

Developing process understanding for continuous manufacturing of Lamivudine (Epivir®) Stable Form I

Ebenezer Ojo, Zied Hosni, lyke Onyemelukwe, Lennart Ramakers, Ian Houson and Alastair Florence

EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advance Crystallisation, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.

Background

Why the considerations for Lamivudine?

- Increasing numbers of HIV/AIDS infections on yearly basis (2.1 million new cases in 2015, UNAIDS)
- Hepatitis B infections (257 million cases globally, WHO)
- Currently FDA-approved antiretroviral therapy for the prevention and treatment of both viral infections (FDA).

Key research considerations and interests

To the best of our knowledge, no publication yet exists on continuous manufacturing of stable Lamivudine form 1. The key research question here is:

• Translate current batch crystallisation into a Demonstration of crystallisation of modified stable Form I Lamivudine from batch continuous process? to a continuous platform • Improve the downstream process-ability by modifying Process the particle properties? translation • Develop miniaturise platforms for accelerated Modelling and feedback control/optimization of system process development? *MSZW – Metastable zone width, *AS - Antisolvent Lamivudine Morphology and Transformation **Early Stage Process Workflow** ***MSMP**R – Mixed-suspension, mixed-product removal *COBC – Continuous oscillatory baffled crystalliser, Form II *DoE – Design of experiment **Chemical structure** Experimental Anhydrous of Lamivudine Parameter estimation solubility •Automation **Bi-pyramidal** •System kinetics Induction Machine learning Thermodynamically times/*MSZW favoured form Morphology Formed in anhydrous solvents Milled form II raw End platform **Miniaturised** Models Database material *(MSMPR/COBC) platforms Form I 0.2 Hydrate Needle-like •Miscibility Marketed API (Epivir[®]) Rapid data collection Platform selection •Viscosity Unstable under •DoE Process optimisation ratios mechanical action Kinetics •AS nature Requires water activity AS workflow Recrystallised form I wet product of ~ 5 - 20% **Recrystallised** form

Objectives

Detailed characterisation of raw LAMV samples and methods development for process analytics (for quantitative and qualitative assessments).

Isolation of stable Form I and improvement of particle properties.

Solubility/MSZW determination of anti-solvent system for Lamivudine and evaluation of process feasibility (small scale development and assessment)

Obtain stable Form I Lamivudine with improved particle properties through crystal habit modification

from cooling crystallisation

Solvents Screening

Experimental Approach Miniaturised parallel screening platform

15 vials with working volume

DMF/Acetone System Solubility Curve for Form I

Measured MSZ Limits Dilution Line Starting Points 0.35 0.30

0.10 -

maximum of 8 mL

Experimental set-up

• As with the solubility curve it can be seen from the supersaturation profiles that the addition of antisolvent drives the system into a significantly supersaturated state.

• With a maximum possible supersaturation of ~3.5 and a maximum predicted yield of ~75%, this system is suitable for antisolvent crystallisation.

Might need to consider water activity for form control.

- Only solutions prepared at starting points of 0.6 and 0.4 solvent mass fractions can be driven into a supersaturated state by the addition of Acetonitrile.
- Highest achievable supersaturation: ~1.5. Maximum projected yield: ~32%
- This means that the yield of the isothermal anti-

Novel Miniature Platform Development

for Morphology Optimisation

Feedback

control

visualization

from raw material

Miniaturised autonomous screening platform

The feedback relation between the modules of the platform including temperature and flow control and the image processing.

6-valves Syringe pumps

USB microscope

Cross mixer

Quartz Flow

cell

brought to you by

3 Solvents and **3 Antisolvents**

solvent crystallisation in this system is ~40% lower than a cooling crystallisation

LabVIEW front panel ensuring the automatic control and monitoring of the platform.

Crystallization polytetrafluoroethylene coil

Conclusions

- Metastable zone width of the binary mixtures identified for the two solvents screening.
- A miniature platform was developed for morphology screening and incorporation of the feedback control to optimize the shape and size of Lamivudine crystals.

Future work

- Screening of potential solvent pairs suitable for developing continuous antisolvent crystallisation.
- The developed novel platform will be applied for morphology screening and incorporation of the feedback control to optimize the shape and size of Lamivudine crystals.

References

1. Vasconcelos AT, Da Silva CC, Queiroz Júnior LHK, Santana MJ, Ferreira VS, Martins FT. Lamivudine as a nucleoside template to engineer DNA-like double-stranded helices in crystals. Cryst Growth Des. 2014;14(9):4691-4702. doi:10.1021/cg500786m 2. Jozwiakowski MJ, Nguyen NAT, Sisco JM, Spancake CW. Solubility behavior of lamivudine crystal forms in recrystallization solvents. J Pharm Sci. 1996;85(2):193-199. doi:10.1021/js9501728

Acknowledgments

This work is carried out as a part-time team project by the Industrial Research Associates and funded by TIER 1 industry partners. Contributions of Cameron Brown and all the Hub technicians are duly acknowledged.

