
Motif Discovery in Long Time Series: Classifying
Phonocardiograms

Hajar Alhijailan1,2[0000−0002−4169−7911] and Frans Coenen1[0000−0003−1026−6649]

1 Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
{h.alhijailan,coenen}@liverpool.ac.uk

2 College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
halhujailan@ksu.edu.sa

Abstract. A mechanism is presented for classifying phonocardiograms (PCGs)
by interpreting PCGs as time series and using the concept of motifs, times series
subsequences that are good discriminators of class, to support nearest neighbour
classification. A particular challenge addressed by the work is that PCG time se-
ries are large which renders exact motif discovery to be computationally expen-
sive; it is not realistic to compare every candidate time series subsequence with
every other time series subsequence in order to discover exact motifs. Instead, a
mechanism is proposed the firstly makes use of the cyclic nature of PCGs and sec-
ondly adopts a novel time series pruning mechanism. The evaluation, conducted
using a canine PCG dataset, illustrated that the proposed approach produced the
same classification accuracy but in a significantly more efficient manner.

Keywords: Phonocardiograms · Time Series Segmentation · Frequent Motif Dis-
covery · Time Series Analysis · Classification.

1 Introduction

A phonocardiogram (PCG) is a recording of the sound of the heart; it is essentially an
univariate time series [1,13,22]. The sound is cyclic and comprises two phases (S1 and
S2), the Systole phase when the heart contracts, and the Diastole when the heart relaxes.
The systole phase starts and ends with two sound components, when the atrioventric-
ular valves close and when the aortic and pulmonary valves close respectively. The
diastole phase is marked by the relative absence of sound. There will also be unwanted
background noise and, in an unhealthy heart, what are known as murmurs, indicators
of abnormal activity. A PCG is collected using a phonocardiograph, more commonly
known as an electronic or digital stethoscope [8]. By analysing PCGs, it is possible to
detect heart conditions of various sorts; this process can be automated using machine
learning techniques, typically supervised learning (classification).

A common method of classifying time series where repeating patterns are known to
exist is Motif Discovery [7,10,28,29]. The idea is to discover and store reoccurring pat-
terns, known as motifs which are representative of class-labels [15,17]. A good motif, in
the context of this paper, is one that appears frequently and at the same time is associ-
ated with only a single class. The discovered motifs can then be used to label (classify)
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previously unseen time series [1,22,28]. However, finding motifs that are good rep-
resentatives of class-labels is computationally challenging, especially given long time
series (as in the case of PCG data). Exact motif discovery requires the comparison of
every candidate time series subsequence with every other subsequence that exists in the
dataset; a computationally expensive enterprise. One solution is to adopt an approxi-
mate approach [22]. Another is to reduce the complexity of the motif discovery process
by preprocessing the time series so as to reduce the number of computations needed
later in the process.

In this paper, an exact PCG motif discovery mechanism is presented which is ef-
fective in terms of classification accuracy and is efficient in terms of runtime. The idea
is to limit the number of time series subsequences to be considered by first identify-
ing cycles, using a PCG segmentation mechanism founded on the approach presented
in [12], but with modifications. Next, to prune cycles that will not result in good motifs
using a novel “zero motif” mechanism. Then, to process the retained candidate motifs
further so as to extract good discriminators of class. The approach was evaluated using
a canine PCGs dataset comprised of four classes. The first three classes described stages
of Mitral Valve disease, as defined by the the European College of Veterinary Internal
Medicine [2,23], and the fourth was a control class (no disease). The evaluation results
obtained indicated that the proposed mechanisms was more efficient than alternative
algorithms considered, whilst obtaining the same accuracy.

The rest of this paper is organised as follows. Section 2 gives a review of previous
work regarding the research domain. The proposed PCG frequent motif selection and
extraction mechanism, and its processes, are then presented in Section 3. Section 4
considers the evaluation strategy, followed by presentation and discussion of the results.
The paper is completed with some concluding remarks in Section 5.

