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Abstract   

Scope Considerable evidence supports the view that high-fructose intake is associated with increased 

and early incidence of obesity and dyslipidemia. However, knowledge on physiopathological 

alterations introduced by fructose overconsumption is lacking. We have therefore carried out an 

integrated omics analysis to investigate the consequences of short-term fructose overfeeding(SFO) and 

identify the underlying molecular mechanisms. 

Methods and results SFO of rats demonstrated obvious histopathological hepatic lipid accumulation 

and significant elevation in adiposity, total cholesterol and fasting plasma glucose levels. Integrated 

omics analysis demonstrated that SFO disturbed metabolic homeostasis and initiated metabolic stress. 

Hepatic lipogenesis pathways were also negatively impacted by SFO. Analysis of molecular networks 

generated by IPA implicated involvement of the ERK signaling pathway in SFO and its consequences. 

Moreover, we identified that an inherent negative feedback regulation of hepatic SREBP1 plays an 

active role in regulating hepatic de novo lipogenesis. 

Conclusion Our findings indicate that SFO disturbs metabolic homeostasis and that endogenous small 

molecules positively mediate SFO induced metabolic adaption. Our results also underline that an 

inherent regulatory mechanism of resilience occurs in response to fructose overconsumption, 

suggesting that efforts to maintain resilience could be a promising target to prevent and treat metabolic 

disorder-like conditions.  
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Highlight:  

1.   Short-term fructose overfeeding (SFO) has noteworthy impacts on rats’ hepatic gene expression. 

2.   Dyslipidemia, obesity and diabetes are likely consequential conditions of SFO. 

3.   A self-adaptive metabolic regulation is an inherent resilience response to SFO. 

4.   Negative feedback regulation of SREBP-1 partly mediates the SFO metabolic adaptation. 

Abbreviations: 

SFO             short-term fructose overfeeding 

IPA              Ingenuity Pathways Analysis 

DEGs            differentially expressed genes 

DMs             different metabolites  

NTMA           non-targeted metabolomics analysis 

QTLA            quantitative targeted lipidomics analysis 

PCA             principle component analysis 

OPLS-DA        orthogonal partial least squares- discriminant analysis 

ERK             extracellular signal regulated kinase 

SREBP-1         sterol regulatory element binding protein-1 

CHREBP         carbohydrate responsive-element binding protein 

FFAs             free fatty acids 

MUFA           monounsaturated fatty acids  

PUFA            polyunsaturated fatty acids 

 

 



4 
 

1 Introduction 

     Nowadays, obesity and dyslipidemia are more popular than ever in human history. One of the 

accepted explanations to its increase and early incidence is over nutrition and lack of physical activity 

which are key elements of overweight and obesity, and the dietary pattern including a fat and fructose 

rich diet are thought to be critical, too [1, 2]. High fructose corn syrup (HFCS), a sweetener made from 

corn starch, is widely used in food products and beverages. Although a gradual decrease in the 

consumption rate has been apparent in the past few years, fructose consumption has gradually 

increased in Western countries [3]. This increasing rate of caloric intake from high-fructose containing 

food and beverages is considered to be a contributory factor to increased dyslipidemia and obesity in 

developed countries [1, 4, 5].  

     In fact, ample epidemiological and experimental evidence supports that high-fructose intake 

could be a risk factor for dyslipidemia, insulin resistance, obesity, and type 2 diabetes [6, 7]. Therefore, 

social concern regarding disorders of fructose metabolism has been growing for the last decade in 

developing countries. However, the consequences of short-term fructose overfeeding (SFO) on body 

metabolism has not yet been fully investigated from an omics viewpoint, including its related 

phenotypes and underlying pathogenic mechanisms. Although the fructose overfeeding animal model 

is often used for related physiopathological and pharmacological research, omics knowledge on 

fructose overconsumption is lacking. 

