we have a satisfactory theory of pre-triangulated An-categories, it
is unclear how to actually construct non-trivial examples of them. Luckily there is one approach which
works very well. It turns out that pre-triangulated An-categories admit a “gluing” procedure and starting

3We also have to specify the compatibility with units. As specified in §5, throughout in this paper we will use A∞-categories
(and An-categories) that are strictly unital.

4In this introduction we will follow tradition by viewing a triangulated category as an additive category. However in the main
body of the paper we will equip a triangulated category with its canonical graded enrichement. This means in particular that we
useH∗(a) rather thanH0(a). See §3 for the rationale for this choice.
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from pre-triangulated A∞-categories we can in this way produce pre-triangulated An-categories which
are not themselves A∞-categories.

Let us first review gluing in the context of triangulated categories. If ,  are triangulated cate-
gories and  is a  −-bimodule (an additive bifunctor ◦ ×  → Ab) then a gluing of ,  across
 is a triangulated category  together with a semi-orthogonal decomposition  = ⟨,⟩ such that
(A,B) =(A,B) for A ∈ Ob(), B ∈ Ob(). The data (,,) determines the objects of  up to
isomorphism and there is a long exact sequence relating the Hom-spaces in  to those in ,  and the
elements of . However this is as far as it goes. Triangulated categories are too flabby to allow one to
fully construct  from the triple (,,).

On the other hand if a, b are A∞-categories andM is an A∞-b-a-module then it is a routine matter to
define an A∞-gluing category c = a

∐

M b such that if a, b are pre-triangulated then so is c and there is
a semi-orthogonal decompositionH0(c) = ⟨H0(a),H0(b)⟩ with associated bimoduleH0(M).

To prove that c is pre-triangulated we have to prove it is closed under cones of closed maps and again it
is clear that this will only involve a finite number of higher operations. Hence the theory can be developed
for An-categories. This leads to our next main result.

Theorem 1.3 (Theorem 9.5). Assume that n ≥ 13 and that a, b are pretriangulated An-categories
and that M is an An-b-a-bimodule. Then a

∐

M b is a pre-triangulated An−1 category. If n ≥ 14,
so that H0(a

∐

M b) is triangulated by Theorem 1.2, then we have a semi-orthogonal decomposition
H0(a

∐

M b) = ⟨H0(a),H0(b)⟩ whose associated bimodule isH0(M).

1.4. The counterexample. The counterexample we describe in Theorem 1.1 will be more specifically of
the form = H0(a

∐

M b)where a, b are pre-triangulatedA∞-categories andM is anAn-b-a-bimodule.
We will in fact assume thatM is obtained from an An−1-functor F ∶ a → b viaM(A,B) = b(FA,B).
By Theorems 1.2 and 1.3,  is canonically triangulated for n ≫ 0. Moreover any A∞-enhancement on
 induces A∞-enhancements a′, b′ on H0(a), H0(b) as well as an A∞-functor F ′ ∶ a′ → b′ such that
H0(F ′) = H0(F ). One may hope to be able to prove that such F ′ does not exist. This then implies that
an A∞-enhancement on  does not exist.

We carry out this program with a, b being the standard A∞-enhancements of D(K), D(R�) for � ≠ 0
(see §11). The exact functor

f ∶ D(K)→ D(R�) ∶ K → K�
(defined using the fact that D(K) is the category of graded K-vector spaces, equipped with its unique
triangulation) lifts to anAn−1-functor F : by [12, Lemma 7.2.1] this follows from the fact thatH i(K�) = 0
for i = 0,… ,−n + 3. However, using the fact that � ≠ 0 one deduces that f does not lift to an A∞-
functor, even if we are allowed to change enhancements. This follows from the fact that the enhancement
on D(R�) is actually unique in a weak, but sufficient, sense. This is proved using higher Toda brackets
(see Proposition 11.8). This finishes the proof that an A∞-enhancement on  does not exist.

2. ACKNOWLEDGEMENT

The authors thank Alexey Bondal and Dmitri Orlov for several interesting discussions around the
possibility of gluing a non-enhanceable functor to obtain a triangulated category without model.

3. NOTATION AND CONVENTIONS

Below k is an arbitrary field, except in §11.3 where it will be subject to some restrictions. Unless
otherwise specified, categories are pre-additive (enriched in abelian groups), except when we are in an
An-context. In that case we assume all objects and constructions are k-linear.
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Triangulated categories will be equipped with their canonical graded enhancement (see §4.4). The
motivation for this is that the principal “homotopy invariant” associated to an An-category a isH∗(a) as
H0(a) loses too much information in general. If a is pre-triangulated thenH∗(a) can be recovered from
H0(a) together with a “shift functor” but, since the shift functor is not canonical (despite being unique up
to unique isomorphism), this extra step creates some complications, notably with signs, which are often
unnecessary. In any case, not all An-categories we will encounter will be pre-triangulated.

In situations where the shift functor is canonical we will use it. The most obvious case is graded
objects over an abelian category . If A∙ = (Ai)i∈ℤ is such an object then we put Σn(A∙)i = Ai+n. If
f ∶ A∙ → B∙ has degree i then we put Σnf = (−1)nif . If A∙ is a graded object over Ab and x ∈ Ai then
we write sx for x considered as an element of (ΣA∙)i−1. The “degree change operator” smakes it easy to
find the correct sign in formulas using the Koszul convention.

4. PRELIMINARIES ON TRIANGULATED CATEGORIES

4.1. Graded categories. For us a graded category is a category enriched in ℤ-graded abelian groups.
Assume that a is a graded category and let X ∈ Ob(a). A suspension of X is a pair (Y , �) where Y ∈
Ob(a) and � ∈ a(X, Y )−1 is invertible. Conversely we call (X, �) a desuspension of Y . (De)suspensions
are clearly functorial if they exist. So if every object X has a suspension (Y , �) we may define a functor
Σ ∶ a → a by putting ΣX = Y and requiring for maps f ∈ a(X,X′) that the following diagram

X
� //

f
��

ΣX

Σf
��

X′
�
// ΣX′

commutes up to a sign (−1)|f |. It is clear that Σ is unique up to unique equivalence. We say that a has a
shift functor Σ if every object has a suspension and a desuspension and Σ is as above. In this case Σ is an
auto-equivalence.

4.2. Graded categories from pre-additive categories with shift functor. Now assume that a is a pre-
additive category (i.e. a category enriched in abelian groups) equipped with an auto-equivalence Σ. Then
we can make a into a graded category ã with the same objects by putting for n ∈ ℤ

ã(A,B)n ∶= a(A,ΣnB)
and with compositions

ã(B,C)m × ã(A,B)n → ã(A,C)m+n ∶ (g, f )↦ (−1)nmΣng◦f
We obtain that Σ is a shift functor on ã in the sense of §4.1.

4.3. Triangles. A triangle in a graded category a is a diagram

C
ℎ
(1)��

A
f

// B

g
__

with A,B, C ∈ Ob(a) and |f | = |g| = 0, |ℎ| = 1. To save space a triangle will usually be written in
linear form

A
f
←←←←←←←→ B

g
←←←←←←→ C

ℎ
←←←←←←←←←←←→
(1)

A.
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If a is equipped with a shift functor then a triangle can also be written in “traditional” form

A
f
←←←←←←←→ B

g
←←←←←←→ C

ℎ
←←←←←←→ ΣA.

A morphism of triangles is given by three degree zero morphisms fitting into the obvious commutative
diagram.

4.4. Triangulated categories as graded categories. We will assume that the reader is familiar with the
standard axioms for triangulated categories [14]. If ( ,Σ) is triangulated category in the traditional sense
then it can be made into a graded category as in §4.2. In this section we will reformulate the usual axioms
of triangulated categories in such a way that they do not explicitly refer to a shift functor.

Definition 4.1. A triangulated category  is a graded category equipped with a collection of “distin-
guished” triangles such that5

TR0  admits (possibly empty) finite direct sums and every object has a suspension and a desuspen-
sion.

TR1 ∙ For any object X ∈ Ob( ) the following triangle is distinguished:

X
idX
←←←←←←←←←←←←←←→ X

00
←←←←←←←←←←→ 0

01
←←←←←←←←←←←→
(1)

X

where 0 is a zero object (which exists by TR0) and where 0i is the zero morphism in
 (U, V )i.

∙ For any morphism u ∶ X → Y in  of degree zero, there is an object Z (called a mapping
cone of the morphism u) fitting into a distinguished triangle

X
u
←←←←←←→Y ←←→ Z ←←←←←←←←←←←→

(1)
X

∙ Any triangle isomorphic to a distinguished triangle is distinguished.
TR2 If

Z
w

(1)~~
X u

// Y

v
``

is a distinguished triangle then so are the two “rotated triangles”

Z
�w

~~
X′ (1)

−u�−1
// Y

v
__

Z′

−w

~~
X u

// Y

−1v

(1)

``

where X
�
←←←←←←→ X′ is a suspension of X and Z′ 

←←←←←←→ Z is a desuspension of Z.

5Morphisms in a graded category whose degree is not specified are assumed to have degree zero. This convention is maintained
throughout this document.
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TR3 A commutative diagram of solid arrows

X

��

// Y

��

// Z

��

(1) // X

��
X′ // Y ′ // Z′

(1)
// X′

in which the rows are distinguished can be completed with the dotted arrow.
TR4 For every upper cap of an octahedron (drawn on the left) there is a corresponding lower cap

(drawn on the right).

(4.1) Z // X′

(1)

~~
(1)

��

d

↺ Y

``

  

↺

d

X

OO

>>

Z′
(1)

oo

Z //

��

X′

(1)

��

↺

d Y ′

??

(1)

��

d

↺

X

OO

Z′
(1)

oo

__

such that in addition the compositions Y → Z → Y ′ and Y → Z′ → Y ′ are the same and
similarly the compositions Y ′ → X → Y and Y ′ → X′ → Y are the same. In the diagram the
triangles marked d are distinguished and those marked with ↺ are commutative,

5. PRELIMINARIES ABOUT An-CATEGORIES

Let n ≥ 0. As a general principle, for any A∞-notion there is a corresponding An-notion in which we
consider only operations with ≤ n arguments and we require the axioms to only hold for expressions with
≤ n arguments. Facts about A∞-categories remain valid for An-categories as long as they only involve
such expressions. We discuss this below. Throughout we place ourselves in the strictly unital context.

5.1. An-categories and functors.

Definition 5.1 ([7]). An An-category a is the data of:
∙ A set of objects Ob(a).
∙ For each couple (A,A′) of objects of a, a graded vector space of morphisms a(A,A′). We call
a(A,A′) the Hom-space between A and A′. A (homogeneous) element of a(A,A′) is called a
morphism (or sometimes an arrow).

∙ For each sequence (A0,… , Ai) of objects of a with 1 ≤ i ≤ n, “higher” compositions
bi ∶ Σa(Ai−1, Ai)⊗…⊗ Σa(A0, A1)→ Σa(A0, Ai)

of degree 1 verifying (∗)i of [7, definition 1.2.1.1].
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∙ For each object A an identity (or unit) element idA ∈ a(A,A)0 satisfying
bi(… , s idA,…) = 0 (for i = 1 and 3 ≤ i ≤ n)

b2(sf , s idA) = (−1)|f |sf if n ≥ 2
b2(s idA, sg) = sg if n ≥ 2

If the identities hold for every i then we get the notion of an A∞-category. Below an An-category will
be silently considered as an Am-category for all m ≤ n.

As forA∞-categories is it sometimesmore convenient to express the higher compositions as operations
mi ∶ a(Ai−1, Ai)⊗…⊗ a(A0, A1)→ a(A0, Ai)

of degree 2 − n where (mn)n and (bn)n are related by bn = s−n+1mn so that in particular using the Koszul
convention we obtain

(5.1)

b1(sf ) = −sm1(f )

b2(sg, sf ) = (−1)|g|sm2(g, f )

b3(sℎ, sg, sf ) = (−1)|g|+1sm3(ℎ, g, f )
Sometimes we write df = m1(f ) and gf = m2(g, f ). It is useful to consider the case of low n.

(1) An A0-category is simply a directed graph (with distinguished “identity arrows”) whose Hom-
spaces are graded vector spaces. We call this a graded graph.

(2) AnA1-category is a graded graph whose arrows form complexes of vector spaces (the differential
is given bym1 and it annihilates identity arrows). We call this aDG-graph. A DG-graph a has an
associated graded graphH∗(a) obtained by replacing theHom-spaces in a by their cohomology.
A morphism f in a is called closed if m1(f ) = 0. We denote by Z0a the k-linear graph which
has the same objects as a and whose morphisms are the closed morphisms of degree zero.

(3) An A2 category is a DG-graph equipped with a bilinear composition of arrows given by m2 (for
which the identity arrows behave as unit elements) which is compatible with m1. In particular
m2 descends to well-defined operations onH∗(a) and Z0a.