2 Previous Work

Time series analysis is concerned with the processing of time series data so as to extract
knowledge. Typical applications include the discovery of distinguishing patterns, the
clustering of time series collections and the modelling of the domain from which the
time series are drawn. In the case of pattern identification, one type of pattern, and that
of interest with respect to the work presented in this paper, is the motif [5,11,14]. A
motif is a reoccurring subsequence in a time series that is a good indicator of class. A
subsequence (candidate motif) is said to be reoccurring, and hence a motif, if there is at
least one non-trivial match with another subsequence in a given time series according
to some predefined similarity threshold [20,27]; a “trivial match” is where two subse-
quences overlap. To measure how well two subsequences match, a distance function is
required. Euclidean Distance (ED) is widely used in the literature with some evidence
suggesting its competitiveness with, or superiority to, other more complex measures [9].
The “brute force” approach to identifying motifs entails a significant computational
overhead. A number of more efficient, but approximate, motif discovery algorithms
have therefore been proposed [18,19,22], while a tractable exact algorithm remains a
research challenge [3,22]. The later is, in part, the research focus of this paper. The
exact algorithm presented in [22], the MK algorithm, is of particular relevance to this
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paper because it is used as a comparator approach with which to compare the operation
of the proposed approach.

The efficiency of motif discovery algorithms, exact or approximate, can be en-
hanced by preprocessing the input data. This is typically conducted using knowledge of
the application domain to reduce the number of calculations to be considered, usually
by considering the characteristics of the subsequences to be considered. The simplest
technique is to restrict the comparisons to potential non-trivial matches [5]. This tech-
nique is widely used in many proposed motif discovery algorithms [5,22] and is adopted
with respect to the work presented in this paper. For some applications, it is possible
to exclude some sequences because they are known in advance not to be relevant, but
this requires very specific domain knowledge. Another technique for reducing the com-
plexity of the motif discovery process is to adopt the concept of “early abandonment”
whereby a similarity comparison is stopped when the dissimilarity between two po-
tential motifs being compared reaches a pre-specified threshold at which point it can
be safely assumed that the two subsequences cannot be motifs. The threshold can be
user-defined; or, as in the case of [22], derived.

There has been considerable work directed at analysing PCG data, although not in
terms of motif discovery, for the purpose of PCG classification. A segmentation pro-
cess is typically applied first to identify cycles. This is usually achieved with respect
to a reference signal, either an ECG signal recorded at the same time and/or a Carotid
Pulse (CP) [16,24,25]. In the case of the PCG signals collected using electronic stetho-
scopes, the application focus of the work presented in this paper, no such reference
signal is typically available. In such cases, the components of the PCG signal can still
be extracted by processing the signal. This is usually achieved according to the “en-
ergy” of the signal and one or more energy thresholds [4,12]. The well-known Shannon
Energy is frequently used [21] as it maintains time series features. However, there are
situations where not all of the features are needed, as in the case of the work presented
in this paper, in which case alternative energy methods can be used as long as the re-
quired salient features are preserved. Extracting the cardiac components from PCGs
using empirically defined static thresholds is usually inappropriate because of the vary-
ing amplitudes recorded. This is due to difference between subjects in: the thickness
of the chest wall [32], subject age [30], subject mood [30] and further subjective fac-
tors [30]. The alternative is to use dynamically computed thresholds [4,12]; this is the
approach adopted with respect to the work presented in this paper.

3 PCG Frequent Motif Selection and Extraction

This section presents the proposed PCG frequent motif selection and extraction process.
The input is a set of time series T = {〈P1, c1〉, 〈P2, c2〉, . . . }. The output is a set of
motifs, H ′′; a set of frequently occurring PCG cycles that are considered to be good
discriminators of class. These motifs can then be used to classify previously unseen
PCGs. The proposed mechanism is a three stage process:

1. Cycle segmentation.
2. Candidate motif selection.
3. Frequent motif extraction.
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In the first stage, the set T is processed to produce the set H , a set of heartbeat cycle
and class pairs 〈hi, ci〉. In the second stage, the set H is pruned by removing infrequent
cycles so as to produce a set of cycles H ′. This is then further processed in Stage 3 to
identify the set of k motifs, the most frequent cycles within H ′ that are good discrim-
inators of class; these are held in a set H ′′ which can be then used as a “data bank”
in a Nearest Neighbour Classification (NNC) model which in turn can be used to label
previously unseen time series. Each stage is discussed in further detail in the following
three subsections, Subsections 3.1 to 3.3.

3.1 Cycle Segmentation

PCGs cycles comprises: (i) a heartbeat, (ii) some murmurs and clicks, if diseased, and
(iii) noise. A cycle is measured from the start of the S1 component to the start of the
following S1 component. The idea was to segment a training set of labelled PCGs into
a collection of cycles and then to group the cycles according to class-labels. This idea
is common in the Signal Processing field and has been applied to PCG signals to, for
example, study the duration of S1 or to find “click positions” [21,30]. The proposed
mechanism differs from this previous work; the focus is on “whole cycles” rather than
their components. The mechanism, is founded on that presented in [12], but with mod-
ifications, and operates using a dynamic threshold, computed for each PCG signal, so
as to detect the beginning of cycles.