     Omics analysis, especially integrated transcriptomics and metabolomics analysis, are emerging 

as robust tools for studies on diagnostic biomarkers, fundamental pathogenic mechanisms and 

therapeutic targets [8-12]. According to the biochemical understanding, transcripts and metabolites are 

intermediates and end products respectively, which can reflect alterations of the bodies homeostasis at 
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two distinctive levels. Moreover, combined with IPA(Ingenuity Pathways Analysis),	
  

MetaCore( GeneGo) , Reactome (https://reactome.org/) or some other pathway analysis programs , the 

algorithmically constructed metabolic networks and gene expression networks can generate much 

more insight than phenotypes and results analyzed individually [13-15]. 

      In the present study, we firstly performed RNA-Seq based hepatic transcriptome analysis to 

investigate the alteration of hepatic gene expression patterns resulting from SFO. Following the 

transcriptomics sequential hits, we then carried out both non-targeted metabolomics and quantitative 

targeted lipidomic analysis of rat plasma. Finally, using molecular networks generated from the omics 

discoveries and Ingenuity Pathway Analysis, we evaluated the impacts of SFO on rat metabolic 

homeostasis. The results revealed that hepatic gene expression networks were significantly impacted, 

inducing responses resulting in dyslipidemia, with predicted downstream consequences of obesity and 

diabetes. However, a resilient self-adaptive metabolic regulation mechanism was also noted. Our 

results also provide abundant omics information for SFO rats that will be very useful for understanding 

resulting pathogenic mechanisms and research on therapeutic strategies for early-onset dyslipidemia 

and obesity. 

2 Materials and Methods 

2.1 Reagents 

    D-Fructose was from Amresco (Solon, Ohio, USA). Nonadecanoic acid and F.A.M.E. Mix (C4-

C24) were from Sigma-Aldrich (San Diego, CA, USA). Meth-Prep II was from Grace (Grace 

Discovery Sciences, MD, USA). Methanol, hexane and chloroform were of HPLC grade and were 

from Merck (Darmstadt, German). All the derivatization agents for GC-MS based metabolomics 
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analysis were supplied by J&K scientific Co. Ltd (Tianjing, China). 

2.2 Animals 

The experimental protocols and procedures for animal care were approved by the Institutional 

Animal Care and Use Committee of the Guangdong Pharmaceutical University. 5-week-old male 

Sprague-Dawley rats (171±7.7 g) were supplied by Guangdong Medical Laboratory Animal Center 

and housed in environmentally controlled conditions at room temperature (24℃ ± 3 ℃) under a 12:12 

h light-dark cycle. After acclimatization for 5 days, the animals were divided into two groups: the 

control group (con, n=6) and the short-term fructose overfeeding group (SFO, n=6). The former 

received standard rodent chow and drinking water while the latter received standard rodent chow and 

a 20% fructose aqueous solution. The fructose overfeeding experiment lasted for 16 days. All the 

animals received their respective food and drinks ad libitum. The amount of consumed chow, the 

volume of consumed water and 20% fructose solution of each group were recorded every day for 

calculating the energy intake.  

2.3 Sample collection 

At the end of the experiment, the rats were fasted overnight (16 h), and then all the rats were 

anaesthetized with pentobarbital sodium to collect the blood and liver samples. The blood was 

centrifuged at 3000 rpm for 10 min to obtain the plasma which was then aliquoted into 1.5 mL 

Eppendorf tubes and flash frozen for later biochemical analysis and metabolomics analysis. The livers 

were washed by saline, and parts of them were fixed with 4% PFA(Paraformaldehyde) for histological 

examination. All the other liver tissues were flash frozen in liquid nitrogen for RNA-Seq. 

2.4 Rats’ body and adiposity 
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    Body weight of rats were collected every two days. Fat weight of rats were measured by using 

the Minispec LF90II body composition analyzer (Bruker Optics, Billerica, MA, USA) on day 0, 8 and 

16[16]. The adiposity was calculated as adiposity = Fat weight / Body weight. 