(4) For n ≥ 3 the composition onH∗(a) induced by m2 is associative and hence in particularH∗(a)
is a graded category.

Definition 5.2. An An-functor f ∶ a → b between two An-categories a and b is the data of
∙ A map on objects f ∶ Ob(a)→ Ob(b).
∙ For each sequence (A0,… , Ai) of objects of a with i ≤ n, compositions

fi ∶ Σa(Ai−1, Ai)⊗…⊗ Σa(A0, A1)→ Σb(f (A0), f (Ai))
of degree zero verifying (∗∗)i of [7, definition 1.2.1.2] for i = 1,… , n.

∙ If n ≥ 1 then for each A ∈ Ob(a) we have f1(s idA) = s idf (A) and fn(… , s idA,…) = 0 for
n ≥ 2.

Again it is instructive to unravel this definition for small values of n.
(1) An A0-functor is just a map between sets of objects (there is no compatibility with morphisms).
(2) An A1-functor f ∶ a → b is a morphism of DG-graphs. In particular we have an induced

morphism of graded graphsH∗(f ) ∶= H∗(f1).
(3) If f is an An-functor for n ≥ 2 thenH∗(f ) is compatible with compositions. In particular, if f

is an A2-functor between A3-categories thenH∗(f ) is a graded functor.
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Like A∞-notions one may also approach An-notions via cocategories. Let a be a graded graph. Then
(Ba)≤n is the graded cocategory with Hom-spaces

(5.2)
(Ba)≤n(A,B) =

n
⨁

i=1
(Σa)⊗i(A,B)

(Σa)⊗i(A,B) =
⨁

A=A0,…,Ai=B
Σa(Ai−1, Ai)⊗…⊗ Σa(A0, A1)

equipped with the usual bar coproduct. I.e. if (sfi−1|⋯ |sf0) ∶= sfi−1 ⊗⋯⊗ sf0 ∈ (Σa)⊗i then

Δ(sfi−1|⋯ |sf0) =
i−1
∑

j=1
(sfi−1|⋯ |sfj)⊗ (sfj−1|⋯ |sf0)

If we ignore the compatibility with units then an An-structure on a is the same as a codifferential on
(Ba)≤n, i.e. a coderivation b of degree one satisfying b◦b = 0. Similarly, ignoring units, an An-functor
f ∶ a → b is the same as a cofunctor (Ba)≤n → (Bb)≤n commutingwith the codifferentials on (Ba)≤n and
(Bb)≤n. With this observation one may define the composition of An-functors simply as the composition
of the corresponding cofunctors.

5.2. Some auxilliary definitions.

Definition 5.3. Let f ∶ a → b be an Am-functor between An-categories, for m ≤ n. Then
(1) f is strict provided m ≥ 1 and fi = 0 for i ≥ 2. Equivalently f1 commutes with higher

compositions with arity at most m.
(2) f is fully faithful if it is strict and for all A,A′ ∈ Ob(a) we have that a(A,A′) → b(fA, fA′) is

an isomorphism of graded vector spaces.
(3) f is a quasi-fully faithful if m ≥ 2, n ≥ 3 andH∗(f ) ∶ H∗(a)→ H∗(b) is fully faithful.
(4) f is a quasi-isomorphism if m ≥ 2, n ≥ 3 andH∗(f ) ∶ H∗(a)→ H∗(b) is an isomorphism.
(5) f is a quasi-equivalence if m ≥ 2, n ≥ 3 andH∗(f ) ∶ H∗(a)→ H∗(b) is an equivalence.

5.3. The category of functors betweenAn-categories. Herewe discuss some concepts from [7, Chapter
8]. As indicated above, the (decomposable) arrows of (Ba)≤n are usually written as (sfi−1|⋯ |sf0) for a
path of 1 ≤ i ≤ n composable arrows f0,… , fi−1 in a. We let (B+a)≤n be the coaugmented cocategory
obtained by also admitting empty paths ()A starting and ending in A ∈ Ob(a) (see §2.1.2 in loc. cit.).
More precisely we have

(B+a)≤n(A,B) =

{

(Ba)≤n(A,B) if A ≠ B
k()A ⊕ (Ba)≤n(A,A) if A = B.

with |()A| = 0. The coproduct Δ+(t) for t ∈ (Ba)≤n(A,B) is defined as
Δ+(t) = ()B ⊗ t + t ⊗ ()A + Δ(t),

where Δ is the coproduct on (Ba)≤n and furthermore Δ+(()A) = ()A ⊗ ()A. If (Ba)≤n is equipped with a
codifferential b then we extend it to (B+a)≤n by putting b(()A) = 0 ∈ a(A,A).

Given two An-categories c and d, denote by An(c, d) the set of An-functors c → d. Now assume that
a, b are respectively Am, An-categories for m ≤ n − 1. We will equip Am(a, b) with the structure of an
An−m-category as follows:
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Definition 5.4 (Morphisms in Am(a, b)). Assume m ≤ n − 1. Let f1, f2 ∶ a → b be Am-functors. We
view these as cofunctors (B+a)≤m → Bb≤n by putting fi,0()A ∶= fi,0(()A) = 0. Then

ΣHom(f1, f2) = {ℎ ∈ coDerf1,f2 (B
+a≤m, Bb≤n) ∣ ∀A ∈ Ob(a) ∶ ℎ(⋯⊗ s idA⊗⋯) = 0}

Here coDerf1,f2 ((B
+a)≤m, Bb≤n) consists of collections k-linearmorphismsℎ(A,A′) ∶ B+a≤m(A,A′)→

Bb≤n(f1(A), f2(A′)) such that ℎ = ℎ(A,A′)A,A′ satisfies the following identity for u ∈ (B+a)≤m
Δ(ℎ(u)) =

∑

(u)
(f2 ⊗ ℎ + ℎ ⊗ f1)(u(1) ⊗ u(2)).

where (using the Sweedler notation) Δ+(u) =
∑

(u) u(1) ⊗ u(2). It follows that ℎ ∈ ΣHom(f1.f2) is
determined by the “Taylor coefficients”
(5.3) ℎk ∶ Σa(Ak−1, Ak)⊗ Σa(Ak−2, Ak−1)⊗⋯⊗ Σa(A0, A1)→ Σb(f1(A0), f2(Ak))
for 1 ≤ k ≤ m as well as for each A ∈ Ob(a) an element ℎ()A ∶= ℎ0(()A) ∈ Σb(f1(A), f2(A)) and the
corresponding coderivation is given by

(5.4) ℎ =
∑

∑q
t=1 jt+

∑p
s=1 is+k≤m

f2,jq ⊗⋯⊗ f2,j1 ⊗ ℎk ⊗ f1,ip ⊗⋯⊗ f1,i1

where the right-hand side is restricted to terms which have ≤ m arguments. Note that ℎ sends (B+a)≤m
to (Bb)≤m+1 (as the f ’s take at least one argument but ℎ0 takes zero arguments). So since m ≤ n − 1, ℎ
is indeed well defined.

Definition 5.5 (The differential on Am(a, b)). If m ≤ n− 1 and ℎ ∈ ΣHom(f1, f2) then b1(ℎ) = [b, ℎ] =
b◦ℎ − (−1)|ℎ|ℎ◦b. Concretely

(5.5) b1(ℎ)k =
∑

∑q
t=1 jt+

∑p
s=1 is+l=k

bp+q+1◦(f2,jq ⊗⋯⊗ f2,j1 ⊗ ℎl ⊗ f1,ip ⊗⋯⊗ f1,i1 )

− (−1)|ℎ|
∑

a0+a1+l=k
ℎ1+a0+a1◦(id

⊗a0 ⊗bl ⊗ id⊗a1 )

Definition 5.6 (The higher multiplications on Am(a, b)). Assume we have morphisms

f0
ℎ1
←←←←←←←←←←→ f1

ℎ2
←←←←←←←←←←→ ⋯

ℎk
←←←←←←←←←←←→ fk

represented by
ℎi ∈ coDerfi−1,fi (B

+a≤m, Bb≤n)
and assume 2 ≤ k ≤ n − m. Then we put

(5.6) ℎk ∪⋯ ∪ ℎ1 =
∑

fk,ik,pk ⊗⋯⊗ fk,ik1 ⊗ ℎk,uk ⊗ fk−1,ik−1,pk−1 ⊗⋯

⋯⊗ fk−1,ik−1,1 ⊗⋯⊗ f1,i1p1 ⊗⋯⊗ f1,i11 ⊗ ℎ1,u1 ⊗ f0,i0p0 ⊗⋯⊗ f0,i01
and bk(ℎk,… , ℎ1)l = (b◦(ℎk ∪⋯ ∪ ℎ1))l where (−)l denotes Taylor coefficients.

Note that on the right-hand side of (5.6) the f ’s take at least one argument but the ℎ’s may take zero
arguments. It follows that ℎk∪⋯∪ℎ1 maps B+a≤m to Bb≤m+k, and hence by the hypothesis k ≤ n−m is
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a well defined element of Hom(B+a≤m, Bb≤n). It is however not a coderivation. Instead is it inductively
characterized by the following property for u ∈ (B+a)≤m (using again the Sweedler notation)

Δ((ℎk ∪⋯ ∪ ℎ1)(u)) =
∑

(u)

(

fk ⊗ (ℎk ∪⋯ ∪ ℎ1) + (ℎk ∪⋯ ∪ ℎ1)⊗ f1

+
∑

1≤j≤k
(ℎk ∪⋯ ∪ ℎj+1)⊗ (ℎj ∪⋯ ∪ ℎ1)

)

(u(1) ⊗ u(2))

One checks

Lemma 5.7. The collection of maps (bi)i=1,…,n−m makes Am(a, b) into an An−m-category.

5.4. Homotopies and homotopic functors. Let a, b be An-categories, let 1 ≤ m ≤ n − 1 (thus n ≥ 2)
and let ℎ ∈ Z0ΣAm(a, b)(f1, f2). Then ℎ ∈ coDerf1,f2 (B

+a≤m, Bb≤n)−1 and [b, ℎ] = 0. Let (ℎk)k=0,…,m
be the Taylor coefficients of ℎ. Specializing (5.5) to k = 0, 1 we find that ℎ0()A ∈ (Σb(f1A, f2A))−1 =
b(f1A, f2A)0 satisfies d(ℎ0()A) = 0 and

b1◦ℎ1 + b2◦(ℎ0 ⊗ f1 + f2 ⊗ ℎ0) + ℎ1◦b1 = 0
Evaluating this on st for t ∈ a(A,B) we find
(5.7) b1(ℎ1(st)) + b2(ℎ0()B , f1(st)) + (−1)|t|+1b2(f2(st), ℎ0()A) + ℎ1(b1(st)) = 0
Put ℎ0()A = sℎ0,A. Using the usual sign convention ℎ1(st) = −sℎ1(t), etc. . . together with (5.1) this may
be rewritten as

m1(ℎ1(t)) + m2(ℎ0,B , f1(t)) + (−1)|t|+1(−1)|t|m2(f2(t), ℎ0,A) + ℎ1(m1(t)) = 0
So we find in particular thatH∗(ℎ0) defines a natural transformationH∗(f1)→ H∗(f2).

Definition 5.8. Let ℎ, f1, f2 be as above but assume n ≥ 3. We say that ℎ is a homotopy ℎ ∶ f1 → f2
ifH∗(ℎ0) is a natural isomorphism, i.e. if for all A ∈ Ob(a),H∗(ℎ0,A) ∈ H∗(a)(A,A) is invertible. We
say that f1, f2 are homotopic if there exists a homotopy ℎ ∶ f1 → f2.

Lemma 5.9. Assume 1 ≤ m ≤ n − 3. Then ℎ ∶ f1 → f2 is a homotopy if and only ifH∗(ℎ) is invertible
in H∗(Am(a, b)) (the latter is a genuine category because of the restriction on m, n). In particular the
relation of being homotopic is an equivalence relation.

Proof. We have (ℎℎ′)0 = ℎ0ℎ′0. So if ℎ is invertible then it is a homotopy. Assume now ℎ0 is invertible.
Consider the morphism of complexes

S ∶ Am(a, b)(f2, f1)→ Am(b, b)(f2, f2) ∶ ℎ′ ↦ m2(ℎ, ℎ′)
Using an appropriate spectral sequence one finds that S is a quasi-isomorphism. Hence there exists
ℎ′ ∈ Z0Am(a, b)(f2, f1) such that m2(ℎ, ℎ′) − idf2 has zero image inH∗(Am(a, b)(f2, f2)). �

5.5. Inverting quasi-equivalences. We prove some An-versions of results which are well-known in the
A∞-setting (e.g. [7, Théorème 9.2.0.4]).

