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Abstract. k Nearest Neighbour classification techniques, where k = 1,
coupled with Dynamic Time Warping (DTW) are the most effective and
most frequently used approaches for time series classification. However,
because of the quadratic complexity of DTW, research efforts have been
directed at methods and techniques to make the DTW process more
efficient. This paper presents a new approach to efficient DTW, the Sub-
Sequence-Based DTW approach. Two variations are considered, fixed
length sub-sequence segmentation and fixed number sub-sequence seg-
mentation. The reported experiments indicate that the technique im-
provs efficiency, compared to standard DTW, without adversely affecting
effectiveness.

Keywords: Time Series Analysis · Dynamic Time Warping · k-Nearest
Neighbor Classification · Splitting Method.

1 Introduction

Over recent years there has been a significant increase in the amount of data
that commercial enterprises and institutions collect. This has largely been as a
consequence of technical advances. The data collected takes many forms; one
such form is temporal data, specifically time series data [10]. In the field of data
mining, much research, development and empirical experimentation have been
conducted in the usage of time series data [15]. Time series data typically com-
prises a collection of values recorded chronologically, such as electrocardiogram
(ECG) data [8], daily stocks prices [5] or daily temperatures [4]. However, the
points do not have to be chronologically ordered; they can be ordered in some
other way, for example, the outline of an object in an image [16]. In time series
analysis, determination of the similarity between time series is a challenge [15].
One of the most frequently used similarity measurement techniques is Dynamic
Time Warping (DTW).

DTW is founded on the idea of identifying an optimal alignment between two
time series which may be of different lengths [12, 14]. Unlike Euclidean distance
similarity measurement, DTW matches time series sequences by “warping” them
in a nonlinear fashion (hence the name). DTW was first proposed in the context
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of speech recognition for the comparison of speech patterns [11]. Subsequently,
it has been used for many other applications, for example, music analysis [6].

One of the main disadvantages of DTW is its quadratic complexity. DTW
operates using a “distance matrix” measuring x2, where x is the length of the
two time series being compared (assuming they are of the same length). The time
complexity of the DTW algorithm is therefore O(x2). This quadratic complex-
ity therefore renders DTW to be impractical with respect to many application
domains. The idea presented in this paper is to segment the time series into
s sub-sequences of roughly equal size. The time complexity of the DTW then

reduces to O(x2

s ); still quadratic but substantially less than O(x2). The first
question to be answered is then how to define s; either as a fixed parameter or in
terms of a predefined sub-sequence length. The second question is how to define
s without any loss of functionality (consequent classification accuracy).

The rest of this paper is organised as follows. Section 2 presents a brief
description of DTW. Section 3 considers some relevant previous work in the
domain of DTW; the following Section 4, presents the proposed mechanism, Sub-
Sequence-Based DTW. The time complexity is discussed in Section 5. Section
6 presents the evaluation strategy with an overview of the evaluation Datasets.
Finally, Section 7 presents the main findings of the paper. A symbol table is
given in Table 1 lists the symbols used throughout the paper.

Table 1: Symbol Table

Symbol Description

p or q A point in a time series described by a single value.
S A time series such that S = [p1, p2, . . . ] or S = [q1, q2, . . . ].
x or y Length of a given time series.
M A distance matrix measuring x× y.
mi,j The distance value at location i, j in M .
WP A warping path [w1, w2, . . . ] where wi ∈M .
wd A warping distance derived from WP .
U A time series sub-sequence after segmentation. U ⊂ S.
` Length of time series sub-sequence after segmentation, ` < x and ` < y.
P percentage (%) of the actual length of individual time series.
s A number of sub-sequences into which a given time series is split.
C A set of class labels C = {c1, c2, . . . }.
D A collection of time series {S1, S2, . . . , Sr}
r The number of time series in D.
z The runtime (secs.) to process a single point p in the context of DTW.

2 Background

The DTW process can best be described by considering two time series S1 =
[p1, p2, . . . , px] and S2 = [q1, q2, . . . , qy], where x and y are the lengths of the two
series respectively and x, y ∈ N. The first step is to construct a “distance matrix”



Fig. 1: Distance Matrix and Warping
Path (line passes through cells) for the
example time series S1 and S2 generated
using standard DTW.

Fig. 2: Distance Matrices and Warping
Paths (lines passes through cells) for the
example time series S1 and S2 generated
using sub-sequence splitting method.

