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Abstract—The application of machine learning models to spec-
trum sensing in cognitive radio is not uncommon in literature,
but most of these models fail to consider temporal dependencies
in the signal. In this paper, the temporal correlation among the
spectrum data is exploited using a Long Short-Term Memory
(LSTM) network. More specifically, the previous sensing event
is fed along with the present sensing event to the LSTM model.
The proposed sensing scheme is validated based on empirical
data of various radio technologies. The proposed LSTM model
is compared with other machine learning algorithms in terms
of classification accuracy. Furthermore, the proposed scheme is
also compared with other spectrum sensing techniques. Results
indicate that the proposed scheme improves the detection per-
formance and classification accuracy at low signal-to-noise ratio
regimes. Moreover, it is observed that the achieved improvement
is obtained at the expense of longer training time and nominal
increase in execution time.

Index Terms—Cognitive Radio, Spectrum sensing, ANN, RNN,
LSTM, Machine Learning.

I. INTRODUCTION

Due to the proliferation of mobile devices, the demand for
spectrum has escalated. Dynamic Spectrum Access (DSA) /
Cognitive Radio (CR) has emerged as a promising solution to
bridge the gap between spectrum availability and its demand
growth. It aims at reusing temporarily unoccupied frequency
bands, known as spectrum holes or white spaces, in an
opportunistic manner, ensuring that the licensed user does
not face any harmful interference [1]. For an interference-
free access, the secondary user should be able to identify
vacant frequency bands in the spectrum, use those bands upon
availability, and vacate them as soon as a primary user requests
access. This calls for high reliability and efficient utilization
at the same time [1]. Various sensing algorithms have been
proposed in the literature to identify the presence or absence
of primary users in a given band.

Spectrum sensing algorithms can be categorized as para-
metric or non-parametric. Parametric sensing schemes work
based on some prior information about the primary user
activity. However, in most real-world applications, no prior
information is available about the primary user, and thus non-
parametric sensing schemes are preferred [2]. Energy detection
based approaches are common due to their low computational
complexity and ease of implementation with empirical setups.
However, their performance depends on two key assumptions,
the stationarity of noise and the knowledge of its variance [3].
Imperfect knowledge of noise variance leads to a phenomenon
called Signal-to-Noise Ratio (SNR) wall [4]. However, various
Goodness of Fit (GoF) tests like Anderson Darling test [5],

Kolmogorov-Smirnov test [6], Likelihood Ratio Statistics [7]
based sensing and machine learning based spectrum sensing
schemes are proposed in literature.

In recent past, machine learning algorithms have attracted
wide attention from industry and academia in the context of
wireless research. The survey in [8] comprehensively describes
the CR architectures, reasoning and learning engines and their
applications to CR networks using machine learning. Artificial
Neural Network (ANN) based spectrum sensing for cognitive
radio was carried out in [9]. However in [10], an ANN-
based sensing scheme was proposed which used the Zhang
statistic [11] and energy values over the sensing events as
training features. A detailed study of various machine learning
algorithms to identify the spectrum occupancy was provided in
[12]. Furthermore, [13] has described various machine learning
paradigms for next-generation wireless networks.

As per [14]-[15], traditional ANNs have a shortcoming in
a way that they cannot store information due to the absence
of memory elements. Furthermore, ANNs are not suited for
temporal modelling and for data with long-term dependen-
cies. Moreover, time series data sets can be modelled using
Recurrent Neural Networks (RNNs). A major shortcoming of
RNNs is that they cannot model long-term dependencies due
to the issue of vanishing gradients [16]. In order to overcome
the aforementioned shortcomings and to exploit the long-term
dependencies in data, LSTM networks are used [17].

To the best of the authors’ knowledge, there are very few
works in the literature that have used LSTM networks to
model the temporal dependencies of spectrum data. In [18],
authors proposed a spectrum prediction algorithm using LSTM
network whereas, authors in [19] addressed the modulation
classification problem using LSTM network. In [20], the
authors have used the Taguchi method for hyperparameter
optimization of the LSTM network for spectrum prediction.
However, the above studies have addressed the spectrum
prediction problem and have shown the comparison in terms
of accuracy with other machine learning models. By contrast,
this work uses LSTM network to address the spectrum sensing
problem in CR networks.