Lemma 5.10. Let a, b be An categories for n ≥ 3 and let f ∶ a → b be an An-functor which is a quasi-
equivalence. There exists an An−1-quasi-equivalence g ∶ b → a such that fg and idb are homotopic.
Moreover the quasi-inverseH∗(g1) toH∗(f1) may be chosen freely.
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Proof. If a is anAn-category then we define ā as the DG-graph obtained from a by dividing out identities.
I.e.

ā(A,B) =

{

a(A,B) if A ≠ B
a(A,A)∕k idA if A = B

Note that formally f is a cofunctor Ba≤n → Bb≤n such that [b, f ] = 0. Likewise g should be a cofunctor
Bb≤n−1 → Ba≤n−1 satisfying [b, g] = 0 and the homotopy ℎ ∶ fg → idb should be an element of
coDerfg,idb (B

+b≤n−1, Bb≤n) of degree−1 satisfying [b, ℎ] = 0 such thatH∗(ℎ0) is a natural isomorphism
H∗(fg)→ idH∗(b).

We will construct g and ℎ step by step. The existence of g1 and ℎ0, ℎ1 follows simply from the fact
that f is a quasi-equivalence: we choose a unit preserving graded graph homomorphism g1 ∶ b → a
commuting with differentials such that there is a natural isomorphism H∗(f1)H∗(g1) → idH∗(b). We
choose ℎ0 ∶ (Bb)0 → b in such away that this natural isomorphism is of the form H∗(ℎ0) and then we
choose ℎ1 such that the equation (5.7) holds.

Assume that for 1 ≤ m < n − 1 that we have constructed a cofunctor g≤m ∶ (Bb)≤m → (Bb)≤m
satisfying [b, g≤m] = 0 and a homotopy ℎ≤m ∶ fg≤m → idb. We will extend the maps (g≤m, ℎ≤m) to
maps (g≤m+1, ℎ≤m+1) with the same properties.

As a first approximation we extend g≤m, ℎ≤m to respectively a cofunctor g≤m+1 ∶ Bb≤m+1 → Ba≤m+1
and a (fg≤m+1, idb)-coderivation ℎ≤m+1 ∶ B+b≤m+1 → Bbm+1 by setting gm+1, ℎm+1 ∶ (Σb̄)⊗m+1 → Σa
equal to zero (see (5.2) for the definition of Σb̄⊗m+1). Here � = [b, g≤m+1] is zero on (Σb)⊗i, i ≤ m and
hence it may be regarded as a map (Σb̄)⊗m+1 → Σa. Moreover 0 = [b, �] = [b1, �]. So � is closed for
the b1-differential and since f� = [b, fg≤m+1] is zero on cohomology and f is a quasi-isomorphism,
� is equal to zero in cohomology as well. In other words, there exists �m+1 ∶ b̄⊗m+1 → a such that
� = [b1, �m+1]. We now replace gm+1 by gm+1 − �m+1. Then [b, g≤m+1] = 0. In other words g≤m+1 is an
Am+1-morphism.

Put D = [b, ℎ≤m+1] (see (5.5)). Then D is a (fg≤m+1, idb)-coderivation (B+b)≤m+1 → Bb≤n which is
zero on (Bb)≤m and hence it can be considered as a map (Σb̄)⊗m+1 → Σb. Hence we have
(5.8) [b1, D] = [b,D] = 0

We will now try to choose �m+1 ∶ (Σb)⊗m+1 → Σa, �m+1 ∶ (Σb)⊗m+1 → Σb such that for g′m+1 =
gm+1 + �m+1, ℎ′m+1 = ℎm+1 + �m+1, g

′
i = gi, ℎ

′
i = ℎ1 for i ≤ m we have [b, g′≤m+1] = 0, [b

′, ℎ′≤m+1] = 0
where here [b′,−] is the differential (5.5) computed with f1 = fg′≤m+1 and f2 = idb. The conditions we
have to satisfy are

0 = [b, g′≤m+1] = [b1, �m+1](5.9)
0 = [b′, ℎ′≤m+1] = D + b2◦(ℎ0 ⊗ f1(gm+1 + �m+1)) + [b1, �m+1](5.10)

We claim these equations have a solution. First note that (5.10) may be written as
(5.11) b2◦(ℎ0 ⊗ f1�m+1) = −D − b2◦(ℎ0 ⊗ f1gm+1) mod im[b1,−]
Recall that here we have [b1, D] = 0, b1◦ℎ0 = 0 (see §5.4), [b1, f1gm+1] = 0. Hence if we have a solution
�m+1 to (5.9) (5.11) and we replace �m+1 by �m+1 + [b1, s] then it is still a solution.

It follows we may combine (5.9)(5.11) into a single equation

(5.12) b̄2◦(ℎ̄0 ⊗ f̄1�̄m+1) = −D − b2◦(ℎ0 ⊗ f1gm+1)
in

H∗(Hom((Σb̄)⊗m+1,Σb) = Hom(ΣH∗(b̄)⊗m+1,ΣH∗(b))
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where ? denotes cohomology classes or actions on cohomology. Using the fact that f̄1 = H∗(f1) is an
equivalence andH∗(ℎ0) is a natural isomorphism one easily sees that (5.12) has a (unique) solution. �

We will need the following variant of Lemma 5.10 which is proved in a similar way.

Lemma 5.11. Let a, b be An categories for n ≥ 3 and let f ∶ a → b be a fully faithful An-functor which
is also a quasi-equivalence. Then there exists an An−1-quasi-equivalence g ∶ b → a such that fg and
idb are homotopic and such that gf = ida. Moreover the quasi-inverseH∗(g1) toH∗(f1) may be chosen
freely.

5.6. The category Free(a).

Definition 5.12. Given an An-category a, Free(a) is obtained from a by formally adding finite (possibly
empty) direct sums and shifts of objects in a, i.e. an object of Free(a) is given by
(5.13) A = ⊕i∈I ΣaiAi
where Ai ∈ Ob(a), ai ∈ ℤ, |I| <∞. We allow |I| = ∅. Morphisms in a are defined as

Free(a)(⊕iΣaiAi, ⊕jΣbiBj) = ⊕i,jΣbi−aia(Ai, Bj).

An element f ∈ a(A,B) considered as an element of Free(a)(ΣaA,ΣbB) will be written as �b−af such
that |�b−af | = |f | − (b − a).

If a is an An-category we can then make Free(a) into an An-category. We need to define the higher
compositions betweenmorphisms between objects of the formΣaA (the case of more complicated objects
is done by linear extension). So if we have we have maps in a:

A0
f1
←←←←←←←←←←→ A1

f2
←←←←←←←←←←→⋯

fn
←←←←←←←←←←→ An

and corresponding maps in Free(a)

Σa0A0
�a1−a0f1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Σa1A1

�a2−a1f2
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⋯

�an−an−1fn
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ΣbnAn

then
bn(s�an−an−1fn,… , s�a2−a1f2, s�

a1−a0f1) = ±�an−a0bn(sfn,… , sf2, sf1)
where the sign is determined by the usual Koszul sign convention (used with the rule s� = −�s).

The An-category Free(a) is equipped with an strict An-endo functor Σ such that on objects we have

(5.14) Σ
(

⊕iΣaiAi
)

= ⊕iΣai+1Ai
and on morphisms Σ is given by Σ(�af ) = (−1)a�af for f a morphism in a. We will call Σ the shift
functor on Free(a). Likewise Free(a) is equipped with an (associative) operation ⊕ with an obvious
definition. We will call it the “direct sum”. Finally if I = ∅ in (5.13) the resulting object is denoted by 0
and is called the “zero object”.

6. TRUNCATED TWISTED COMPLEXES

From now on let a be an An-category.
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6.1. Higher cone categories. Let a⊕m be the graded graph whose objects are formal direct sums of
precisely m objects in a.
(6.1) A = A0 ⊕A1 ⊕…⊕Am−1,
Morphisms are given by
(6.2) a⊕m(A,B) = ⊕m−1

i,j=0a(Ai, Bj).

We extend the higher operations on a linearly to a⊕m so that a⊕m becomes an An-category.

Remark 6.1. Below we usually think of objects in a⊕m as column vectors and similarly of morphisms in
a⊕m as matrices acting on those column vectors.

Definition 6.2 (Higher cone categories). Assume m ≤ n+1. The graded graph a∗m is defined as follows.
∙ Objects are given by couples (A, �A) such thatA ∈ Ob(a⊕m) and �A ∈ a⊕m(A,A)1 is a “Maurer-
Cartan element” with strictly lower triangular matrix, i.e. it satisfies

(6.3)
∑

i≤m−1
bi(s�A,… , s�A) = 0

∙ Morphisms are given by
(6.4) a∗m((A, �A), (B, �B)) = a⊕m(A,B)

Lemma 6.3. Assume m ≤ n + 1. The graded graph a∗m has the structure of an A⌊

n−m+1
m

⌋-category with

higher multiplications given by
(6.5)
ba∗m,i(sgi,… , sg1) =

∑

l0,…,li
ℎ=i+Σlj≤n

ba⊕m,ℎ(s�i,… , s�i
⏟⏞⏞⏞⏟⏞⏞⏞⏟

li

, sgi, s�i−1,… , s�i−1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

li−1

,… , s�1,… , s�1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

l1

, sg1, s�0,… , s�0
⏟⏞⏞⏞⏟⏞⏞⏞⏟

l0

)

for any set
(B0, �0)

g1
←←←←←←←←←←→ (B1, �1)

g2
←←←←←←←←←←→ ⋯

gi
←←←←←←←←→ (Bi, �i).

of i ≤ ⌊(n − m + 1)∕m⌋ composable arrows in a∗m.

Proof. We need to check ba∗m◦ba∗m = 0 on i composable arrows for i ≤ ⌊(n − m + 1)∕m⌋ as well as the
correct behavior of identities. We will concentrate on the first condition as it is the most interesting one.
As we will use similar facts several times below we present the argument in some detail.

If we expand (ba∗m◦ba∗m )i then it becomes the sum of multilinear expressions evaluated on lists of
arguments of the form
(6.6) s�i,… , s�i

⏟⏞⏞⏞⏟⏞⏞⏞⏟
li

, sgi, s�i−1,… , s�i−1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

li−1

,… , s�1,… , s�1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

l1

, sg1, s�0,… , s�0
⏟⏞⏞⏞⏟⏞⏞⏞⏟

l0

The crucial point is that those multilinear expression are obtained by linear expansion of the correspond-
ing expressions evaluated on composable arrows in a. Now for each element (A, �A) ∈ a∗m, the Maurer-
Cartan element �A is a strictly lower triangular m × m-matrix and hence such extended expressions are
zero on (6.6) whenever one of the lj is ≥ m.

By the assumption
i ≤

⌊n − m + 1
m

⌋
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we obtain that the length of the relevant lists of arguments in (6.6) is
≤ (m − 1)(i + 1) + i
= mi + m − 1

≤ m
⌊n − m + 1

m

⌋

+ m − 1

≤ n − m + 1 + m − 1
= n

Now the condition ba∗m◦ba∗m = combined with (6.3) becomes ba⊕m◦ba⊕m = 0 when evaluated on lists of
≤ n arguments. This holds since a⊕m is an An-category. �

Below we call a∗m a higher cone category. This is motivated by Definition 6.8 below.

Lemma 6.4 (Functoriality of ∗). Given An-categories a and b and t ≤ m+ 1 ≤ n+ 1, we obtain a strict
Ap-functor

∗t∶ Am(a, b)→ A⌊

m−t+1
t

⌋(a∗t, b∗t)

for p = ⌊(n − t + 1)∕t⌋ − ⌊(m − t + 1)∕t⌋. Moreover ∗t is strictly compatible with the compositions
Am(b, c) × Am(a, b)→ Am(a, c).

Proof. Since we are defining a strict functor we only need to define (∗t)1. We will write (−)∗t for (∗t)1(−).
First of all we define the functor on “objects”. For an element f ∈ Ob(Am(a, b)) and (A, �A) ∈ Ob(a∗t)

define
f ∗t(A, �A) = (f (A),

∑

i≤t−1
f (s�A,… , s�A))

where f is understood to be extended linearly to direct sums. For a sequence of composable arrows

(6.7) (A0, �0)
a1
←←←←←←←←←←→ (A1, �1)

a2
←←←←←←←←←←→⋯

ad
←←←←←←←←←←→ (Ad , �d)

put
(f ∗t)d(sad ,… , sa1) =

∑

fd+i0+⋯+id (s�
⊗id
d , sad , s�

⊗id−1
d ,… , sa1, s�

⊗i0
0 ).