The process is as follows. For each point series Pi = {pi1 , pi2 , . . . } ∈ T the stan-
dardised signal energy envelope (V ) is calculated according to the signal (time series)
energy E which is standardised to give E′. The energy E = {e1, e2, . . . } is com-
puted by squaring the amplitude values (pij ) in Pi, for each ej ∈ E, using Equation 1.
There are many other ways to calculate the energy of a signal, such as using absolute
value, Shannon entropy or Shannon energy [12]. As the aim in the context of the work
presented in this paper is to detect the beginning of cycles, the start of the S1 compo-
nent, usually the component with highest amplitude (the loudest) [8], the above method
of calculating the energy was adopted because samples with high amplitude will be
favoured over those with low amplitude. This will in turn facilitate S1 detection. The
standardised energy e′j , given a value ej , is then calculated using Equation 2, where µe

and σe are the mean and standard deviation of E respectively.

ej = p2ij (1) e′j =
ej − µe

σe
(2)

The set of standardised energy values, E′ = {e′1, e′2, . . . } are then used to define
the envelope V , which is then used to detect the beginning of cycles using an amplitude
“cut-off” value t. The process is illustrated in Figure 1. The process starts by iden-
tifying the oscillation in V with the highest energy value, the magenta oscillation in
Figure 1(a). Then, a predefined α threshold, a percentage of the width of the oscilla-
tion with the highest amplitude (the start and end of an oscillation can be identified
from trend changes in V ), is used to determine the value for t, the cyan line shown
in Figure 1(b) (and Figure 1(c)). The value for t is used to find ascending intersection
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points in V as shown in Figure 1(c). All oscillations in the energy envelope V whose
amplitude falls bellow t are ignored, because they are deemed to be S2s, clicks and
murmurs. Using this process, some ascending intersection points demarcating S2 com-
ponents will still be retained, as illustrated in Figure 1(c). To remove these, the distance
between intersection points is considered, if this falls below the average distance then
we have an S2 intersection point which should be ignored. The retained points are then
used to “track” back along the energy envelope V until a change in trend is discovered;
this marks the start of an S1 component and thus the start of a cycle, the cycle ends with
the start of the following S1 component. In this manner a set of cycles (heartbeats),
H = {〈h1, c1〉, 〈h2, c2〉, . . . }, for the given collection of time series (PCGs) T , is ob-
tained. Note that each heartbeat hj has a class-label cj associated with it where cj is
taken from a set of class-labels C.
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Fig. 1. Dynamic t value calculation using a PCG envelope signal: (a) example PCG envelope with
the highest amplitude oscillation highlighted, (b) t value calculation and (c) intersect points.

3.2 Candidate Motif Selection

In Stage 2, the collection of heartbeats (cycles) H , generated during Stage 1, each with
an associated class-label, is pruned by removing cycles that are infrequent so as to retain
a set of candidate frequent cycles, H ′. The assumption was that frequent cycles were
likely to be better indicators of class than infrequent cycles. To find cycle frequency,
a novel mechanism was adopted whereby a hypothetical cycle, r, referred to as the
“zero motif”, holding only zero values was used, r = {rj : rj = 0, j = 1 to j =
|h| ∀h ∈ H}. The similarity between each heartbeat hi ∈ H , and r was calculated
using a Euclidean Distance similarity function (Equation 3). However, given that r is
a vector of zeros, the similarity function could be simplified to give Equation 4. Since
the length (|hi|) of each cycle hi is not fixed, the similarity value was normalised by
dividing it by cycle length (Equation 5).
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d(r, hi) =

√√√√j=ω∑
j=1

(rj − hij )2 (3) dr(hi) =

√√√√j=ω∑
j=1

h2ij (4)

dr(hi) =

√∑j=ω
j=1 h

2
ij

|hi|
(5)

The obtained similarity values were used to define a Gaussian distribution, with
bins holding similarity values arranged along the x-axis, for which the mean (µd) and
sigma (σd) values were calculated. The cycles associated with bins falling within a
given number of standard deviations, defined by a parameter ζ, were then retained to
give a set H ′ (H ′ ⊂ H).