The main contributions of this paper are summarized below:

• A novel LSTM based framework for spectrum sensing in
CR is proposed in which the previous sensing event is
fed along with the present sensing event to exploit the
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temporal dependencies in the data set. Results indicate
remarkable performance improvements even at low SNR.

• In order to make the LSTM model robust and unbiased
towards high SNRs, the training data set includes data at
very low SNRs. This ensures that the detection perfor-
mance does not deteriorate at low SNRs.

• The proposed sensing scheme is experimentally vali-
dated with spectrum data of various radio technologies
captured using an empirical testbed measurement setup.
Furthermore, it is compared with other machine learning
algorithms in terms of classification accuracy.

The rest of this paper is organized as follows. Section II
describes the system model and the preliminaries of LSTM.
The proposed RNN-LSTM model for spectrum sensing is
discussed in Section III. Section IV comprehensively describes
the measurement setup. Results are discussed in Section V.
Finally, Section VI draws the conclusions from this work.

II. SYSTEM MODEL AND LSTM PRELIMINARIES

The problem of spectrum sensing can be formulated as a
binary classification problem1:

H0 : y<t> = w<t> (1)
H1 : y<t> = h<t>x<t> + w<t>

where x<t> denotes the primary user signal, w<t> is white
Gaussian noise with zero mean and variance σ2 and y<t> is
the received signal at tth time instant. H0, the null hypothesis
indicates the noise samples while H1, the alternate hypothesis
indicates the presence of primary user signal along with noise
at tth instant. In order to exploit the temporal dependencies,
the previous sensing event is fed along with the current sensing
event and thus the received signal, in general, can be expressed
as:

y =
[
y<1>y<2> . . . y<N>︸ ︷︷ ︸

Previous sensing event

y<N+1>y<N+2> . . . y<2N>︸ ︷︷ ︸
Current sensing event

]T
where N is the signal sample size and [ξ]T denotes the
transpose of vector ξ. Fig 1. shows the internal structure of an
LSTM cell [17], where y<t> is the input, a<t> is the output
of the LSTM cell, a<t−1> is the previous LSTM output, and
c<t> and c<t−1> are the current and previous cell states,
respectively. σu, σf , and σo are the values of the update,
forget and output gates, respectively, tanh is the activation
function, � is the Hadamard product and ⊕ denotes element-
wise addition.

A. Key Elements

An LSTM cell has these key elements:
1) Update gate: Decides when to update the current cell

state, denoted as the output of σu.
2) Forget gate: Decides when to discard the current cell,

denoted as the output of σf .
3) Output gate: Controls the output, denoted as the output

of σo.
1Notations in system model are modified in order to have consistency with

LSTM notations.
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Figure 1: Internal structure of LSTM cell with one hidden unit.

B. Functioning

Using the tanh activation function:

tanh(z) =
ez − e−z

ez + e−z
(2)

a vector of candidate values, c̃<t>, is created in order to update
the cell state:

c̃<t> = tanh(Wc[a
<t−1>, x<t>] + bc) (3)

where bc is the bias term. The values for the update, forget and
output gates are calculated by applying a sigmoid activation:

Γu = σ(Wu[a<t−1>, x<t>] + bu) (4)

Γf = σ(Wf [a<t−1>, x<t>] + bf ) (5)

Γo = σ(Wo[a
<t−1>, x<t>] + bo) (6)

σ(z) =
1

1 + e−z
(7)

where Wu, Wf , and Wo are the weight matrices and bu,
bf , and bo are the bias terms. An elementwise product is
taken between the forget gate (Γf ) and the previous cell state
c<t−1>, and between the update gate (Γu) and the candidate
vector for updation c̃<t>. Output a<t> is the element-wise
product between the output gate (Γo) and the hyperbolic
tangent of candidate vector c<t>:

c<t> = Γu � c̃<t> + Γf � c<t−1> (8)
a<t> = Γo � tanh(c<t>) (9)

III. PROPOSED RNN-LSTM SCHEME

Traditional ANNs described in [9] have no memory ele-
ments and hence lack the ability to store data. Therefore, it is
necessary to modify the structure of neural networks to have
feedbacks between successive timestamps [14], [15]. Fig. 2
shows the proposed LSTM model comprising of LSTM cells
(as described in Section II) and an output cell which goes
through the sigmoid activation.
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Figure 2: Proposed sensing model.