To show that ∗t sends anAm-functor to anA⌊(m−t+1)∕t⌋-functor (i.e an element ofOb(A
⌊(m−t+1)∕t⌋(a∗t, b∗t)),

one proceeds in the same way as in the proof of Lemma 6.3.
Now we define (∗t)1 on Hom-spaces in Am(a, b). Given f, g ∈ Am(a, b) and ℎ ∈ Am(a, b)(f, g) we

define ℎ∗t ∈ Hom(f ∗t, g∗t) as follows: for a sequence of composable arrows as in (6.7) we have

(ℎ∗t)d(sad ,… , sa1) =
∑

ℎd+i0+⋯+id (s�
⊗id
d , sad , s�

⊗id−1
d−1 ,… , sa1, s�

⊗i0
0 ).

One verifies that (∗t)1 commutes with the higher operations on Am(a, b) and A⌊(m−t+1)∕t⌋(a∗t, b∗t) (see
Lemma 5.7) and hence defines a strict functor. It is an Ap-functor since A⌊

m−t+1
t

⌋(a∗t, b∗t) is an Ap-

category by Lemma 6.3 and Lemma 5.7. The strict compatibility with compositions is also a standard
verification. �
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6.2. Truncated twisted complexes. In the An-category setting, untruncated twisted complexes are not
well behaved as they form only a graded graph. Indeed even the definition of the differential onmorphisms
between twisted complexes involves higher operations of unbounded arity. Therefore in this section we
introduce truncated twisted complexes over an An-category. In this case the resulting object is still an
Ap-category for some p, although p is much smaller than n.

Definition 6.5 (Truncated twisted complexes). Assume m ≤ n. We define the truncated twisted com-
plexes over a as

Tw≤m a = Free(a)∗m+1

The map
(A, �A)↦ (A⊕ 0, (�A, 0))

defines a fully faithful functor Tw≤m a → Tw≤m+1 a which we will treat as an inclusion. With this
convention we write Tw a for

⋃

m Tw≤m a in case a is an A∞-category. In a similar vein we define the
fully faithful functor Φ ∶ a→ Tw≤m a ∶ A↦ (A⊕ 0⊕⋯ , 0) which again we will treat as an inclusion.

From Lemma 6.3 we obtain

Lemma 6.6. Assume m ≤ n. The category of truncated twisted complexes Tw≤m a has a structure of an
A⌊

n−m
m+1

⌋-category.

Lemma 6.7 (Functoriality of Tw). Let F ∶ a → b be an Am-functor between two An-categories with
a ≤ m ≤ n. Then we obtain a corresponding A⌊

m−a
a+1

⌋ functor

Tw≤a F ∶ Tw≤a a→ Tw≤a b.
Moreover Tw≤a(−) is strictly compatible with compositions of An-functors.

Proof. This follows immediately from Lemma 6.4. �

6.3. Distinguished triangles.

Definition 6.8. Assume f ∶ A → B is closed morphism in a of degree zero. Then C(f ) is the object
(ΣA⊕ B, �C(f )) ∈ Tw≤1 a such that

�C(f ) =
(

0 0
�−1f 0

)

(recall that we write objects as column vectors and morphisms as matrices - see Remark 6.1).

Definition 6.9. Let f ∶ A → B be a morphism in Z0a. The associated standard distinguished triangle
�f in Tw≤1 a is given by

(6.8) A
f
←←←←←←←→ B

i
←←←←→ (C(f ), �C(f ))

p
←←←←←←←←←←←→
(1)

A

where
i =

(

0
idB

)

p =
(

�−1 idA 0
)

The image of �f inH0(Tw≤1 a) is written as �̄f . It is also called a standard distinguished triangle.

Definition 6.10. Let a be an An-category with n ≥ 7. A triangle in H∗(a) is said to be distinguished if
its image underH∗(Φ) is isomorphic to a standard distinguished triangle inH∗(Tw≤1 a).

From this definition we immediately obtain:
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Theorem 6.11. Let � ∶ a → b be an Am-functor between An-categories for m ≥ 5, n ≥ 7. Then H∗(�)
preserves distinguished triangles.

Proof. It is clear that there is a commutative diagram

a Φ //

�
��

Tw≤1 a

Tw≤1 �
��

b
Φ
// Tw≤1 b

By Lemma 6.6 Tw≤1 a and Tw≤1 b areA3-categories and by Lemma 6.7, Tw≤1 � is anA2-functor. Hence
H∗(Tw≤1 �) is a graded functor (see §5.1). One checksH∗(Tw≤1 �)(�̄f ) = �̄�1(f ). This implies what we
want. �

7. DG-CATEGORIES

7.1. Generalities. Recall that a DG-category is an A∞-category such that mi = 0 for i ≥ 3. It that case
Tw a is also a DG-category. We recall the following definition.

Definition 7.1. [3] A DG-category is pre-triangulated if the DG-functor Φ ∶ a → Tw a is a quasi-
equivalence.

The main result concerning pre-triangulated DG-categories is

Theorem 7.2. [3] If a is pre-triangulated thenH∗(a), when equipped with distinguished triangles as in
Definition 6.10, is triangulated.

Proof. Assume first that a is a general DG-category. Tw a is equipped with a natural cone functor C(f )
and a notion of standard triangles �f for any closed map f ∶ A→ B:

A
f
←←←←←←←→ B

i
←←←←→ C(f )

p
←←←←←←←←←←←→
(1)

A.

A triangle in Tw a is called distinguished if it is isomorphic to a standard triangle. In [3] it is proved that
H∗(Tw a) is triangulated when equipped with this class of distinguished triangles. If a is pre-triangulated
then H∗(a) inherits the triangulated structure from H∗(Tw a). We have to prove that the distinguished
triangles are the same as those in Definition 6.10. Assume that

�̄ ∶ A
f
←←←←←←←→ B → C ←←←←←←←←←←←→

(1)
A

is a triangle in H∗(a) distinghuished in the sense of [3], i.e. Φ(�̄) is distinguished in H∗(Tw a). Now
�̄Φ(f ) ∈ H∗(Tw≤1 a) is a distinguished triangle in H∗(Tw a) which has the same base as �̄f . By the
axioms for triangulated categories we conclude that Φ(�̄) ≅ �̄Φ(f ). Hence �̄ is distinguished in the sense
of Definition 6.10. The opposite direction is similar. �

7.2. Some small DG-categories.

Definition 7.3. Let n ≥ 0. Then In is the DG-category with objects (xi)ni=0 such that

In(xi, xj) =

⎧

⎪

⎨

⎪

⎩

kaij if i < j
k idxi if i = j
0 otherwise
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with |aij| = 0, ajlaij = ail and daij = 0. We will write ai = ai,i+1 for i = 0,… n − 1.
Lemma 7.4. Tw≤1 In is pre-triangulated.
Proof. As Tw In is pre-triangulated [3] it is sufficient to prove thatH∗(Tw≤1 In)→ H∗(Tw In) is essen-
tially surjective. This is essentially [13, Proposition 7.27]. For the convenience of the reader we repeat
the argument. The Yoneda embedding realizesH∗(Tw In) as the bounded derived category Db(rep(In))
of the representations of In, viewed as quiver. Since rep(In) is a hereditary category every object in
Db(rep(In)) is the direct sum of its (shifted) cohomology objects which are in rep(In). Moreover ev-
ery object in rep(In) has projective dimension one and so it is isomorphic to a single cone of objects in
Free(In). In other words it is in the essential image ofH∗(Tw≤1 In). �

Remark 7.5. Assume n = 0. Then rep(I0) has global dimension zero and we have in fact that Free(I0) =
Tw≤0 I0 is pre-triangulated.

8. PRE-TRIANGULATED An-CATEGORIES

From now on let a be an An-category. The purpose of this section is to define what it means for a to
be pre-triangulated and to show that this definition implies thatH∗(a) is triangulated.

Definition 8.1. AnAn-category a, with n ≥ 7, is said to be pre-triangulated if the inclusion a
Φ
←←←←←←←←→ Tw≤1 a

is a quasi-equivalence.
Remark 8.2. The lower bound n ≥ 7 comes from the fact that we want H∗(Tw≤1 a) to be an honest
category. This happens when Tw≤1 a is an A3-category. For this to be true a needs to be at least an
A7-category by Lemma 6.6.
Theorem 8.3. Let a be a pre-triangulated An-category for n ≥ 13. When equipped with the collection
of distinguished triangles as in Definition 6.10,H∗(a) is a triangulated category.
Proof. Here is the “strategy”: we have to prove that H∗(a) satisfies TR0-TR4 as in §4.4. For the TR1-
TR4 axioms we will translate their input into a suitable An-functor � ∶ Im → a, for m ≤ 2, which
is then extended to an A

⌊(n−1)∕2⌋-functor Tw≤1 � ∶ Tw≤1 Im → Tw≤1 a. Then we use that Tw≤1 Im is
pre-triangulated by Lemma 7.4 and hence in particular H∗(Tw≤1 Im) is triangulated by Theorem 7.2.
Roughly speaking we then transfer the output of the TR1-TR4-axioms for H∗(Tw≤1 Im) to H∗(a) by
using Theorem 6.11.

To accomplish the last step we will pick an Ap-functor � ∶ Tw≤1 a → a, for p = ⌊(n − 1)∕2⌋ − 1 =
⌊(n − 3)∕2⌋, which is a homotopy inverse to Φ such that �Φ is the identity (see Lemmas 6.6, 5.11). In
particular we have that H∗(Φ) and H∗(�) are quasi-inverses to each other. Since n ≥ 13, Tw≤1 � is at
least an A6-functor and � is at least an A5-functor. So H∗(� Tw≤1 �) preserves distinguished triangles
by Theorem 6.11. To avoid making some arguments needlessly cumbersome we will in fact also use that
H∗(Tw≤1 �) preserves standard distinguished triangles and that H∗(�) sends a standard distinguished
triangle in H∗(Tw≤1 a) to a distinguished triangle in H∗(a). The latter follows easily from the fact that
H∗(�) is a quasi-inverse to H∗(Φ). Note that the intermediate category Tw≤1 a may be only an A6-
category so, with our current definitions, we cannot talk about distinguished triangles in6H∗(Tw≤1 a).

TR0 Like Free(a) (see §5.6), Tw≤1 a is equipped with canonical operations Σ and⊕. These descend
to operations onH∗(Tw≤1 a) which one easily checks to be to be the categorical direct sum and
shift functor. Since H∗(a) → H∗(Tw≤1 a) is an equivalence, the direct sum and shift functor
defined onH∗(Tw≤1 a) descend toH∗(a).

6We could have eliminated this minor technical complication by simply requiring n ≥ 15.
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TR1 First we note that the triangle

(8.1) A
idA
←←←←←←←←←←←←←→ A ←←→ 0 ←←←←←←←←←←←→

(1)
A

is distinguished. Indeed: the functor � ∶ I0 → a ∶ x0 ↦ A extends to a functor7 � ∶ Tw≤1 I0 →
Tw≤1 a and (8.1) is the image underH∗(� Tw≤1 �) of the distinguished triangle inH∗(Tw≤1 I0)
(which satisfies TR1)

x0
idx0
←←←←←←←←←←←←←←←←→ x0

0
←←←←←←→ 0

0
←←←←←←←←←←←→
(1)

x0

Now we prove the second part of the TR1 conditions: the existence of distinguished triangles
with a given base. Consider a map A

f
←←←←←←←→ B in H∗(a) and put �̄ = H∗(�)(�̄f ). Since �̄f is a

standard distinguished triangle in Tw≤1 a, �̄ is distinguished.
Finally, the fact that any triangle isomorphic to a distinguished triangle is distinguished fol-

lows immediately from Definition 6.10.
TR2 Let �̄ be a distinguished triangle in H∗(a). Then there exists an isomorphism with a standard

triangle H∗(Φ)(�̄) ≅ �̄f and hence in particular �̄ ≅ H∗(�)(�̄f ) ∶= �̄′. There is a strict An-
functor � ∶ I1 → a which sends a0 to f and �̄f is the image of �̄a0 ∈ H∗(Tw≤1 I1) under
the morphism H∗(Tw≤1 �). Since H∗(Tw≤1 I1) satisfies TR2, the rotated versions of �̄a0 are
distinguished in H∗(Tw≤1 I1) and we obtain rotated versions of �̄′ by applying H∗(� Tw≤1 �)
(note that a graded functor preserves suspensions and desuspensions). By TR1 the corresponding
rotated versions of �̄ are also distinguished.

TR3 Suppose we have a diagram of distinguished triangles inH0(a)

(8.2) A
f //

u
��

B //

v
��

C
(1) // A

u
��

A′
f ′
// B′ // C ′

(1)
// A′

Up to composing with an isomorphism of triangles, we can assume that the two distinguished
triangles in the diagram are standard distinguished triangles in Tw≤1 a so that C = C(f ), C ′ =
C(f ′). Hence we have to construct the dotted arrow in

A
f //

u
��

B //

v
��

C(f )

w
��

(1) // A

u
��

A′
f ′
// B′ // C(f ′)

(1)
// A′

It is easy to give a formula forw. Alternatively onemay lift the square on the left to anAn-functor
I ⊗ I → a and then proceed by considering the induced functor Tw≤1(I ⊗ I)→ Tw≤1 a.