3.3 Frequent Motif Extraction

The third and final stage in the proposed process, given a set of candidate frequent cy-
cles H ′, is to identify the most frequent cycles (motifs) that are deemed to be the best
discriminators and store these in a set H ′′. Frequent motifs were defined using a thresh-
old σ; if the frequency count of a cycle was greater than σ, the cycle was considered
to be frequent and we have a candidate motif. Preliminary experiments, not reported
here, indicated that the number of remaining cycles in H ′ could still be large and that
not necessarily all of them would be good discriminators of class. An optional mech-
anism for limiting the number of candidate frequent cycles to be considered was thus
introduced using a parameter max, whereby the max most frequent candidates from
the set H ′ was chosen. If this option was not chosen, all the frequent candidates in the
set H ′ would be considered. We distinguish the two approaches as the Max and All
approaches respectively.

The cycles associated with each class was processed in turn by creating a subset A
from H ′ comprised of cycles that belong to ci. Next, the frequency count fi for each
cycle hj ∈ A was determined using Euclidean Distance as the similarity measure and a
threshold λ to define whether two cycles were similar or not; if the Euclidean distance
between two cycles was less than λ, the two cycles were deemed to be similar. In this
manner, a frequency count for each hi ∈ A was obtained. In each case, if the count
was less than σ% of |A|, the cycle was removed from the subset A. Note that if a high
σ threshold value is used, the set A may become empty, thus the value for σ must
be selected appropriately. The set A is then ordered according to the frequency count.
If the Max approach has been adopted only the max most frequent cycles in A are
retained, otherwise all the cycles inA are retained. Whatever the case, the next step was
to select the k most “discriminative” motifs from the set A. The most discriminative
motifs are considered to be the most frequently occurring cycles which are associated
with only one class (there are no similar cycles associated with other classes). It is then
necessary to compare each cycle inAwith all other cycles inH ′ (similarity is measured
in the same way as before using Euclidean Distance and the λ threshold). The identified
discriminative cycles are stored in the set H ′′. This set can then be used as the “data
bank” in a Nearest Neighbour Classification (NNC) model.
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4 Evaluation

This section presents the evaluation of the proposed mechanism. For the evaluation, a
dataset of canine PCGs was used; this is described in Subsection 4.1. Subsection 4.2
presents the experimental set-up in terms of the parameters used. The following three
subsections, Subsections 4.3 to 4.5, report on experiments designed to evaluate the op-
eration of the cycle segmentation subprocess, the candidate motif selection subprocess
and the frequent motif extraction subprocess respectively. Subsections 4.6 and 4.7 con-
sider the runtime and accuracy of the proposed mechanism in comparison with two
competitor approaches.

4.1 Evaluation Data

The dataset used for the evaluation was a set of 59 PCGs, encapsulated as WAVE files,
collected using an electronic stethoscope, from animals with and without Mitral Valve
disease. The average length of a single (PCG) point series was approximately 800K
points. Each point series had a class-label associated with it selected from the class
attribute set {B1, B2, C, Control}. The first three class attributes represented the three
stages of Mitral Valve disease according to the European College of Veterinary Internal
Medicine (ECVIM) classification [2,23]. The last class attribute was the control class,
no disease.

4.2 Experimental Set-up

Recall that the proposed mechanism required six parameters: λ, σ, ζ,max, k and α. The
selected values for these parameters all affect the number of frequent motifs identified
and consequently the quality of any further utilisation of the motifs. Clearly, the higher
the σ frequency threshold value, the fewer motifs that would be identified because the
criteria for frequency would become stricter as σ increased. Inversely, the higher the
similarity λ threshold value, the greater the number of motifs that would be identified
because the criteria for similarity would become less strict as λ increased. As the value
for ζ is increased, the number of selected motifs would also increase, but the average
frequency of occurrence would decrease. The values for max and k would also affect
the number of identified candidate frequent motifs and, it was conjectured, would thus
also influence the number of frequent motifs eventually selected. For the experiments,
ranges of values for λ and σ were used, {17e5, 91e5, 164e5, 238e5} and {0.1, 1} re-
spectively. Similarly, a range of three values was used for both ζ and k, {1, 2, 3} and
{10, 20, 30} respectively. The value for max was set to 60 although any value greater
than k could have been used. The α parameter, the oscillation-width threshold to decide
where the t cut-off was located, was fixed at 70%; this was the value was suggested
in [12].