2.5 Plasma biochemical analysis 

Triglyceride, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-

density lipoprotein cholesterol (HDL-C) of the rats’ plasma were measured using corresponding 

commercial assay kits (Nanjing Jiancheng Bioengineering Institute, China). Plasma non-fasting 

glucose (NFG) collected on day 14 by periorbital puncture and fasting glucose (FG) collected from 

the abdominal aorta on the last day were determined using an ELISA kit ( CUSABIO, Wuhan, China).  

2.6 Histological examinations of hepatic tissues  

Routine hematoxylin and eosin (H&E) staining of liver tissues were carried out using 4% PFA 

fixing, paraffin embedding and sectioning (5 µm) as described previously [17]. Three or four sections 

from every tissue sample were chosen for staining. An Olympus BX53 microscope and imaging system 

was used. Oil red O staining was performed to analyze fat accumulation in the rat liver and the liver 

infarcted areas were analyzed using image J software(NIH, Maryland, USA) [13]. 

2.7 Transcriptome analysis 

 Total RNA was extracted from liver with the Trizol Kit (Promega, USA) following by the 

manufacturer’s instructions. cDNA library was constructed and then sequenced on the Illumina 

sequencing platform (Illumina HiSeq™ 4000) using the paired-end technology by Gene Denovo Co. 

(Guangzhou, China). All the transcriptome reads were submitted to GenBank's Sequence Read 

Archive (access numbers SRR6656395, SRR6656396, SRR6656397, SRR6656398, SRR6656393 and 
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SRR6656394). Differential gene expression patterns were analyzed for annotated genes between the 

two groups using fragments per kilobase of transcript per Million mapped reads (FPKM) values. 

Differentially expressed genes (DEGs) were screened out by using the false discovery rate (FDR) p-

values < 0.05 and |log2FC|>1 as the threshold; which were then subjected to pathway enrichment 

analysis. 

2.8 Metabolomics analysis 

     Non-targeted metabolomics analysis (NTMA) and quantitative targeted lipidomics analysis 

(QTLA) of plasma were performed as described previously [17]. In brief, all the GC-MS raw data 

were executed batch molecular feature extraction by using MassHunter Profinder_B.08(Agilent Co., 

Ltd, CA, USA). Then, the generated data were exported to Excel (Microsoft, Redmond, WA, USA) 

which were used in the subsequent multivariate analysis. All the raw data were stored at Guangdong 

Metabolic Disease Research Centre of Integrated Medicine, which will be available upon requested. 

Unsupervised PCA and supervised OPLS-DA analysis were performed on SIMCA-P 13.0 software 

(Umetrics, Umeå, Sweden) to identify plasma metabolites contributing to the differences between the 

two groups. All variables were Pareto-scaled prior to analyses. Here, VIP (Variable Importance in 

Projection) >1.0 and p < 0.05 were set as a statistical threshold for discriminating significantly different 

metabolites (DMs). 

2.9 Systematic molecular network analysis 

Systematic molecular network analysis was carried out with Ingenuity Pathway Analysis (IPA, 

http://www.ingenuity.com) and MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) [17, 18]. Identified 

DEGs and DMs were submitted to elucidate gene networks and/or possible biological functions. 
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Systematic molecular networks were generated based on the knowledge sorted in the Ingenuity 

Pathway Knowledge Base and Kyoto Encyclopedia of Genes and Genomes (KEGG; 

http://www.genome.jp/kegg/) and the Human Metabolome Database (HMDB; http://www.hmdb.ca/). 

The network score was based on the hypergeiometric distribution and was calculated with the right-

tailed Fisher’s Exact Test. The higher the score, the more relevant the molecules and genes were to the 

network. 