We will give instead a proof compatible with our “strategy”. By writing the solid square as a
composition of 2 squares it is sufficient to consider the case in which either u or v is the identity.

7The reader will note that here the literal execution of our “strategy” is a bit uneconomical and that by Remark 7.5 we could
have used Tw≤0 I0.
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The two cases are similar so we will consider the first one. Now the diagram is

(8.3) A
f // B //

v
��

C(f )

w
��

(1) // A

A
f ′u
// B′ // C(f ′u)

(1)
// A

We may construct an An-morphism � ∶ I2 → a such that �1(a0) = f , �1(a1) = v, �1(a1a0) =
f ′u (note that we need a non-trivial �2 as vf is not necessarily equal to f ′u in a). Inside
H∗(Tw≤1 I2) we have the diagram

x0
a0 // x1 //

a1

��

C(a0)

��

(1) // x0

x0 a1a0
// x2 // C(a1a0) (1)

// x0

where now the dotted arrow exists as H∗(Tw≤1 I2) satisfies TR3. Applying H∗(Tw≤1 �) we
obtain (8.3).

TR4 Since we have shown TR1-TR3, by [1, 1.1.6] it suffices to show that any composable pair of
degree zero morphisms X → Y → Z inH∗(a) can be completed to an octahedron as in (4.1).

A composable pair of degree zeromorphisms inH∗(a) can be lifted to anAn-functor� ∶ I2 →
a. The image of the octahedron inH∗(Tw≤1 I2) built on x0

a0
←←←←←←←←←←→ x1

a1
←←←←←←←←←←→ x2 underH∗(� Tw≤1 �)

is now the sought octahedron inH∗(a). �

9. GLUING An-CATEGORIES

9.1. Bimodules. Let a, b be An-categories. For m ≤ n, an Am+1-b-a-bimodule is a collection of graded
vector spacesM(A,B), A ∈ Ob(a), B ∈ Ob(b) together with a codifferential on (B+b⊗M⊗B+a)≤m+1
where the latter is regarded as a DG-(B+a)≤m−(B+b)≤m-bicomodule. In other words, such a bimodule
is equipped with higher operations of degree one
(9.1)
bM ∶ Σb(Bp−1, Bp)⊗⋯⊗Σb(Ba+1, Ba+2)⊗M(Aa, Ba+1)⊗Σb(Aa−1, Aa)⊗⋯⊗Σb(A0, A1)→M(A0, Bp)
for (Ai)i=0,…,a ∈ Ob(a), (Bj)j=a+1,…,p ∈ Ob(b), p ≤ m+1 such that b◦b = 0. In addition we require that
the higher operations vanish on identities, when appropriate. If a = b then the identity An-a-bimodule is
given byM(A,A′) = a(A,A′) and the higher operations are those of a.

If a1, a2, b1, b2 are An-categories, fi ∶ ai → bi are An-functors andM is an Am+1- b2-b1-bimodule
for some m ≤ n, then we write f1Mf2 for the a2-a1-bimodule which is the pullback ofM along (f1, f2).
For A1 ∈ Ob(a1), A2 ∈ Ob(a2) we have f1Mf2 (A1, A2) =M(f1(A1), f2(A2)) and the higher operations
on f1Mf2 are schematically given by the following formula for m ∈ f1Mf2 (A1, A2)

b
f1Mf2

(… , m,…) =
∑

±bM (f2(…),… , f2(…), m, f1(…),… , f1(… ))

(the sign is given by the Koszul convention). It is easy to see that f1Mf2 is an Am+1-bimodule. If f1 or
f2 is the identity then we omit it from the notation.
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9.2. The arrow category.

Definition 9.1 (The arrow category). Let a, b be An-categories and letM be a b-a-An-bimodule. The

arrow category c = a
M
←←←←←←←←←←←→ b has Ob(c) = Ob(b)

∐

Ob(a) and morphisms for B,B′ ∈ Ob(b), A,A′ ∈
Ob(b) given by c(A,A′) = a(A,A′), c(B,B′) = b(B,B′) and c(A,B) =M(A,B), c(B,A) = 0.

It is easy to see that a
M
←←←←←←←←←←←→ b becomes an An-category by combining the higher multiplications on a, b

andM (as in (9.1)).
Assume we have An-categories a, b, a′, b′ and b-a and b′-a′ bimodulesM andM ′. Below it will be

convenient to consider the category A◦m(a
M
←←←←←←←←←←←→ b, a′

M ′

←←←←←←←←←←←←←→ b′) of Am-functors F ∶ (a
M
←←←←←←←←←←←→ b)→ (a′

M ′

←←←←←←←←←←←←←→ b′)
such that F (Ob(a)) ⊂ Ob(a′), F (Ob(b)) ⊂ Ob(b′). It is easy to see that F contains the same data as
Am-functors Fa ∶ a → a′, Fb ∶ b → b′ together with a Am-bimodule morphism FM ∶ M → FaM

′
Fb
.

Sometimes we will write F = (Fa, FM , Fb).

9.3. The gluing category.

Definition 9.2 (The gluing category). Assume n ≥ 1. Let a, b be An-categories and letM be a b-a-An-

bimodule. The gluing category a
∐

M b is the full graded subgraph of (a
M
←←←←←←←←←←←→ b)∗2 given by objects of

the form (A⊕ B, �) with A ∈ Ob(a) and B ∈ Ob(b) (note that � is simply an element of Z1M(A,B)).

Lemma 9.3. a
∐

M b has the structure of an An−1 category with higher multiplications given by (6.5).

Proof. The proof is as in Lemma 6.3 except that now in the relevant argument lists in (6.6) we can have
at most one �, as the (gj)j are now represented by lower triangular 2 × 2-matrices. �

Remark 9.4. An alternative way of defining a
∐

M b is as follows. Let J1 be defined like I1 (see §7.2)

except that we put |a0| = 1. Then a
∐

M bmay be identified with the full subcategory of A1(J1, a
M
←←←←←←←←←←←→ b)

consisting of A1-functors F ∶ J1 → (a
M
←←←←←←←←←←←→ b) such that F (x0) ∈ Ob(a), F (x1) ∈ Ob(b). It then follows

from Lemma 5.7 that a
∐

M b is indeed an An−1-category.

The following will be our main result in this section.

Theorem 9.5. Assume that n ≥ 13, that a, b are pre-triangulated An-categories and thatM is an An-
b-a-bimodule. Then a

∐

M b is a pre-triangulated An−1 category. Moreover the obvious fully faithful
functors 'a ∶ H∗(a) → H∗(a

∐

M b), 'b ∶ H∗(b) → H∗(a
∐

M b) preserve distinguished triangles. If
n ≥ 14 so that H∗(a

∐

M b) is triangulated by Theorem 8.3 and Lemma 9.3 then 'a, 'b give rise to a
semi-orthogonal decomposition
(9.2) H∗(a

∐

M b) = ⟨H∗(a),H∗(b)⟩
whose associated bimodule (see §1.3) isH∗(M).

The proof of this theorem requires some preparation. We start with:

Proposition 9.6 (Functoriality of gluing). Assume we have An-categories a, b, a′, b′ and b-a and b′−a′
bimodulesM andM ′. Then for m ≤ n, there is a strict An−m-functor

� ∶ A◦m(a
M
←←←←←←←←←←←→ b, a′

M ′

←←←←←←←←←←←←←→ b′)→ Am−1(a
∐

M b, a′
∐

M ′ b′).
Moreover � is strictly compatible with compositions.
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Proof. This is proved like Lemma 6.4 which also gives the relevant formulas (where we take into account
that in this case at most one � can appear in the relevant arguments lists in (6.6)). �

Corollary 9.7. Let 3 ≤ m ≤ n − 3 and let a, b, a′, b′, M , M ′ be as in Proposition 9.6 and let F ∈

A◦m(a
M
←←←←←←←←←←←→ b, a′

M ′

←←←←←←←←←←←←←→ b′). If F is a quasi-equivalence then so is �(F ).

Proof. Note that F is a quasi-equivalence if and only if Fa, Fb are quasi-equivalences and FM is a quasi-

isomorphism. By Lemma 5.10 we may choose an inverse G ∈ A◦m−1(a
′ M ′

←←←←←←←←←←←←←→ b′, a
M
←←←←←←←←←←←→ b) to F , up to

homotopy (making use of the fact that the quasi-inverse to H∗(F1) may be chosen freely). Note that
H∗(G) is a functor as m − 1 ≥ 2.

Since H∗(�) also being a functor (as n − m ≥ 3) preserves invertible maps, we conclude by Lemma
5.9 that it preserves homototopies. Hence �(G) is an inverse to �(F ) up to homotopy. It follows that
H∗(�(F )) is an equivalenceH∗(a

∐

M b)→ H∗(a′
∐

M ′ b′). �

For the next few results we assume that a, b are An categories and that M is an An-b-a-bimodule.
We defineM∗2 as the b∗b-a∗a bimodule such thatM∗2((A0⊕A1, �A), (B0⊕B1, �B)) =M(A0, B0)⊕
M(A0, B1)⊕M(A1, B0)⊕M(A1, B1) where the higher operations onM∗2 are obtained from those of
M by “inserting Maurer-Cartan elements” like in Lemma 6.3. In a similar way as Lemma 6.4 one proves

Lemma 9.8. M∗2 is a A
⌊(n−1)∕2⌋-bimodule.

Lemma 9.9. Let n ≥ 3 and let a, b, M be as above. We have a fully faithful functor of A
⌊(n−1)∕2⌋−1-

categories
(9.3) (a

∐

M b)∗(a
∐

M b)→ a∗a
∐

M∗2 b∗b

Proof. An object in (a
∐

M b)∗(a
∐

M b) is of the form
((A0 ⊕B0, �0)⊕ (A1 ⊕B1, �1), �)

where � = (�00, �10, �11) ∈ a(A0, A1)1 ⊕M(A0, B1)1 ⊕ b(B0, B1)1 is such that

� =

⎛

⎜

⎜

⎜

⎝

0 0 0 0
0 0 0 0
�00 0 0 0
�01 �11 0 0

⎞

⎟

⎟

⎟

⎠

acting on
⎛

⎜

⎜

⎜

⎝

A0
B0
A1
B1

⎞

⎟

⎟

⎟

⎠

is a Maurer-Cartan element in (a
∐

M b)⊕2. One verifies that the following matrix

Δ =

⎛

⎜

⎜

⎜

⎝

0 0 0 0
�0 0 0 0
�00 0 0 0
�01 �11 �1 0

⎞

⎟

⎟

⎟

⎠

acting on
⎛

⎜

⎜

⎜

⎝

A0
B0
A1
B1

⎞

⎟

⎟

⎟

⎠

defines aMaurer-Cartan element in (a
M
←←←←←←←←←←←→ b)⊕4. RearrangingΔwe get a differentMaurer-Cartan element

in (a
M
←←←←←←←←←←←→ b)⊕4

Δ∗ =

⎛

⎜

⎜

⎜

⎝

0 0 0 0
�00 0 0 0
�0 0 0 0
�01 �1 �11 0

⎞

⎟

⎟

⎟

⎠

acting on
⎛

⎜

⎜

⎜

⎝

A0
A1
B0
B1

⎞

⎟

⎟

⎟

⎠

which is a block-matrix representation for an object in (a ∗ a)
∐

M∗2 (b ∗ b). This construction defines and
injection Ob((a

∐

M b)∗(a
∐

M b)) ↪ Ob(a∗a
∐

M∗2 b∗b) (but not a bijection) which is is compatible
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with Hom-sets. It is now an easy verification (but messy to write down) that we also get compatibility
with higher operations. �

The bimoduleM may be extended to a Free(b)-Free(a)-An-bimodule which we denote by Free(M).

Lemma 9.10. We have a fully faithful functor of An−1-categories
Free(a

∐

M b)→ Free(a)
∐

Free(M) Free(b).

Proof. An object in Free(a
∐

M b) is of the form
⨁

i∈I Σai (Ai ⊕ Bi, �i). We send it to (
⨁

i ΣaiAi ⊕
⨁

i ΣaiBi, ⊕i�i). It is easy to see that this operation is fully faithful. �

Now we put Tw≤1M = (FreeM)∗2. From Lemma 9.8 we obtain

Lemma 9.11. Tw≤1M is a A
⌊(n−1)∕2⌋-bimodule.