M of size x× y where the value held at each cell mi,j ∈M is the distance from
point pi ∈ S1 to point qj ∈ S2. This distance is normally calculated in terms of
Euclidean distance:

mi,j =
√

(pi − qj)2 (1)

An alternative might be absolute value distance calculation.
The distance matrix M is used to determine a minimum warping distance wd,

which is then used as a similarity measure. A wd is a function of the minimum
warping path, WP , from cell m0,0 to cell mx,y. A minimum warping path is
thus a sequence of cell locations, WP = [w1, w2, . . . ] in the matrix M , that
minimises the warping distance. Given two time series s1 = [p1, p2, . . . , px] of
length x ∈ N and s2 = [q1, q2, . . . , qy] of length y ∈ N, and using “Big O”
notation, the complexity of DTW can be expressed as: O(x × y), or if x = y
O(x2). Thus DTW becomes computationally expensive when x and/or y are
large [14].

From the foregoing, it can be seen that the operation of DTW is such that
it meets the following conditions [13]:

1. Monotonic condition: The path will stay the same or increase. Both i and
j indexes never decrease.

2. Continuity condition: The path continues one step at a time. Both i and
j can only increase by 1 on each step along the path.

3. Boundary condition: The path starts at the bottom left m(0,0) and ends
at the top right m(x,y).



The basic DTW process is illustrated in Figure 1. The figure shows the dis-
tance matrix M given two time series assuming two time series, S1 = [1, 2, 2, 3, 2,
1, 1, 0, 1, 0, 3, 2, 4, 2, 0] and S2 = [1, 2, 4, 3, 3, 0, 3, 3, 1, 2, 1, 1, 3, 4, 2]. The minimum
warping path is shown by the line passes through cells. The final warping dis-
tance arrived at is highlighted using a dark box in the corner.

3 Previous Work

This section details some related work that has been conducted to speed up
DTW. These techniques are directed at limiting the number of distance matrix
values to be calculated in the matrix M or at minimising the number of compar-
isons need to be considered. In other words by placing constraints on the matrix
area to be considered when calculating a minimum warping distance. This is a
different approach to that considered in this paper. To the best knowledge of
the authors, the idea of sub-sequence splitting presented in this paper has not
been previously reported in the literature.

An example of the approach where constraints have been placed on the matrix
calculation found be found in Silva et al. [12]. Silva et al. proposed a method to
speed up DTW known as PrunedDTW. The fundamental idea was to place upper
bounds on the calculation process. The distances along the prime diagonal, from
m0,0 to mx,y, are first calculated using the squared Euclidean distance. These
are considered to be “upper bounds”. Then for each point in the diagonal the
distances along each row are calculated moving away from the diagonal, in row
and column order, until a distance greater than the current upper bound is
reached, further cells are “pruned” from the distance matrix. The result will be
a pruned DTW which holds the minimum warping distance.

In the context of limiting the number of DTW comparisons with respect to
time series classification where a new time series to be classified is compared to a
bank of time series, Rakthanmanon et al. [9] reported on four different techniques
for achieving this. The first promulgated the idea of early abandonment, stopping
the warping path calculation if the wd value so far is equal to or larger than the
best so far; otherwise, the new value is the best so far. The second considered
the idea of reordering the time series in the “bank” so that the time series that
are likely to be the most similar to the new time series are tested first so that the
early abandonment process will result in less calculation than if the time series
were not ordered in this way. One way of ordering time series is according to
Euclidean distance similarity (much cheaper than DTW calculation). The third
considered pruning time series that were unlikely to be a close match. One way
of doing this is by using the lower bounding technique proposed in [7], the so
called the LBKeogh technique. This operates by superimposing a band, defined
by a predefined offset value referred to as the lower bound, over each time series
in the bank and calculating the complement of the overlap with the new time
series. Where the calculated value exceeds a given threshold the associated time
series is discounted. The fourth idea was directed at using a “cascading lower
bound” where different lower bounds are considered to identify the bound most



suitable for the dataset in question. Further work on lower bounding can be
found in [3, 17].