4.3 Cycle Segmentation Subprocess Evaluation

As noted earlier, the proposed cycle segmentation subprocess used a dynamic cut-off
value t, computed using a user-specified α threshold that expressed a percentage-width
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of the oscillation with the highest amplitude in a given time series. A method also
adopted in [12] where α = 70 was suggested to detect the S1 and S2 PCG components.
The focus with respect to this paper was to detect the start of cycles, the start of the
S1 component, therefore α = 70 was used to detect all S1 components (and some S2
components which were discarded later). An example of the results obtained is given
in Figure 2 using a fragment of one of the evaluation PCG time series. In Figure 2(a),
the envelope signal is given for the raw signal given in Figure 2(b). From the figure,
it can be seen that all S1s are identified (and in this case no S2s because these are all
below the “cut-off” line) but no noise points. Using α = 70, applied to the evaluation
dataset, resulted in the identification of 2139 cardiac cycles, an average of 36.25 cycles
per PCG (time series), stored in the set H .
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Fig. 2. Extraction of cardiac cycles from the signal energy envelope; (a) envelope PCG signal
with “cut-off” line, and (b) raw PCG signal with “start points”.

4.4 Candidate Motif Selection Subprocess Evaluation

The Candidate Frequent Cycle Selection subprocess was used to identify and select the
most frequent cycles in H , and prune the remainder. The proposed method involved
determining the Gaussian distribution of the similarity values (distances), calculated
using a novel zero motif approach, and then selecting those that were within a number
of standard deviations as prescribed by the user-supplied ζ threshold. The effectiveness
is illustrated in Figure 3 which shows the distribution of distances for each class in the
evaluation dataset. A normal distribution (bell-shape) curve can be fitted to these dis-
tributions (the red line in the figure). The “68.3-95.5-99.7 empirical rule” was adopted,
which assumes that 68.27%, 95.45% and 99.73% of the distances fall with 1, 2 and 3
standard deviations respectively from the mean (µd), to select frequent cycles and store
them in a set H ′.

4.5 Frequent Motif Extraction Subprocess Evaluation

During the Frequent Motif Extraction subprocess, cycles were ordered according to
their frequency within the set H ′ and then either: (i) a given number (max) of the most
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Fig. 3. The best-fit distribution curve for distance similarity values for each class.

frequent cycles were selected or (ii) all cycles were considered. The retained cycles
were then processed to determine discriminating cycles, the motifs. The k most frequent
best discriminating cycles were then retained, these were then the set of motifs to be
used for classification purposes. Evaluation of the process indicated that using the Max
approach, some classes had no motifs associated with them at all. A modification was
therefore made to the Max approach to ensure that each class had at least one motif
associated with it. This change solved the problem.

4.6 Runtime Evaluation

To determine the runtime complexity, 18 sets of experiments were conducted using
ζ = {1, 2, 3}, k = {10, 20, 30} and either the All or Max approach. Experiments,
not reported here, were also conducted using a range of λ and σ values, but it was
found that this did not affect the runtime, so the results are presented here in the context
of the ζ and k parameters, and the approach used. The results are presented in Table 1,
these are average runtimes obtained using five evaluation runs. In the table, runtimes are
presented for: (i) Cycle Segmentation, (ii) Candidate Motif Selection and (iii) Frequent
Motif Extraction. The last column in the table presents the average runtime to process
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a single PCG time series (the sum of the values in the previous three columns divided
by 59, the number of records in the test dataset).

Table 1. Runtime for PCG Frequent Motif Selection and Extraction (seconds).

ζ k
Cycle Candidate Frequent Motif Extraction Average

Extraction Motif Selection All Max All Max

1
10

15.97

184.03
10.55 15.10 3.57 3.57

20 11.67 11.40 3.59 3.58
30 12.43 11.12 3.60 3.58

2
10

184.05
12.10 29.94 3.60 3.90

20 13.94 24.58 3.63 3.81
30 15.29 23.78 3.65 3.65

3
10

184.06
11.87 35.77 3.59 4.00

20 14.02 31.34 3.63 3.92
30 15.67 30.34 3.66 3.90

From the table, it can be seen that the difference between the runtimes, using differ-
ent ζ values, when selecting candidate frequent cycles, was negligible. As anticipated,
the larger the k value, the more runtime that was required to discover the frequent motifs
using the All approach and the less runtime that was required to discover the frequent
motifs using the Max approach. The reason for the difference in runtime between the
All and Max approaches was unclear: most of the Max experiments required a longer
runtime, however two of them (ζ = 1 with k = 20 and ζ = 1 with k = 30) fea-
tured a runtime that was less than the All approach. As also anticipated, when using the
Max approach the runtime increased as ζ increased because a larger number of cycles
required processing. However, the total runtime required for a single time series to be
processed, on average, was similar in all cases.