Algorithm 1 Dataset construction
1: procedure CREATE DATASET(Data, N, Label)

2: size←
length(Data)

N
3: PU dataset← zero matrix of dimensions size × N
4: for SNR← -20 to 4 dB do
5: noisy signal← Data + AWGN . SNR is achieved
6: for i← 1 to size do
7: signal← (i)thN samples from noisy signal
8: PU signal[i]← signal . Row-wise assignment
9: return PU signal . The primary user signal is returned

A. Dataset Construction

In this study, the proposed LSTM model is trained and
validated based on spectrum data. The data is captured through
an empirical setup, a detailed discussion of which is provided
in Section IV. From the captured data, the clean primary user
signal is acquired and its power σ2

x is measured. In order to
achieve a given SNR γ, the required power of noise to be
added is calculated using the relation σ2

w = σ2
x/γ [7]. Additive

White Gaussian Noise (AWGN) sequence of the power level
is generated and added to the signal.

For a sample of size N , the signal will thus be a vector
with 2N timestamps.

y =
[
y<1>y<2> . . . y<2N>

]T
Each signal vector with sample size N is considered as a

sensing event and hence is taken as a training example for the
LSTM model. For this study, 200,018 examples are maintained
for AWGN and 200,018 examples are maintained for primary
user signal in the SNR range -20 dB to 4 dB. Thus, the dataset
contains an equal number of primary user signal and AWGN
sequence examples.

In order to make the LSTM scheme robust and unbiased
towards high SNRs, the training data set includes data at very
low SNRs. Algorithm 1 and Fig. 3 show the data construction
process. The generated data are divided into three classes,
training (60%), validation (20%) and test (20%) datasets.

B. LSTM Training and Model Selection

Keras library with TensorFlow backend is used to create
and train models. As shown in Fig. 4, the training dataset
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Figure 3: Dataset construction.

Algorithm 2 LSTM training
1: procedure TRAIN(Epochs, Batch size, X, y, α)
2: for i← 1 to Epochs do
3: s event, label← extract(Dataset, Batch size)
4: . Random training examples are extracted according to the batch size
5: Output← Forward Propagate(LSTM model, s event)
6: Error← Backward Propagate(LSTM model, label, output)
7: Parameters← Update(error, LSTM model,α) . Parameters are

updated according to the learning rate α

Table I: Training/validation set accuracies of different models.

Number of
hidden units Epochs Training

accuracy
Validation
accuracy

1
5 88.89% 88.11%

10 88.39% 88.75%
15 88.66% 88.50%

128
5 92.59% 87.80%

10 95.63% 86.03%
15 97.06% 85.20%

256
5 95.60% 86.81%

10 98.56% 84.81%
15 99.31% 84.66%

examples, which comprise of 60% of the total examples,
are fed in batches to different LSTM models, the error is
backpropagated during the training procedure, the gradients
are calculated and the parameters are updated, as illustrated in
Algorithm 2. Accuracies of these models on the training and
validation sets are evaluated. The training set performance of
a given model does not always generalize to other datasets as
big models tend to overfit the training data. Thus, validation
set accuracies are considered for choosing the best model.

As the number of hidden units is increased, training accu-
racy goes up but validation accuracy declines. This happens
when the model overfits the training dataset. To avoid overfit-
ting, we have evaluated training and validation accuracies for
models with different numbers of hidden units (see Table I).
It can be seen that the validation accuracy is maximum for the
LSTM network with one hidden unit.