4 Sub-Sequence-Based DTW

In this section, the proposed Sub-Sequence-Based DTW mechanism is presented.
The fundamental idea of the proposed process is to divide (segment) the in-
put time series (sequences) into sub-sequences. Then apply DTW to correlated
sub-sequence pairs. Thus, given two time series S1 and S2, these would be di-
vided into s sub-sequences so that we have S1 = [U11 , U12 , . . . U1s ] and S1 =
[U21 , U22 , . . . U2s ]. DTW is then applied to each sub-sequence paring U1i , U2j

where i = j. The final minimum warping distance arrived at will then be the
accumulated warping distance for each sub-sequence of s applications of DTW.
Thus, returning to the example given in Figure 1, and assuming s = 3, there will
be three subsequences in each time series of length ` = 5, S1 = [U11 , U12 , U13 ] =
[[1, 2, 2, 3, 2], [1, 1, 0, 1, 0], [3, 2, 4, 2, 0]] and S1 = [U21 , U22 , U23 ] = [[1, 2, 4, 3, 3],
[0, 3, 3, 1, 2], [1, 1, 3, 4, 2]]. Three distance matrices will result as shown in Figure2.

There are two mechanisms whereby s can be defined:

1. Fixed Number: The simplest is to specify s as a predefined parameter in
which case the length of the individual time series sub-sequences, `, will vary
according to the input data; ` = x

s . This may not be desirable.

2. Fixed Length: The alternative is to pre-specify the length of the desired
time series sub-sequences, `, in which case s will vary according to the input
data, s = x

` . This may also not be desirable.

However, rigid implementation of s might not result in the best segmentation.
Good points at which to cut the time series is where they meet, or at least at
points where the distance between corresponding pairs of points is at a minimum.
Thus a degree of fuzziness should be included to derive the best segmentation.
This is defined by specifying a tail, t, measured backwards from `, within which
the cut should be applied; thus the cut will fall between `−t and ` measured from
the start of the time series on the first iteration and from the end of the previous
segment on further iterations. The split point will be selected according to the
minimum distance associated with the points from `− t to `. This is illustrated
in Figure 3 which shows a “distance list” generated with respect to the two
example time series given in Figure 1, and assumes ` = 10 and t = 3; hence the
selected split point is at index 9 (assuming the start of the sequence is index 1)

Having selected the split point there are three options as also illustrated in
Figure 3: (i) include the split point value as the last value in the previous segment
(Option A), (ii) include the split point value at the start of the following segment
(Option B) or (iii) include the split point value in both the previous and following
segments (Option C).



Fig. 3: Segmentation example given two time series S1 and S2, and Options A, B or
C.

5 Time Complexity

The time complexity of the proposed mechanism is considered in this section.
In time series classification, the complexity of the comparison between two time
series, S1 and S2, when using Standard DTW, is given by O(x × y) where x
and y are the lengths of S1 and S2 respectively. For the classification application
under consideration, all the time series are of the same length, as in the case of
the evaluation presented in the following section, this simplifies to:

DTWcomplexityStand = O
(
x2 × z

)
(2)

where z is a constant describing the time complexity associated with a sin-
gle cell mi,j in the distance matrix M . The time complexity when using the
proposed mechanism, Sub-Sequence-Based DTW, with fixed length segments
(DTWcomplexitySplitlen) and fixed number segments (DTWcomplexitySplitnum

) is
then:

DTWcomplexitySplitlen = O

(
x2

x
`

× z

)
(3)

DTWcomplexitySplitnum
= O

(
x2

s
× z

)
(4)

The most commonly used time series classification mechanism is k Nearest
Neighbour (kNN) classification [1, 14] where a previously unseen time series is
compared with a “data bank” of time series whose class label is known and the
label for the new time series derived from the k most similar time series in the
bank. The most commonly used value for k in time series analysis, using DTW,



is k = 1, this we have 1NN. If we have a data repository with r examples the
time complexity to classify a single record using 1NN is given by:

O (r ×DTWcomplexity) (5)

If there are t new time series to be classified (t > 1) the complexity is given by:

O (r ×DTWcomplexity × t) (6)

In the case of cross-validation, as presented in the following section, the com-
plexity becomes:

O (r ×DTWcomplexity × t× numFolds) (7)

When using ten cross validation the data set D is split into tenths, in which case

r = 9×|D|
10 , t = |D|

10 and the number of fold will equal 10:

O

(
9× |D|

10
×DTWcomplexity ×

|D|
10
× 10

)
(8)