The average runtime for the combination of parameters that gave the best accu-
racy (accuracy is discussed in further detail in the next subsection) was 3.65 sec/record
which is much faster compared with the motif discovery mechanisms and algorithms
reported in [1] and [22] where best accuracy runtimes of 700.20 sec/record and 4500.00
sec/record were recorded respectively. Note that the proposed algorithm, and the two
comparator algorithms, were implemented using the Java programming language and
run on an iMac Pro (2017) computer with 8-Cores, 3.2GHz Intel Xeon W CPU and
19MB RAM.

4.7 Classification Accuracy

The experimental results presented in the previous subsection demonstrated that the
proposed process speeded up the runtime compared with the comparator mechanisms
considered. However, for this speed up to be of value, the accuracy should not be ad-
versely affected. The experiments reported on in this subsection sought to investigate
this. The parameter settings used were as follows:
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– ζ = {1, 2, 3}.
– k = {10, 20, 30}.
– max = 60.
– 〈λ, σ〉 = {〈17e5, 0.1〉, 〈91e5, 0.1〉, 〈164e5, 0.1〉, 〈238e5, 0.1〉, 〈238e5, 1〉}.
– Discrimination approach = { All , Max }.

The adopted process for classifying previously unseen cycles (motifs) was the well-
known Nearest Neighbour Classification (NNC) method [6], because this was frequently
used in the context of time/point series analysis [26,31]. For the experiments, kNNC =
1 and kNNC = 3 were used. The dataset was divided into training and testing subsets
and five cross validation was applied. The idea was that the accuracy of the classifica-
tion would provide an indicator of the quality of the proposed approach; the metric used
were accuracy (Acc.).

Given that each query PCG to be labelled comprised a number of cycles, each of
which would be labelled separately, there was a chance that more than one class-label
would be associated with the query PCG. To select the most “appropriate” class-label,
three different methods were considered: (i) Shortest Distance (SD), (ii) Shortest Total
Distances (STD) and (iii) Highest Votes (HV). The SD method simply chooses the
class-label associated with the most similar motif. The STD method chooses the class-
label associated with the lowest accumulated distance. The HV method chooses the
most frequently occurring class-label. In each case, if more than one class-label was
nominated, one of the other class selection methods was applied.

Analysis of the results indicated some interesting patterns. It was found that ζ = 2
usually produces the best accuracy regardless of the kNNC value, approach or classifi-
cation method used. The best results, with regard to the 〈λ, σ〉 combinations considered,
are presented in Table 2. The table includes the average runtimes recorded (secs). The
best obtained accuracy was 72.0% when 〈λ, σ〉 = 〈164e5, 0.1〉, the Max approach, the
HV classification method, ζ = 2, k = 30 and kNNC = 3; a runtime of only 3.65
sec/record was recorded. Comparing this best recorded accuracy with that obtained
using the comparator mechanism described in [1], and the motif discovery approach
presented in [22], it was found that the same level of accuracy was obtained but much
more efficiently.

Table 2. The best classification accuracy results.

〈λ, σ〉 Parameters Results

λ σ
Discrim. Class.

ζ k kNNC Acc.
Runtime

Approach Method (Sec.)

17e5 0.1 All HV 3 10 1 0.667 3.59
91e5 0.1 Max HV 3 20 3 0.704 3.92

164e5 0.1 Max HV 2 30 3 0.720 3.65
238e5 0.1 Max HV 2 30 3 0.695 3.65
238e5 1 Max HV 2 30 3 0.695 3.65
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5 Conclusions

An approach to PCG classification, using the concept of Motifs has been described.
The proposed process addresses the challenge of finding discriminative motifs in long
time series using three pipelined mechanisms: (i) cycle segmentation and (ii) candidate
motif selection and (iii) frequent motif extraction. The first mechanism, has been rel-
atively well studied, but as a means of analysing PCG cycles and not as precursor to
motif discovery. The second mechanism featured a novel approach, that did not require
every candidate frequent subsequence to be compared to every other subsequence, to
prune time series subsequences (cycles) that could not be considered to be frequent.
The third involved the extraction of motifs that were good discriminators of class from
the retained candidate frequent motifs. The performance of the proposed approach was
analysed in terms of runtime and the quality of the identified motifs in the context of a
classification scenario, with respect to two comparator algorithms. The results obtained
demonstrated a similar classification accuracy, but a significant runtime improvement.