Corollary 9.12. Assume n ≥ 3. There is a fully faithful functor of A
⌊(n−1)∕2⌋−1-categories

(9.4) Tw≤1(a
∐

M b)→ Tw≤1 a
∐

Tw≤1M
Tw≤1 b

whose restriction to a
∐

M b is (Φ, I,Φ∗) where Φ ∶ a → Tw≤1 a is as in Definition 6.5, Φ∗ ∶ b →
Tw≤1 b is the related map B ↦ (0⊕B, 0) and I ∶M → Φ Tw≤1MΦ∗ is the obvious inclusion.

Proof. The existence of (9.4) follows by combining Lemma 9.9 and 9.10. The fact that the restriction to
a
∐

M b has the indicated form follows from the construction of the map. �

Proof of Theorem 9.5. If n ≥ 13 then Tw≤1 a, Tw≤1 b are at least A6-categories by Lemma 6.6, and by
Lemma 9.11 Tw≤1M is at least an A6-bimodule. We can use Corollary 9.7 with n = 6 and m = 3,
together with Lemma 9.13 below to conclude that the composition

a
∐

M b → Tw≤1(a
∐

M b)→ Tw≤1 a
∐

Tw≤1M
Tw≤1 b

(which is equal to (Φ, I,Φ∗) by Corollary 9.12) is a quasi-equivalence. Since both functors are fully
faithful (the second one by Corollary 9.12), the first one must be a quasi-equivalence as well.

Put c = a
∐

M b. The claim about the exactness of 'a, 'b follows from Theorem 6.11. We clearly
also have H∗(c)(H∗(b),H∗(a)) = 0. So to show that we have a semi-orthogonal decomposition as in
(9.2) we have show that every object C in H∗(c) is of the form C ≅ cone(Ca → Cb) with Ca ∈ Ob(a),
Cb ∈ Ob(b). Assume C = (A⊕B, �). We have a fully faithful functor a

∐

M b ⊂ Free a
∐

FreeM Free b
and the latter category is also pre-triangulated (as “Free” preserves A-ness). Again by Theorem 6.11 this
functor is exact. The following triangle

Σ−1A
��
←←←←←←←←←←←→ B

i
←←←←→ C

p
←←←←←←←←←←←→
(1)

Σ−1A

is distinguished in H∗(Free a
∐

FreeM Free b) as it is trivially isomorphic to the standard triangle �̄��
in H∗(Tw≤1(Free a

∐

FreeM Free b)). Choose A′ ∈ Ob(a) such that A′ ≅ Σ−1A in Free a (A′ is a
desuspension of A). Then by the axioms of triangulated categories we obtain cone(A′ → B) ≅ C in
H∗(Free a

∐

FreeM Free b). By fully faithfulness this isomorphism also holds inH∗(a
∐

M b).
The fact that the corresponding bimodule is as given is clear. �

Lemma 9.13. Let a be an An-category. The strict A
⌊(n−1)∕2⌋ functors Φ,Φ∗ ∶ a → Tw≤1 a given by

Φ(A) = (A⊕ 0, 0), Φ∗(A) = (0⊕A, 0) are homotopic.

Proof. The homotopy ℎ is such that ℎn = 0 for n ≥ 1 and ℎ0 is the matrix
( 0 1
1 0

)

. �
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10. HIGHER TODA BRACKETS IN TRIANGULATED AND A∞-CATEGORIES

10.1. Postnikov systems. Let
(10.1) X∙ ∶ X0 → X1 →⋯ → Xn

be a complex in a triangulated category  , i.e. a sequence of composable morphisms in  such that the
composition of any two consecutive morphisms is zero. A Postnikov system for X∙ is any exact diagram
in  of the form
(10.2)

Y0

��

Y1
(1)oo

��

Y2
(1)oo

��

Yn−1

��

Yn
(1)oo

↻ d ↻ d ↻ ↻ d

X0 // X1

FF

// X2 //

FF

X3 ⋯ Xn−1

DD

// Xn

FF

where the triangles marked with ↻ are commutative and the triangles marked with d are distinguished.
This means that we should have the following distinguished triangles
(10.3) Yi → Xi+1 → Yi+1 ←←←←←←←←←←←→(1)

Yi

with X0 = Y0. A Postnikov system need not exist and if it exists it may not be unique. If a Postnikov
system exists then the object Yn will be called a convolution of X∙.

Remark 10.1. Sometimes it is helpful to think of a convolution Yn as an object with an ascending filtration
with subquotients (starting from the bottom)Xn,ΣXn−1,Σ2Xn−2,… ,ΣnX0. In particular the convolution
Yn comes with maps

(10.4) Yn
p

(n)~~
X0 Xn

i
``

where i is as (10.2) and p it the composition Yn → Yn−1 → ⋯ → Y0 = X0 in that same diagram. Note
that pi = 0.

10.2. Existence. Some existence and functoriality results for Postnikov systems are stated in [10, Lem-
mas 1.5, 1.6] but since they require the vanishing of arbitrary negatives Ext’s between suitable objects,
they are not completely sufficient for our purposes. So we give some slightly strengthened versions in the
next two sections.

Lemma 10.2. Assume X∙ is a complex in a triangulated category  such that
(10.5)  (Xa, Xb)−(b−a)+2 = 0 for b ≥ a + 3.
Then X∙ may be extended to a Postikov system. Moreover if the following condition holds
(10.6)  (Xa, Xb)−(b−a)+1 = 0 for b ≥ a + 2
then such an extension is unique, up to non-unique isomorphism.
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Proof. The Posnikov system built on X∙ will be constructed inductively. Assume we have constructed
the part involving X0, X1,… , Xi, Y0, Y1,… , Yi (so this is a Postnikov system on X0 → ⋯ → Xi). To
lift the map Xi → Xi+1 to a map Yi → Xi+1 we need that the composition

Yi−1 → Xi → Xi+1

is zero. Since the composition of Xi−1 → Xi → Xi+1 is zero by definition, it follows from (10.3) that
it is sufficient to have  (Yi−2, Xi+1)−1 = 0. Using Remark 10.1 we see that this condition is implied by
(10.5).

Once we have lifted to Xi → Xi+1 to Yi → Xi+1 we may construct Yi+1 via the the distinguished
triangle (10.3).

To obtain uniqueness we note that if X∙ can be extended to two Postnikov systems then by Lemma
10.3 below the identity onX∙ can be extended to a morphism between these Postnikov systems. It is then
easy to see that this extension must be an isomorphism. �

10.3. Weak functoriality.

Lemma 10.3. Assume we have a morphism of complexes in a triangulated category 

(10.7) X0 //

��

X1 //

��

X2 //

��

⋯ // Xn

��
X′
0

// X′
1

// X′
2

// ⋯ // X′
n

such that there exist Postnikov systems for X∙ and (X′)∙ and the following conditions hold:
 (Xa, X

′
b)−(b−a)+1 = 0 for b ≥ a + 2.(10.8)

Then, given a choice of Postnikov systems forX∙ and (X′)∙, the diagram (10.7) can be extended to a map
of Postnikov systems (not necessarily uniquely).

Proof. We work inductively. Assume that we have defined the extended map on Y0,… , Yi with the
required commutativity holding on Y0,… , Yi, X0,… , Xi. We perform the induction step. We have a
diagram

(10.9) Yi //

��
�
  

Xi+1
//

��

Yi+1
(1) // Yi

��
Y ′i // X′

i+1
// Y ′i+1 (1)

// Y ′i

We do not know that the left most square is commutative, so let the dotted arrow denote the difference of
the two compositions. From the following diagram

Xi
//

��

Yi

�
  

//

��

Xi+1

��
X′
i

// Y ′i // X′
i+1

we obtain that the composition of � with Xi → Yi is zero. So in view of the distinguished triangle
Yi−1 → Xi → Yi ←←←←←←←←←←←→(1)

Yi−1
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� will be zero provided  (Yi−1, X′
i+1)−1 = 0. This follows from Remark 10.1 and the hypothesis (10.8).

So � = 0 and the square in (10.9) is commutative. We now finish by invoking TR3. �

10.4. Higher Toda brackets. In this section we define higher Toda brackets. One may verify that they
are the same as those defined in [5].

Definition 10.4. Let X∙ = ((Xi)ni=0, (di)
n−1
i=0 ) for n ≥ 3 be a complex in a triangulated category  . The

(higher) Toda bracket ⟨X∙
⟩ ⊂  (X0, Xn)−n+2 of X∙ is the collection of compositions �� where �, � fit

in the following commutative diagram

(10.10) Y
p

(n−2)~~

�

$$
X0

�
(−n+2)

//

d0
// X1 Xn−1 dn−1

//

i
aa

Xn

where Y is a convolution of (Xi)n−1i=1 and p, i are as in (10.4).

Note that if n > 3 then ⟨X∙
⟩ may be empty.

Theorem 10.5. Let X∙ be as in Definition 10.4.
(1) If t ∈ ⟨X∙

⟩ then t + dn−1 (X0, Xn−1)−n+2 +  (X1, Xn)−n+2d0 ⊂ ⟨X∙
⟩.

(2) If
(10.11)  (Xa, Xb)−(b−a)+2 = 0 for b − a ∈ [3, n − 1].

then ⟨X∙
⟩ ≠ ∅.

(3) If moreover
(10.12)  (Xa, Xb)−(b−a)+1 = 0 for b − a ∈ [2, n − 2]

then ⟨X∙
⟩ is a coset of dn−1 (X0, Xn−1)−n+2 +  (X1, Xn)−n+2d0.

Proof. (1) If� ∈  (X0, Xn−1)−n+2 then as pi� = 0, adding to i� to � still keeps the diagram (10.10)
commutative. Since �i� = dn−1� we obtain that t+ dn−1� ∈ ⟨X∙

⟩. A similar reasoning applies
if we start with � ∈  (X1, Xn)−n+2.

(2) Note that (10.11) implies in particular (10.5) for (Xi)n−1i=1 . So a convolution Y as in (10.10) exists
and we have to verify the existence of � and �. We will now introduce notations similar to §10.1.
So we will denote the Postnikov systems giving rise to Y by Y1,… , Yn−1 where Yn−1 = Y and
Y1 = X1.

We first consider the existence of �. We have a distinguished triangle

(10.13) Yn−2 → Xn−1
i
←←←←→ Yn−1 →

Thus in order for the map dn−1 ∶ Xn−1 → Xn to factor through Yn−1 we have to prove that
the composition Yn−2 → Xn−1 → Xn is zero. Since we already know that the composition
Xn−2 → Yn−2 → Xn−1 → Xn is zero and there is a distinguished triangle

Xn−2 → Yn−2 → ΣYn−3 →
it is sufficient to show that  (ΣYn−3, Xn)0 = 0. Now by Remark 10.1, ΣYn−3 has subquotients
ΣXn−3,… ,Σn−3X1. The conclusion now follows from (10.11).
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Now we look at the existence of �. We will successively lift X0
d0
←←←←←←←←←←→ X1 = Y1 to maps

X0
(−1)
←←←←←←←←←←←←←←←←←→ Y2, . . . . X0

(−n+2)
←←←←←←←←←←←←←←←←←←←←←←←←←←→ Yn−1. The last map is the sought �. First we look at the distinguished

triangle
X1 → X2 → Y2 →

Since the composition X0 → X1 → X2 is zero the map d0 factors through Σ−1Y2. To continue
we use the distinguished triangles

Yi−1 → Xi → Yi →

for 3 ≤ i ≤ n − 1. Assume we have constructed the map X0 → Σ−i+2Yi−1. From (10.11). we
obtain that the composition X0 → Σ−i+2Yi−1 → Σ−i+2Xi is zero and hence X0 → Σ−i+2Yi−1
factors through Σ−i+1Yi and we can continue.

(3) First we observe that (10.12) implies in particular (10.6) and hence the Postnikov system built on
(Xi)n−11 is unique. To prove asserted statement we have to investigate the freedom in choosing �
and �.

Againwewill discuss � first. � is determined up to an element of the kernel of  (Yn−1, Xn)0 →
 (Xn−1, Xn)0. Using the distinguished triangle (10.13) we see that � is determined up to a com-
position of the form Yn−1 → ΣYn−2


←←←←←←→ Xn. Using Remark 10.1 we see that ΣYn−2 has subquo-

tientsΣXn−2,Σ2Xn−3,…Σn−2X1. Hence by (10.12) anymorphismΣYn−2 → Xn factors through

Σn−2X1. It follows that � is determined up to a composition of the form Yn−1
p
←←←←←←→ Σn−2X1

′
←←←←←←←←←→ Xn.

Composing with � we see as in (1) that changing � in this way, changes �� by an element of
 (X1, Xn)−n+2d0.