Which simplifies to:

O

(
9× |D|2

100
×DTWcomplexity

)
(9)

6 Evaluation

In this section, the evaluation of the proposed Sub-Sequence-Based DTW mech-
anism is presented. This mechanism was used in connection with the 1NN clas-
sification and the ten selected datasets from the UEA-UCR Time Series Classi-
fication repository [2]. Further detail concerning the selected data sets is given
in Sub-section 6.1. The objectives of the evaluation were:

1. To compare the operation of fixed length and fixed number Sub-Sequence-
Based DTW.

2. To determine the most suitable value for t, the sub-sequence tail.
3. To analyse the runtime of the proposed Sub-Sequence-Based DTW mecha-

nism.
4. To evaluate the classification effectiveness of the proposed approach in com-

parison with Standard DTW (using accuracy and F1-score as the evaluation
metrics).

Each is considered with respect to the results obtained in Sub-section 6.2 below.
For each set of experiments Ten Cross Validation (TCV) was adopted. A desktop
computer with a 3.5 GHz Intel Core i5 processor and 16 GB, 2400 MHz, DDR4
of primary memory was used throughout.



6.1 Data sets

In this subsection, a brief overview of the evaluation datasets is presented. Some
statistics concerning the ten datasets are given in Table 2. Column five represents
the overall size of each dataset calculated using x × r, where x is the length
(number of points) of an individual time series and r is the number of time
series (records) in each dataset D; the significance is that this is a good measure
of the overall size of a time series data set. The nature of the data (time series)
collected for each dataset is represented by its type (column seven). Motion
indicates that the time series represents body movements, Spectro means that
the time series comprises spectrograph data, Sensor that the time series data
were collected using sensors (such as an electric power signal sensor), Simulation
means that time series data was collected using some form of simulation and
image means image segmentation translated into a time series form.

Table 2: Time Series Datasets Used for Evaluation Purposes.

ID No. Dataset
Length

(x)
Num.

records (r)
Size
x r

Num.
Classes

Type

1 GunPoint 150 200 30000 2 Motion

2 OliveOil 570 60 34200 4 Spectro

3 Trace 275 200 55000 4 Sensor

4 ToeSegment2 343 166 56938 2 Motion

5 Car 577 120 69240 4 Sensor

6 Lightning2 637 121 77077 2 Sensor

7 ShapeletSim 500 200 100000 2 Simulated

8 DiatomSizeRed 345 322 36000 4 Image

9 Adiac 176 781 137456 37 Image

10 HouseTwenty 2000 159 318000 2 Image

6.2 Evaluation Results

To compare the operation of fixed length Sub-Sequence-Based DTW with fixed
number Sub-Sequence-Based DTW, two sets of experiments were conducted.
The first considered the parameters ` and s required by the two mechanisms
using Option A and t = 0. A range of values for ` was considered from 10 to 50
increasing in steps of 10, ` = {10, 20, 30, 40, 50}. For the parameter s this was
defined in terms of a percentage of the overall length of the overall input time
series length from 5% to 25%, {5%, 10%, 15%, 20%, 25%}, which translated to
s = {20.00, 10.00, 6.67, 5.00, 4.00}. Note that wherever an exact segmentation of



Table 3: Average results of TCV classification accuracy (Acc) and F1 Scores (F1), and
run times (sec), obtained over 10 evaluation datasets using a range of ` and s values,
and Option A and t = 0, compared with standard DTW; best results with respect to
the proposed Sub-sequence Based DTW mechanism highlighted in bold font.

Fixed Avg Avg Avg Run-
Length ` Acc F1 Time (sec)

Standard 88.15 0.87 115.46

10 85.02 0.86 16.76

20 86.36 0.87 15.90

30 86.98 0.88 16.11

40 87.78 0.88 17.15

50 87.39 0.88 17.91

Fixed Avg Avg Avg Run-
Number s Acc F1 Time (sec)

Standard 88.15 0.87 115.46

5% 87.96 0.87 18.79

10% 88.59 0.88 21.90

15% 88.25 0.88 24.94

20% 89.24 0.89 31.16

25% 89.16 0.89 35.04

Table 4: Fixed Length ` = 40: Accuracy,
F1-Score and Runtime Results (Option =
A and t = 0).