C. Evaluation of Performance Metrics

This is the final phase where the proposed sensing scheme
is evaluated. Algorithm 3 shows the evaluation procedure to
calculate probability of detection Pd and probability of false
alarm Pf . Signal data from the test dataset are fed one by
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Figure 4: LSTM training model considered in this work.

Algorithm 3 Evaluation of the model
1: procedure EVALUATE(LSTM model, Dataset)
2: for i← 1 to length(PU signal) do
3: s event, label← extract(Dataset, 1)
4: . Test examples are extracted one by one
5: H0 examples← 0
6: H0 misclassified← 0
7: H1 examples← 0
8: H1 correct← 0
9: Output← Forward Propagate(LSTM model, s event)

10: if Label is H1 then
11: H1 examples←H1 examples + 1
12: if Output is H1 then
13: H1 correct←H1 correct + 1
14: if Label is H0 then
15: H0 examples←H0 examples + 1
16: if Output is H1 then
17: H0 misclassified←H0 misclassified + 1

18: Pd ←
H1 correct
H1 examples

19: Pf ←
H0 misclassified
H0 examples

one to the LSTM network and Pd, Pf are calculated. First,
the primary user signal vectors at each SNR are forwarded
to the LSTM network. The number of times it correctly
classifies the signal, i.e. (H1), divided by the total number of
primary user signal examples fed to the network determines
Pd. Similarly, AWGN sequence examples are forwarded to the
LSTM network and Pf is calculated as the number of times
it does not predict H0 divided by the total number of AWGN
sequence examples.

IV. EMPIRICAL MEASUREMENT SETUP

An empirical testbed was deployed for spectrum data ac-
quisition on the roof-top of the School of Engineering and
Applied Science, Ahmedabad University. The measurement
setup is as shown in Fig. 5. The hardware consists of a dig-
ital spectrum analyzer Rigol DSA-875, a Universal Software
Radio Peripheral (USRP-N210) with a WBX daughterboard
surmounted, two Diamond D-3000N discone antennae and
a computer system to interface the hardware and software.
The software part includes MATLAB and GNU Radio. Table
II shows the tuning parameters of the spectrum analyzer

Table II: Tuning parameters of spectrum analyzer.
Parameter Value

Frequency range 75-2000 MHz
Frequency span 45-600 MHz
Frequency bin Depends on band selected

Resolution Bandwidth-RBW 10 kHz
Video Bandwidth-VBW 10 kHz

Measurement period 5-15 mins
Sweep time 1 second

Scale 10 dB/division
Input attenuation 0 dB
Detection type RMS detector

while Table III shows the measured channels and the USRP
configuration.

Rigol DSA-875 spectrum analyzer supports 601 frequency
points. A resolution bandwidth (RBW) of 10 kHz was selected
and a sweep period of 1 second was kept. The frequency
bins selected in the spectrum analyzer were kept slightly
wider than those selected in USRP. With the help of analyzer,
channels with high SNR were identified for various radio
technologies (see Table III), which were afterwards used to
capture primary signal data using the USRP. The acquired data
using GNURadio are further processed offline in MATLAB
and then the validation of the proposed LSTM based sensing
scheme is carried out.

V. EXPERIMENTAL RESULTS

A. LSTM Training Analysis

1) Manipulation in Training data and Training Strategies:
The training data cluster was divided into two classes: low
SNR class and high SNR class. -20 dB to -6 dB were clubbed
and categorized in the low SNR class; similarly, -4 dB to 4 dB
were categorized in the high SNR class. In order to perform
the training analysis, the proportion of training examples in
each of the two classes was varied and consequent variations
in Pd values at different SNRs and Pf values were observed.
Different compositions of the training dataset were created by
varying the ratio of the number of examples in low SNR class
to the number of examples in high SNR class. Algorithm 1
is used to construct the datasets and Algorithm 2 is used to
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Figure 5: Empirical measurement setup used in this work.

Table III: USRP configuration and channels measured in this work.