Now we discuss �. � is determined up to an element of ker( (X0, Yn−1)−n+2 →  (X0, X1)0.
Define Y ′i = Σ−1 cone(Yi → Σi−1X1), so that in particular Y ′1 = 0, Y ′2 = X2. Using the
octahedral axiom we may construct commutative diagrams for i = 2,… , n − 1

ΣY ′i−1

OO

// ΣYi−1 //

OO

Σi−1X1 //

Y ′i

OO

// Yi //

OO

Σi−1X1 //

Xi

OO

Xi

OO

with rows and columns that are distinguished triangles, where the maps not involving Y ′’s are
taken from the Postnikov system. Hence similar to Remark 10.1, Y ′i has subquotientsXi,ΣXi−1,… ,
Σi−2X2.

We have a distinguished triangle
Y ′n−1 → Yn−1 → Σn−2X1 →

and hence � is determined up to a compositionX0
�
←←←←←←→ Σ−n+2Y ′n−1 → Σ−n+2Yn−1. Now Σ−n+2Y ′n−1

has subquotients Σ−n+2Xn−1,… ,Σ−1X2 and hence by (10.12) we obtain that any map X0
�
←←←←←←→



A k-LINEAR TRIANGULATED CATEGORY WITHOUT A MODEL 27

Σ−n+2Y ′n−1 factors through Σ
−n+2Xn−1. Hence we obtain that � is determined up to a compo-

sition X0
�′
←←←←←←←←←→ Σ−n+2Xn−1 → Σ−n+2Y ′n−1 → Σ−n+2Yn−1 which by construction is the same as a

composition X0
�′
←←←←←←←←←→ Σ−n+2Xn−1

Σ−n+2i
←←←←←←←←←←←←←←←←←←←←←←←←←→ Yn−1. We now finish as for �. �

10.5. Postnikov systems associated to twisted complexes. In this section a is an A∞-category.

10.5.1. More on the category Free(a). Recall that in §5.6 we introduced the strict endo-functor Σ of
Free(a). Below we introduce some more notation concerning the category Free(a). If X ∈ Ob(a) then
we let �X,a,b ∶ ΣaX → ΣbX be given by �b−a idX . We similarly define �X,a,b ∶ ΣaX → ΣbX for
X ∈ Free(a): for each summand ΣxiXi of X, �X,a,b ∶ Σa+xiXi → Σb+xiXi is given by �b−a idXi . Note
that m2(�X,b,c , �X,a,b) = �X,a,c . All operations on a, except m2, vanish when one of its arguments is of
the form �X,b,c . Moreover we have formulas

mn(… , f , m2(�X,a,b, g),…) = mn(… , m2(f, �X,a,b), g,…)

mn(m2(�X,a,b, f ),…) = (−1)(−2+n)(b−a)m2(�X,a,b, mn(f,…))
mn(… , m2(g, �X,a,b))) = m2(mn(… , g), �X,a,b).

and their b-versions which are useful for computations

(10.14)
bn(… , sf , sm2(�X,a,b, g),…) = (−1)b−abn(… , sm2(f, �X,a,b), sg,…)

bn(sm2(�X,a,b, f ),…) = m2(�X,a,b, bn(sf ,…))
bn(… , sm2(g, �X,a,b))) = m2(bn(… , sg), �X,a,b).

Below we usually write �X,a,bg for m2(�X,a,b, g) and similarly m2(g, �X,a,b). By the vanishing of m3 on
arguments involving �X,a,b this will not lead to confusion. Sometimes we also write �−1X,a,b for �X,b,a. One
verifies using the definition of the functor Σ (see §5.6) that for f ∶ ΣaX → ΣbZ one has
(10.15) Σnf = (−1)n|f |�Z,b,b+nf�X,a+n,a.
Finally we put �X = �X,0,1.

10.5.2. More on the triangulated structure of Tw a. Let f ∶ (A, �A)→ (B, �B) be a closed morphism of
degree 0 in Tw a. To f we associate a triangle inH∗(Tw a).

(10.16) (A, �A)
f
←←←←←←←→ (B, �B)

i
←←←←→ (C(f ), �C(f ))

p
←←←←←←←←←←←→
(1)

(A, �A)

where C(f ) = ΣA⊕ B and

�C(f ) =
(

Σ�A 0
f�−1A �B

)

and furthermore

(10.17) i =
(

0
idB

)

, p = (�−1A 0).

The following lemma is an easy verification:

Lemma 10.6. The triangles (10.16) are distinguished according to Definition 6.10.
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10.5.3. Postnikov systems from objects in Tw a.

Proposition 10.7. A twisted complex in Tw a
Yn = (ΣnX0 ⊕ Σn−1X1 ⊕⋯⊕Xn, �)

with Xi ∈ Free(a) gives rise to a Postnikov system inH∗(Tw a) built on the complex

X0
d0
←←←←←←←←←←→ X1

d1
←←←←←←←←←←→ ⋯

dn−1
←←←←←←←←←←←←←←←←←←→ Xn

with
dj−1 = (−1)n−j�Xj ,n−j,0 ⋅ �j,j−1 ⋅ �Xj−1,0,n−j+1,

where �j,j−1 ∶ Σn−j+1Xj−1 → Σn−jXj is the (j, j−1) entry of the matrix � (the ⋅’s are for easier reading).
In the Postnikov system we also have

Yj = (ΣjX0 ⊕ Σj−1X1 ⊕⋯⊕Xj , �Yj )

such that Σn−j�Yi is given by the upper left j + 1 × j + 1-square in the matrix representing �.

Finally the maps p ∶ Yn
(n)
←←←←←←←←←←←→ X0, i ∶ Xn → Yn as in (10.4) are given by

(10.18) i =
⎛

⎜

⎜

⎝

0
⋮
idXn

⎞

⎟

⎟

⎠

p = (�X0,n,0, 0,… , 0)

Proof. We may write

�Yj =

(

Σ�Yj−1 0
fj�−1Yj−1 0

)

where fj ∶ (Yj−1, �Yj−1 )→ Xj is the closed map in Tw a with matrix

((�Yj )j,0�Σj−1X0 ,… , (�Yj )j,j−1�Xj−1 ).

Clearly Yj = C(fj) so that we have standard triangles

(10.19) Yj−1
fj
←←←←←←←←←←→ Xj

ij
←←←←←←←←→ Yj

pj
←←←←←←←←←←←→
(1)

Yj−1

where (ij , pj) are as in (10.17). In particular i = in is given by the formula (10.18). We compute the
composition

Xj−1
ij−1
←←←←←←←←←←←←←←←→ Yj−1

fj
←←←←←←←←←←→ Xj

It is given by the matrix multiplications

((�Yj )j,0�Σj−1X0 ,… , (�Yj )j,j−1�Xj−1 )

⎛

⎜

⎜

⎜

⎝

0
⋮
0

idXj−1

⎞

⎟

⎟

⎟

⎠

= (�Yj )j,j−1�Xj−1

which is equal to (Σ−(n−j)(�Yn )j,j−1)�Xj−1 . One computes using (10.15) that the latter expression is equal
to dj−1.

Finally to show p is as in (10.18) we use p = p1⋯ pn−1pn by the description in Remark 10.1. Then
we use the formula (10.17) for pj . �
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10.6. Higher Toda brackets in A∞-categories. We prove the following result.

Theorem 10.8. Let a be a pre-triangulated A∞-category and let X0
d0
←←←←←←←←←←→ X1

d1
←←←←←←←←←←→ ⋯

dn−1
←←←←←←←←←←←←←←←←←←→ Xn be a

complex in  = H∗(a). Assume the following conditions hold:
(1) The A∞-subcategory of a spanned by the objects (Xi)i is minimal (i.e. b1 = 0).
(2) a(Xi, Xj)u = 0 for −n + 2 < u < 0.

Using (1) we may regard di as closed arrows in a. With this convention we have that ⟨X∙
⟩ is the coset

for dn−1 (X0, Xn−1)−n+2 +  (X1, Xn)−n+2d0 given by s−1bn(sdn−1,… , sd0).

Proof. Since (10.11) and (10.12) hold it is sufficient to produce a single element of ⟨X∙
⟩. Since higher

Toda brackets are obvously invariant under equivalences of triangulated categories we may perform the

calculation in Tw a. We start with the Postnikov system built on X1
d1
←←←←←←←←←←→ X2

d2
←←←←←←←←←←→ ⋯

dn−2
←←←←←←←←←←←←←←←←←←→ Xn−1. By

Proposition 10.7 it is obtained from the twisted complex
Y = (Σn−2X1 ⊕⋯⊕Xn−1, �)

where the only non-zero entries of � are �j,j−1 for j = 2,… , n − 1 and �j,j−1 is given by

�j,j−1 = (−1)n−1−j�Xj ,0,n−1−j ⋅ dj−1 ⋅ �Xj−1,n−j,0
Using the formulas for i and p (see (10.18)) it is then easy to see that we may take

� =
⎛

⎜

⎜

⎝

�X1,0,n−2d0
⋮
0

⎞

⎟

⎟

⎠

� = (0, 0,… , dn−1)

Then mTw a,2(�, �) ∈ ⟨X∙
⟩. It will be more convenient to compute bTw a,2(s�, s�) = smTw a,2(�, �). We

have
bTw a,2(s�, s�) = ba,n(s�, s�,… , s�

⏟⏞⏞⏟⏞⏞⏟
n−2

, s�)

= ba,n(sdn−1, sdn−2 ⋅ �Xn−2,1,0,… , (−1)n−1−js�Xj ,0,n−1−j ⋅ dj−1 ⋅ �Xj−1,n−j,0,… ,

(−1)n−3s�X2,0,n−3 ⋅ d1 ⋅ �X1,n−2,0, s�X1,0,n−2d0)
= ba,n(sdn−1, sdn−2,… , sd1, sd0)

where in the last line we have used (10.14). �

11. TRIANGULATED CATEGORIES WITHOUT MODELS

If is a triangulated category then anA∞-enhancement on is a pair consisting of a pre-triangulated
A∞-category a such that Ob(a) = Ob() and an isomorphism of triangulated categoriesH∗(a)→  in-
ducing the identity on objects. The following proposition will be the basis for constructing a triangulated
category that does not admit an A∞-enhancement.

Proposition 11.1. Let a, b be pre-triangulated A∞-categories. Suppose we have an An- functor F ∶
a → b for n ≥ 13 such that H∗(F ) does not lift to an A∞-functor for any A∞-enhancements on H∗(a),
H∗(b). Let c be the gluing category c = a

∐

M b whereM = F b (see §9.1). ThenH∗(c) is a triangulated
category which does not admit an A∞-enhancement.
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Proof. By the discussion in §9.1,M is anA14-bimodule. Therefore by Theorem 9.5, c is a pre-triangulated
A13-category. Hence by Theorem 8.3,H∗(c) is triangulated.

Suppose that an A∞-enhancement d onH∗(c) exists. SinceH∗(a),H∗(b) are full exact subcategories
of H∗(c) (see Theorem 9.5), it follows that the A∞-structure on d induces A∞-enhancements a′, b′, on
H∗(a) and H∗(b). By H∗(d) ≅ H∗(c) it follows that d(A,B)A,B for A ∈ Ob(H∗(a)), B ∈ Ob(H∗(b))
defines a A∞-b′-a′-bimodule which is a co-quasi-functor in the sense of §11.1 below. Hence by Lemma
11.4, d induces an A∞-functor F ′ ∶ a′ → b′ such that H∗(F ′) ≅ F . This contradicts the hypotheses
on F . �

Remark 11.2. The idea of creating a triangulated category without model by gluing a non-enhanceable
functor was suggested to us by Bondal and Orlov on a number of occasions. In fact, the idea of translating
an enhancement of the glued category into a A∞-enhancement of the gluing functor, thereby obtaining a
contradiction, was specifically suggested to us by Orlov.

11.1. Co-quasi-functors. To fill in a missing ingredient in the proof of Proposition 11.1 we use an A∞-
version of the notion of a (co)-quasi-functor (see [6]). In the rest of this section we assume that a, b are
A∞-categories.

Definition 11.3. An A∞-b-a-bimodule M is a co-quasi-functor a → b if for every object A ∈ Ob(a)
there exists fA ∈ Ob(b) together with an element �̄A ∈ (H∗M)(A, fA)0 inducing an isomorphism for
all B ∈ Ob(b): �̃A ∶ H∗(b)(fA,B)→ (H∗M)(A,B) ∶ u ↦ u�̄A.

It is clear from the definition that being a co-quasi-functor depends only on the structure ofH∗M as
graded H∗(a) −H∗(b)-bimodule. A co-quasi-functor induces an actual functor f ◦ ∶ H∗(a) → H∗(b).
Indeed for u ∶ A → A′ in H∗(a), f ◦u ∶ fA → fA′ is defined to be the unique morphism such that

H∗(b)(f ◦u,−) is the composition H∗(b)(fA′,−)
�̃A′
←←←←←←←←←←←←←←←→
≅

(H∗M)(A′,−)
H∗M(f,−)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (H∗M)(A,−)

�̃−1A
←←←←←←←←←←←←←←←→
≅

H∗(b)(fA,−). Moreover is is clear that different choices of (�A, f ◦A) lead to naturally isomorphic
functors.