Dataset
Acc
(SD)

F1
(SD)

Runtime
(Secs)

Gun
Point

99.47
(0.01)

0.99
(0.02)

5.76

Olive
Oil

90.95
(0.12)

0.09
(0.14)

1.61

Trace
97.50
(0.03)

98
(0.04)

5.98

ToeSegme-
ntation2

89.13
(0.05)

0.89
(0.06)

6.69

Car
83.33
(0.09)

0.82
(0.10)

4.40

Lighting2
81.54
(0.09)

0.80
(0.11)

5.00

Shapelet
Sim

89.97
(0.06)

0.90
(0.06)

11.48

DiatomSize
Reduction

100
(0.00)

1.00
(0.00)

20.50

Adiac
64.42
(0.04)

0.61
(0.04)

94.55

House
Twenty

93.71
(0.04)

0.94
(0.05)

18.86

Table 5: Fixed Number s = 20%: Accu-
racy, F1-Score and Runtime Results (Op-
tion = A and t = 0).

Dataset
Acc
(SD)

F1
(SD)

Runtime
(Secs)

Gun
Point

95.50
(0.04)

0.96
(0.05)

6.39

Olive
Oil

89.52
(0.15)

0.89
(0.16)

2.46

Trace
97.00
(0.04)

97
(0.04)

6.96

ToeSegme-
ntation2

89.17
(0.05)

0.88
(0.07)

8.38

Car
82.50
(0.07)

0.82
(0.8)

7.70

Lighting2
90.32
(0.08)

0.90
(0.9)

9.66

Shapelet
Sim

88.89
(0.07)

0.89
(0.07)

18.46

DiatomSize
Reduction

99.68
(0.01)

0.99
(0.01)

27.05

Adiac
65.45
(0.03)

0.62
(0.04)

96.29

House
Twenty

94.38
(0.05)

0.95
(0.05)

128.07



Table 6: Average results of TCV clas-
sification accuracy (Acc) and F1 Scores
(F1), obtained over 10 evaluation datasets
using a range of values for t, all three op-
tions and the fixed length variation with
` = 40; best result in bold font.

t

Option
A B C

Acc F1 Acc F1 Acc F1
(SD) (SD) (SD) (SD) (SD) (SD)

2 88.63 0.89 89.74 0.89 90.03 0.90

3 89.19 0.89 89.35 0.89 89.48 0.89

4 89.69 0.89 89.26 0.89 89.17 0.89

5 89.36 0.89 88.58 0.88 88.43 0.88

6 88.97 0.88 89.21 0.89 87.68 0.88

7 88.58 0.88 88.83 0.88 88.26 0.88

8 88.67 0.88 88.84 0.88 88.19 0.88

9 89.22 0.89 88.15 0.88 88.22 0.88

10 88.53 0.88 88.02 0.87 88.14 0.88

Table 7: Average results of TCV clas-
sification accuracy (Acc) and F1 Scores
(F1), obtained over 10 evaluation datasets
using a range of values for t, all three op-
tions and the fixed number variation with
s = 20%; best result in bold font.

t

Option
A B C

Acc F1 Acc F1 Acc F1
(SD) (SD) (SD) (SD) (SD) (SD)

2 89.18 0.89 88.88 0.88 89.27 0.89

3 89.22 0.89 87.81 0.88 88.71 0.88

4 88.59 0.88 88.64 0.88 88.18 0.88

5 89.01 0.89 88.75 0.88 88.79 0.88

6 88.77 0.88 88.69 0.88 88.83 0.88

7 89.12 0.89 88.65 0.88 88.84 0.88

8 89.19 0.89 88.75 0.88 88.86 0.88

9 88.51 0.88 89.00 0.89 89.20 0.89

10 89.01 0.88 88.64 0.88 88.84 0.88

Fig. 4: Run time results (seconds) using best performing parameters for Sub-Sequence-
Based DTW compared to Standard DTW.



a time series could not be achieved a “short” segment was included at the end of
the segment collection. A summary of the results obtained is presented in Table
3, best F1 scores with respect to the proposed mechanism are highlighted in bold
font. From the table it can be seen that best classification results were obtained
using ` = 40 and s = 20% (s = 5). Note also that the recorded runtimes for the
proposed mechanism were significantly less than that required by “standard”
DTW. More detailed results concerning ` = 40 and s = 20% settings are given
in Tables 4 and 5; where the numbers in parentheses are the standard deviation
in each case.