References

1. Alhijailan, H., Coenen, F., Dukes-McEwan, J., Thiyagalingam, J.: Segmenting sound waves
to support phonocardiogram analysis: The pcgseg approach. In: Geng, X., Kang, B.H. (eds.)
PRICAI 2018: Trends in Artificial Intelligence. pp. 100–112. Springer International Publish-
ing, Cham (2018)

2. Atkins, C., Bonagura, J., Ettinger, S., Fox, P., Gordon, S., Haggstrom, J., Hamlin, R., Keene,
B., Luis-Fuentes, V., Stepien, R.: Guidelines for the diagnosis and treatment of canine
chronic valvular heart disease. Journal of Veterinary Internal Medicine 23(6), 1142–1150
(2009). https://doi.org/10.1111/j.1939-1676.2009.0392.x

3. Bagnall, A., Hills, J., Lines, J.: Finding motif sets in time series. CoRR (07 2014)
4. Cherif, L.H., Debba, S.: Variability of pulmonary blood pressure, splitting of the second heart

sound and heart rate. Journal of Clinical & Experimental Cardiology 8(10), 1–3 (2017).
https://doi.org/10.4172/2155-9880.1000550

5. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Pro-
ceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. pp. 493–498. KDD ’03, ACM, New York, NY, USA (2003).
https://doi.org/10.1145/956750.956808

6. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques.
IEEE Computer Society Press tutorial, IEEE Computer Society Press (1991), the Univer-
sity of Michigan

7. Dau, H.A., Keogh, E.: Matrix profile v: A generic technique to incorporate domain knowl-
edge into motif discovery. In: Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. pp. 125–134. KDD ’17, ACM, New York,
NY, USA (2017). https://doi.org/10.1145/3097983.3097993

8. Delgado-Trejos, E., Quiceno-Manrique, A., Godino-Llorente, J., Blanco-Velasco, M.,
Castellanos-Dominguez, G.: Digital auscultation analysis for heart murmur detection. An-
nals of Biomedical Engineering 37(2), 337–353 (Feb 2009). https://doi.org/10.1007/s10439-
008-9611-z

9. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of
time series data: Experimental comparison of representations and distance measures. Proc.
VLDB Endow. 1(2), 1542–1552 (Aug 2008). https://doi.org/10.14778/1454159.1454226

https://doi.org/10.1111/j.1939-1676.2009.0392.x
https://doi.org/10.4172/2155-9880.1000550
https://doi.org/10.1145/956750.956808
https://doi.org/10.1145/3097983.3097993
https://doi.org/10.1007/s10439-008-9611-z
https://doi.org/10.1007/s10439-008-9611-z
https://doi.org/10.14778/1454159.1454226


Motif Discovery in Long Time Series: Classifying Phonocardiograms 13

10. Gao, Y., Lin, J., Rangwala, H.: Iterative grammar-based framework for discovering variable-
length time series motifs. In: IEEE International Conference on Data Mining. pp. 111–116.
IEEE (11 2017). https://doi.org/10.1109/ICDM.2017.20

11. Guhneuc, Y.G., Antoniol, G.: Demima: A multilayered approach for design pattern
identification. IEEE Transactions on Software Engineering 34(5), 667–684 (Sept 2008).
https://doi.org/10.1109/TSE.2008.48

12. Hamza Cherif, L., Debbal, S.M., Bereksi-Reguig, F.: Segmentation of heart sounds and
heart murmurs. Journal of Mechanics in Medicine and Biology 8(4), 549–559 (2008).
https://doi.org/10.1142/S0219519408002759

13. Hannan, E.J.: Time series analysis. Chapman and Hall (1960)
14. Hutchins, L.N., Murphy, S.M., Singh, P., Graber, J.H.: Position-dependent motif character-

ization using non-negative matrix factorization. Bioinformatics 24(23), 2684–2690 (2008).
https://doi.org/10.1093/bioinformatics/btn526

15. Krejci, A., Hupp, T.R., Lexa, M., Vojtesek, B., Muller, P.: Hammock: a hidden
markov model-based peptide clustering algorithm to identify protein-interaction
consensus motifs in large datasets. Bioinformatics 32(1), 9–16 (Jan 2016).
https://doi.org/10.1093/bioinformatics/btv522

16. Lehner, R.J., Rangayyan, R.M.: A three-channel microcomputer system for segmentation
and characterization of the phonocardiogram. IEEE Transactions on Biomedical Engineering
34(6), 485–489 (June 1987). https://doi.org/10.1109/TBME.1987.326060

17. Li, N., Crane, M., Gurrin, C., Ruskin, H.J.: Finding motifs in large personal lifelogs. In:
Proceedings of the 7th Augmented Human International Conference 2016. pp. 1–8. ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2875194.2875214

18. Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding motifs in time series. In: Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data mining.
pp. 53–68 (2002)

19. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representa-
tion of time series. Data Mining and Knowledge Discovery 15(2), 107–144 (Oct 2007).
https://doi.org/10.1007/s10618-007-0064-z

20. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network mo-
tifs: Simple building blocks of complex networks. Science 298(5594), 824–827 (2002).
https://doi.org/10.1126/science.298.5594.824

21. Mubarak, Q.u.a., Akram, M.U., Shaukat, A., Ramazan, A.: Quality Assessment and Classi-
fication of Heart Sounds Using PCG Signals, pp. 1–11. Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-319-96139-2 1

22. Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs.
In: Proceedings of the 2009 SIAM International Conference on Data Mining. pp. 473–484
(2009). https://doi.org/10.1137/1.9781611972795.41

23. Nakamura, K., Kawamoto, S., Osuga, T., Morita, T., Sasaki, N., Morishita, K.,
Ohta, H., Takiguchi, M.: Left atrial strain at different stages of myxomatous mitral
valve disease in dogs. Journal of veterinary internal medicine 31(2), 316–325 (2017).
https://doi.org/10.1111/jvim.14660

24. Oliveira, J., Sousa, C., Coimbra, M.: Coupled hidden markov model for au-
tomatic ecg and pcg segmentation. In: 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). pp. 1023–1027 (March 2017).
https://doi.org/10.1109/ICASSP.2017.7952311

25. Ramli, D., Hooi, M., Chee, K.: Development of heartbeat detection kit for bio-
metric authentication system. Procedia Computer Science 96, 305 – 314 (2016).
https://doi.org/10.1016/j.procs.2016.08.143

https://doi.org/10.1109/ICDM.2017.20
https://doi.org/10.1109/TSE.2008.48
https://doi.org/10.1142/S0219519408002759
https://doi.org/10.1093/bioinformatics/btn526
https://doi.org/10.1093/bioinformatics/btv522
https://doi.org/10.1109/TBME.1987.326060
https://doi.org/10.1145/2875194.2875214
https://doi.org/10.1007/s10618-007-0064-z
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1007/978-3-319-96139-2_1
https://doi.org/10.1137/1.9781611972795.41
https://doi.org/10.1111/jvim.14660
https://doi.org/10.1109/ICASSP.2017.7952311
https://doi.org/10.1016/j.procs.2016.08.143


14 H. Alhijailan and F. Coenen

26. Stojanovi, M.B., Boi, M.M., Stankovi, M.M., Staji, Z.P.: A methodology for training set
instance selection using mutual information in time series prediction. Neurocomputing
141(Supplement C), 236 – 245 (2014). https://doi.org/10.1016/j.neucom.2014.03.006

27. Thijs, G., Marchal, K., Lescot, M., Rombauts, S., De Moor, B., Rouz, P., Moreau,
Y.: A gibbs sampling method to detect overrepresented motifs in the upstream re-
gions of coexpressed genes. Journal of Computational Biology 9(2), 447–464 (04 2004).
https://doi.org/10.1089/10665270252935566

28. Torkamani, S., Lohweg, V.: Survey on time series motif discovery. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery 7(2), 1–8 (2017).
https://doi.org/10.1002/widm.1199

29. Vahdatpour, A., Amini, N., Sarrafzadeh, M.: Toward unsupervised activity discovery using
multi-dimensional motif detection in time series. In: Proceedings of the 21st International
Jont Conference on Artifical Intelligence. pp. 1261–1266. IJCAI’09, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (2009)

30. Vaswani, A., Khaw, H.J., Dougherty, S., Zamvar, V., Lang, C.: Cardiology in a Heartbeat.
Scion Publishing Limited (2015)

31. Wang, X., Fang, Z., Wang, P., Zhu, R., Wang, W.: A Distributed Multi-level Composite Index
for KNN Processing on Long Time Series, pp. 215–230. Springer International Publishing,
Cham (2017). https://doi.org/10.1007/978-3-319-55753-3 14

32. Zhao, Y., Xu1, D., Xiao, S., Yan, X., Liu, J., Liu, Y., Luo, L., Xia, G.: Mea-
surement of two new indicators of cardiac reserve in humans, rats, rabbits, and
dogs. Journal of Biomedical Science and Engineering 6(10), 960–963 (10 2013).
https://doi.org/10.4236/jbise.2013.610118

https://doi.org/10.1016/j.neucom.2014.03.006
https://doi.org/10.1089/10665270252935566
https://doi.org/10.1002/widm.1199
https://doi.org/10.1007/978-3-319-55753-3_14
https://doi.org/10.4236/jbise.2013.610118

	Motif Discovery in Long Time Series: Classifying Phonocardiograms