Lemma 11.4. Assume thatM is a co-quasi-functor a → b and let f ◦ ∶ H∗(a)→ H∗(b) be the induced
functor as explained above. Then there exists an A∞-functor f ∶ a → b such thatH∗(f ) = f ◦.

Proof. Let l∞(b) be the DG-category of strictly unital left A∞-b-modules [7, Chapitre 5] and let Y ∶
b → l∞(b)

◦ ∶ B ↦ b(B,−) be the Yoneda embedding. Furthermore let b̃ ⊂ l∞(b)
◦ be the full

subcategory spanned by A∞-modulesM which are A∞-quasi-isomorphic to some b-module of the form
b(B,−). Clearly we have that Y corestricts to an A∞-quasi-equivalence Y c ∶ b → b̃. SinceM is a co-
quasi-functor the image of the A∞-functor F ∶ a → l∞(b)

◦ ∶ A ↦ M(A,−) lies in b̃. Let F c ∶ a → b̃
be the corestriction of F .

Choose an A∞-quasi-inverseW ∶ b̃→ b to the quasi-equivalence Y c ∶ b→ b̃ which sendsM(A,−)
to fA for A ∈ Ob a and u to (a representative of) f ◦u for u ∶ A → A′ a closed map in a. By Lemma
5.10 this is possible. Then one easily verifies that f ◦ = H∗(F cW ). �

Remark 11.5. It is also easy to prove that we have an quasi-isomorphism of A∞-bimodules fb ≅ M .
However we will not need this.

11.2. Localization of triangulated categories. The following result is well-known, although we did
not find the precise statement we require. Since the proof is short we include it for the convenience of the
reader.
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Proposition 11.6. Let  be a triangulated category admitting arbitrary coproducts and let T ∈ Ob( ) be
a compact generator for  . Let S ⊂  (T , T ) be a graded right Ore set and let S be the full subcategory
of  spanned by the objects X such that  (s,X) is an isomorphism for all s ∈ S, or equivalently the
objects for which
(11.1)  (T ,X)→  (T ,X)S
is an isomorphism. Then S is a triangulated subcategory of  and moreover the inclusion functor
S →  has a left adjoint, denoted by (−)S such that for Y ∈ Ob( ) the induced map

(−)S ∶  (T , Y )→ S (TS , YS )
factors uniquely through an isomorphism
(11.2)  (T , Y )S ≅ S (TS , YS ).

Proof. The fact that S is triangulated follows trivially from the 5-lemma. Let us now discuss the exis-
tence of the adjoint. Let  be the full subcategory of  spanned by objects X such that all morphisms
T → X (not necessarily of degree zero) are annihilated after composing with some s ∶ T → T ∈ S, or
equivalently
(11.3)  (T ,X)S = 0
It is clear that  is triangulated and closed under arbitrary coproducts (the latter by the compactness of
T ).

For s ∈ S let C(s) be the cone of the morphism s ∶ T → Σ|s|T . It is clear that S = ⟨C(s)s∈S⟩⟂. By
the Ore condition on S the objects C(s) are in . Moreover as ⟨C(s)s∈S⟩⟂ ∩  = S ∩  and it is easy to
see that S ∩  = 0, we obtain that  is in fact generated by ⟨C(s)s∈S⟩. This yields ⟂ = S .

Hence in particular  is compactly generated and using the Brown representability theorem we obtain
that the inclusion functor  →  has a right adjoint U ∶  →  such that every X ∈  fits in a unique
distinguished triangle
(11.4) UX → X → V X →

where V X ∈ ⟂ = S . It follows easily that X → V X is a functor  → ⟂ = S . Applying  (−, Z)
for Z ∈ S to (11.4) we obtain that V is the sought left adjoint (−)S to the inclusion S →  .

Finally we discuss the formula (11.2). As cone(Y → YS ) = ΣUY ∈  we have  (T , cone(Y →

YS ))S = 0 by (11.3). Hence (−)S induces an isomorphism  (T , Y )S
≅
←←←←←←←→  (T , YS )S

(11.1)
=  (T , YS ) =

S (TS , YS ) where the last equality is adjointness. �

11.3. A non-enhanceble functor. Now let k be either a field of characteristic zero or an infinite field
of characteristic > n ≥ 3. Put R = k[x1,… , xn] and let K be the quotient field of R. Furthermore let
R["] be the R-linear DG-algebra with |"| = −n + 2, "2 = 0, d" = 0. Let C(R,R) be the Hochschild
complex of R and let HHn(R,R) = Hn(C(R,R)). Let T nR∕k = ∧

n
RDerk(R,R). The HKR theorem gives

an inclusion T nR∕k ⊂ ZnC(R,R) which induces an isomorphism T nR∕k ≅ HH
n(K,K). For � ∈ T nR∕k we

let R� be the k["]-linear A∞-deformation of R["] whose only higher multiplication is given by "�.
As above, for anA∞-algebraA let r∞(A) be the DG-category of strictly unital rightA∞-modules over

A [7]. We put D(A) = H∗(r∞(A)). This is one of the many realizations for the derived category of an
A∞-algebra (see [7, Théorème 4.1.3.1(D2)]) for whichwe considerr∞(A) to be its standard enhancement.

Remark 11.7. A is an A-A-bimodule and hence the left A-action on A defines A∞-quasi-isomorphism
(see [7, Lemma 5.3.0.1]) A → r∞(A)(A,A) which is however not an isomorphism.
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Proposition 11.8. Assume  is a triangulated category with arbitrary coproducts and T is compact
generator of  such that  (T , T ) = R["]. Assume a is some A∞-enhancement of  . Then there is an
A∞-quasi-equivalence a ≅ r∞(R�) for a suitable � ∈ T nR∕k which sends T to an object isomorphic to
R� in H∗(r∞(R�)) = D(R�) such that the induced map R["] =  (T , T ) ≅ D(R�)(R� , R�) = R["] is
the identity. Moreover � is uniquely determined by the triangulated structure on  and in particular is
independent of the chosen quasi-equivalence.

Proof. Let R = a(T , T ). By [6, §4.3] as formulated in the work of Porta [11], the A∞-functor
Y ∶ a→ r∞(R) ∶ X ↦ a(T ,X)

is a quasi-equivalence which sends T toR. Indeed r∞(R) is pre-triangulated and so is a by the definition of
enhancement. SoH∗(Y ) is exact. Since the essential image ofH∗(Y ) contains a generator ofH∗(r∞(R))
(namely R) it is sufficient to show that L ∶= H∗(Y ) is fully faithful. By the Brown representability
theorem L has a right adjoint R which moreover commutes with coproducts (this follows from the fact
that L send the compact generator T to the compact object R). Hence the full subcategory of H∗(a)
spanned by objects X such that X → RLX is an isomorphism is closed under shifts, cones, summands
and arbitrary coproducts. Moreover, applying H∗(a)(T ,−) we see that it contains T . Hence it must be
H∗(a) itself. From this one deduces that L is fully faithful.

Now R is a DG-algebra with cohomology R["], so it is A∞-isomorphic to a minimal A∞-structure
on R["] with m2 being the usual multiplication. For degree reasons, the only such A∞-structures are
(up to A∞-isomorphism) of the form R� . Hence after choosing an A∞-quasi-isomorphism R� → R we
obtain a quasi-equivalence r∞(R) → r∞(R�) which sends R to an object quasi-isomorphic to R� in a
way which induces the identity on cohomology. Composing with Y completes the proof of the first part
of the proposition.

For � ∈ kn let K ∙
� be the R-Koszul complex on (x1 − �1,… , xn − �n). This is a resolution of R� ∶=

R∕((xi−�i)i). PutK ∙
�,T = K

∙
�⊗RT . This is a complex in  . The conditions (10.11) and (10.12) hold for

K ∙
�,T and hence the higher Toda bracket ⟨K ∙

�,T ⟩ is a coset of
∑

i  (T , T )−n+2(xi − �i) in  (T , T )−n+2 =
R". We define ��,T ∈ R� such that ��,T " is the sole element of the image of ⟨K ∙

�,T ⟩ in R�.
By the constructed quasi-equivalence we have ��,T = ��,R� . Alas we cannot immediately apply

Theorem 10.8 to the right-hand side of this equality as the A∞-category spanned by the terms of the
complex K ∙

�,R�
(finite direct sums of R�) is not minimal (see Remark 11.7). To work around this let

S = r∞(R�)(R� , R�), which we regard as a one object A∞-category (S, ∙). As in Remark 11.7 we obtain
an A∞-quasi-isomorphism R� → S. Composing with (S, ∙)→ r∞(R�) ∶ ∙↦ R� we obtain a quasi-fully
faithful A∞-functor (R� , ∙)→ r∞(R�) ∶ ∙↦ R� which gives rise to a quasi-fully faithful A∞-functor

TwR� → Twr∞(R�) ≅ r∞(R�)
which sends K ∙

�,R�
∈ TwR� to K ∙

�,R�
∈ r∞(R�). It follows that we may perform the calculation of

��,R� in TwR� . As the A∞-subcategory of TwR� spanned by direct sums of R� is minimal, we are
now in a position to apply Theorem 10.8 and we obtain that, up to a global sign, ��,R� is the image of
∑

�∈Sn (−1)
��(x�(1) − ��(1),… , x�(n) − ��(n)) in R�. Since T nR∕k = R

⋀

i )∕)xi, this is the same as the
image of n!�(x1,… , xn). We obtain by varying � that � is uniquely determined. �

Theorem 11.9. Choose 0 ≠ � ∈ T nR∕k and put a = r∞(K), b = r∞(R�). After extending � to T
n
K∕k =

T nR∕k ⊗R K , we consider K� as an object in b. There is an An−1-functor

F ∶ a → b
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which sends K to K� . The corresponding functor
H∗(F ) ∶ D(K)→ D(R�)

does not lift to an An-functor, even after changing the enhancements on D(K) and D(R�).

Before giving the proof of this theorem we show that it implies Theorem 1.1 in the introduction.

Proof of Theorem 1.1. FromTheorem 11.9 we obtain that the hypotheses of Proposition 11.1 are satisfied
for (a, b, F ) (with n replaced by n − 1) and thus for n ≥ 14 we obtain a triangulated category  =
H∗(a

∐

F b b) without A∞-enhancement with a semi-orthogonal decomposition

 = ⟨D(K), D(R�)⟩. �

Proof of Theorem 11.9. We first discuss the construction of the functor F . To be compatible with Propo-
sitions 11.6 and 11.8, put  = D(R�) = H∗(r∞(R�)) and let T be the object R� . Put S = R − {0}. It
is easy to see that TS = K� . Indeed K� is in S and cone(R� → K�) is in  by (11.3). In particular it
follows by (11.2) that  (K� , K�) = K["].

Choosing homotopies we obtain an A2-functor
(11.5) F ∶ K → r∞(R�) ∶ K ↦ K�
and the obstructions against extending � to an Ai-functor are in HHj(K,  (K� , K�)−j+2) for 3 ≤ j ≤ i
(see e.g. [12, Lemma 7.2.1]). Since  (K� , K�) = K["] the obstructions vanish for j < n. So F extends to
an An−1-functor. Let Freẽ(−) be defined as Free(−) but allowing arbitrary formal direct sums. If a is an
An-category then so is Freẽ(a) and similar statement is true for functors. We then obtain anAn−1-functor
Freẽ(F ) ∶ Freẽ(K) → Freẽ(r∞(R�)). Since Freẽ(K) is quasi-equivalent to ∞(K) (both are models
for D(K) which is semi-simple) and the direct sum defines an A∞-functor Freẽ(r∞(R�)) → r∞(R�),
after choosing a suitable A∞-quasi-inverse to the first functor we obtain the sought An−1-functor F ∶
r∞(K)→ r∞(R�) which sends K to K� .

We claim that F does not lift to an An-functor, even if we change enhancements. It if did, the A2-
functor (11.5) would also lift to an An-functor, as by Proposition 11.8 the enhancement on r∞(R�) is
(weakly) unique and (as we have shown in the first paragraph) the object K� is determined by the tri-
angulated structure. If this were possible then it would induce the structure of an An-functor on the
corestriction

K
�
←←←←←←←→ c ⊂ r∞(R�)

where c is the full subcategory of r∞(R�) spanned by the single object K� . Put K = r∞(R�)(K� , K�).
Since K� is an K�-R�-bimodule, the left K�-action on K� induces an A∞-quasi-isomorphism K� → K =

c. Taking an A∞-quasi-inverse and composing with K
�
←←←←←←←→ c we obtain and An-morphism K → K� such

that H∗(K) → H∗(K�) = K[�] is the natural inclusion. Such an An-morphism does not exist as � ≠ 0
[7, Chapitre B]. �
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