Table 8: Fixed Length: Accuracy, F1-Score and Runtime Results (` = 40, Option = C
and t = 2), compared to standard DTW.

Fixed Length Standard DTW

Dataset
Acc
(SD)

F1
(SD)

Runtime
(Secs)

Acc
(SD)

F1
(SD)

Runtime
(Secs)

GunPoint
99.00
(0.02)

0.99
(0.02)

3.11
93.97
(0.04)

0.94
(0.05)

8.11

OliveOil
90.12
(0.10)

0.89
(0.12)

1.43
89.52
(0.15)

0.88
(0.16)

8.06

Trace
96.50
(0.04)

97.00
(0.04)

4.94
99.00
(0.03)

99.00
(0.03)

18.41

ToeSegmentation2
92.26
(0.03)

0.92
(0.04)

5.85
89.07
(0.09)

0.88
(0.10)

23.81

Car
82.50
(0.10)

0.81
(0.11)

4.86
80.83
(0.07)

0.80
(0.9)

32.45

Lighting2
87.40
(0.08)

0.87
(0.9)

6.10
87.74
(0.09)

0.87
(0.8)

37.69

ShapeletSim
93.00
(0.04)

0.93
(0.04)

12.79
82.37
(0.09)

0.81
(0.011)

64.02

DiatomSizeReduction
100

(0.00)
1.00

(0.00)
19.54

99.36
(0.01)

0.99
(0.01)

77.91

Adiac
64.98
(0.03)

0.62
(0.04)

55.64
64.63
(0.03)

0.62
(0.04)

156.81

HouseTwenty
91.17
(0.07)

0.91
(0.07)

32.68
95.00
(0.03)

0.95
(0.05)

727.47

Average 90.03 0.90 14.99 88.15 0.87 115.47

The second set of experiments used ` = 40 and s = 20%, a range of values
for t, {2, 3, 4, 5, 6, 7, 8, 9, 10} and considered all three options A, B and C (see
Sub-section 4). The results are presented in Tables 6 and 7 (standard deviations
are given in parentheses). The results clearly indicate that, regardless of whether
the fixed length or fixed number variation of the proposed mechanism is used,
best results are obtained when t = 2 and Option = C.



Considering the recorded runtimes, from the tables it is clear that the pro-
posed Sub-Sequence-Based DTW is faster than standard DTW without loss of
effectiveness, in fact with a slight improvement in effectiveness in terms of the
F1 measure. This is emphasised by the graph presented in Figure 4 which shows
the recorded runtimes using the best performing parameters with respect to each
variation ell = 40 and s = 20%, and t = 2 and Option = C, and the recorded
runtime using standard DTW. In the figure, the x-axis records the identifica-
tion number of the relevant dataset (see Table 2) and the y-axis the runtime in
seconds.

Overall there is also little to choose between the two variations of the pro-
posed Sub-sequence Based DTW mechanism, although an argument could be
made in favour of the fixed length variation. A more detailed breakdown of the
results obtained using this variation with ` = 40, t = 2 and Option = C is
therefore given in Table 8.

7 Conclusion

In this paper the Sub-Sequence-Based Dynamic Time Warping (DTW) mecha-
nism has been presented, a mechanism for speeding up the DTW process without
entailing approximations. The proposed mechanism has two variations for defin-
ing the number of sub-sequences (segments) into which time series should be
divided, fixed length which uses a parameter ` and fixed number which uses
a parameter s (defined in the form of a percentage of time series length). To
determine the actual “split point” a third parameter t was used to define the
area at the end of a potential sub-sequence where a split should take place, the
idea was to choose whatever index featured the least difference in amplitude be-
tween the two time series considered. Having identified the split point there were
three options as to where the split index value should be allocated: the end of
the preceding sub-sequence (Option A), the start of the following sub-sequence
(Option B) or both (Option C). Experiments were conducted that considered
these different parameter settings, variations and options by considering a 1NN
classification scenario. It was found that best results were obtained when ` = 40,
s = 20%, t = 2 and using Option C. There was little to choose between the two
variations, fixed length or fixed number, however, an argument could be made
in favour of the fixed length variation. Whatever the case, both variations out-
performed standard DTW in terms of run time by a considerable margin, with
no detriment to the recorded accuracy.
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