Radio Channel fstart fcenter fstop Signal bandwidth Gain Decimation Sampled
Technology Number (MHz) (MHz) (MHz) (MHz) (dB) Rate Bandwidth (MHz)

FM broadcasting – 96.500 96.700 96.900 0.2 45 64 1
UHF television (Band IV) U-33 566 570 574 8 45 8 8

E-GSM 900 DL 77 950.2 950.4 950.6 0.2 45 64 1
DCS 1800 DL 690 1839.6 1840.8 1841 0.2 45 64 1

Table IV: False alarm rates for different compositions of the
training data cluster (UHF Television, N = 100).

Model
name

% of examples
in low SNR range

% of examples
in high SNR range Pf

10-90 10% 90% 0.0100
20-80 20% 80% 0.0252
30-70 30% 70% 0.0432
40-60 40% 60% 0.0527
50-50 50% 50% 0.0528
60-40 60% 40% 0.0698
70-30 70% 30% 0.0718
80-20 80% 20% 0.0871
90-10 90% 10% 0.1051

train the LSTM network on these datasets. The compositions
are evaluated using Algorithm 3 and Pd, Pf are determined.
It is evident from Table IV and Fig. 6 that the composition
of training set has a significant impact on Pd and Pf . As the
percentage of examples in low SNR range is increased, Pf
and Pd also increase. At low SNRs, the magnitudes of primary
user signal are similar to that of noise. The LSTM network,
therefore, finds it difficult to differentiate between primary
signal and noise. On the contrary, if the LSTM network is
trained on a dataset with a high proportion of low SNR
examples, then it is more likely to predict that the primary
user is present, which results in higher values of Pf and Pd.

2) Performance Analysis: The proposed scheme was vali-
dated on four radio technologies, namely, FM Broadcasting,
E-GSM 900 DL, DCS 1800 DL and UHF Television. Fig.
7 shows Pd versus SNR for N = 100. To enable a fair
comparison with the results of [10], the Pf close to three
decimal places was chosen from Table IV. The results show
that although the performance of the proposed scheme at high
SNRs is almost the same, it significantly outperforms the
formerly proposed ANN-based sensing scheme at low SNRs.

3) Training and Execution Time: The ANN based Hybrid
Sensing Scheme [10] was trained on 50 epochs. The Naive
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Figure 6: Comparison of different training models (UHF
Television, N = 100).

Bayes classifier was trained with variance smoothing of 10−9.
For the Random Forest classifier, the minimum number of
samples required to split an internal node was two, and the
tree was split until either the leaves had one sample each or all
the samples in the leaves were pure. It can be observed from
table V that the Naive Bayes algorithm has the lowest training
and execution time. Fig. 8 shows the classification accuracies
of these machine learning models.

Table V: Training and execution times of various algorithms.

Algorithm Training
time (s)

Execution
time (ms)

Proposed Algorithm (15 epochs) 345.82 0.788
ANN based Hybrid Sensing (50 epochs) 101.48 0.624

Gaussian Naive Bayes 25.89 0.0391
Random Forest 93.44 0.7158
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Figure 7: Detection performance of the considered spectrum sensing methods: proposed LSTM-based scheme, ANN-based
scheme from [10], Improved Energy Dection (IED) from [21], and Classical Energy Detection (CED).

-20 -15 -10 -5 0 5
SNR

50

60

70

80

90

100

C
la
ss
ifi
ca
ti
o
n
A
cc
u
ra
cy

Proposed Scheme

ANN based Hybrid Sensing
Scheme

Gaussian Naive Bayes

Random Forest

Figure 8: Comparison of classification accuracies of different
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VI. CONCLUSION

LSTM networks have an excellent ability to learn both long
and short term dependencies in the input. In this work, the
previous sensing event is fed along with the present sensing
event to an LSTM model. The proposed sensing scheme is
validated on empirical data of different wireless technologies.
Results indicate that the proposed scheme has an improved
detection performance and classification accuracy as compared
to ANN based hybrid sensing scheme, IED and CED, even
under low SNR regime at the expense of longer training time
and nominal increase in execution time. The ways to reduce
the time consumption of RNN-LSTM networks is an important
issue of prospect research.
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