2.10 Quantitative real-time PCR 

qRT-PCR was performed on PikoRealTM Real-Time PCR System (Thermo Scientific, USA). The 

liver tissue total RNA was extracted with Trizol RNA Kit (TaKaRa, Japan). cDNA was synthesized 

using the PrimeScript RT reagent kit with gDNA Eraser (TaKaRa, Japan). STBR® Premix Ex TaqTM 

II (TaKaRa, Japan) was used for qPCR with specific primers suitable for different genes, following the 

manufacturer’s protocol. Several key genes involved in hepatic lipogenesis were selected to validate 

the expression patterns while β-actin gene was used as an internal control. The relative expression fold 

change was calculated by the 2-∆∆Ct comparative threshold cycle method. 

2.11 Western blotting 

     Western blotting was conducted as previous described, protein concentration was determined by 

BCA method[16]. Briefly, protein content was separated on SDS-PAGE and transferred to PVDF 

membrane. The membrane was then blocked with 5% non-fat milk at room temperature for 2 h, 

following incubation with the primary antibodies against SREBP1(Rabbit polyclonal ab28481, Abcam, 

Cambridge,UK), SREBP2(Rabbit polyclonal ab28481, Abcam, Cambridge,UK) and ChREBP(Rabbit 

polyclonal ab92809, Abcam, Cambridge, UK) at 4 ℃ overnight. Subsequently, the membrane was 

incubated with appropriated HRP-conjugated secondary antibody (Cell Signaling Technology, Boston, 

MA) for 1 hour. β-actin (Invitrogen™, Carlsbad, CA ) was used as loading control. Target bands were 
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developed using a chemiluminescence system and the intensity of the immunoblot signal was detected 

using Western Bright™ ECL spray and quantitatively evaluated using GeneTools software from 

Syngene (Cambridge, UK).  

2.12 Statistical analysis 

All data are expressed as means ± standard deviation (SD). R (https://www.r-project.org) and 

Graphpad Prism 6.0 software (GraphPad, CA, USA) were used for statistical analysis and graphics. 

For metabolomics analysis, data were normalized to the internal standard and all variables were Pareto-

scaled prior to analyses. A two-tailed Student’s t-test was performed except for adiposity analysis (2-

way ANOVA test). p < 0.05 was considered statistically significant.  

3 Results 

3.1 Short-term fructose overfeeding accelerated dyslipidemia and hepatic lipid accumulation 

We first evaluated physiological responses to short-term fructose overfeeding (SFO) for 16 days.  

As shown in Figure 1 A&B, compared to the control group, the body weight of SFO rats increased 

steadily at a higher rate (Fig. 1A), and body fat rates in SFO rats were also elevated significantly by 

day 8, and maintained at this higher level at day 16 (p<0.05) (Fig. 1 B). The levels of total cholesterol 

(TC) and fasting glucose in rats’ plasma showed an obvious rise in the SFO group (p<0.05; Figure 1C, 

D). The levels of plasma triglyceride, and low-density lipoprotein cholesterol (LDL-C) as well as high-

density lipoprotein cholesterol (HDL-C) in SFO rats showed a trend towards increased levels but this 

was not statistically significant (Figure 1C). Thus the effects of fructose overfeeding for 16 days was 

predominantly noted on cholesterol and glucose metabolism. Furthermore, histological analyses of 

stained liver tissues by Oil Red O (O.R.O.) staining demonstrated clear evidence of fat infiltration in 

SFO rats (Figure 1E); this was confirmed by quantitation of the results, where a statistically significant 



11 
 

change in O.R.O. stained plaque area between the two groups (p<0.01; Figure 1F). Moreover, hepatic 

triglyceride in SFO rats showed a significant increase (Figure 1G). Collectively these data demonstrate 

that SFO results in rapid onset of dyslipidemia and hepatic lipid accumulation in rats. 

3.2 Transcriptomics analysis revealed that disturbed hepatic gene expression patterns result 

from short-term fructose overfeeding 

Fructose has been reported to be a lipogenic substance and potent inducer of lipogenic enzyme 

expression [19]. We undertook a transcriptomic analysis of gene expression in liver tissue from control 

and SFO rats. A total of 20.6 Gb high quality clean reads were generated and 16087 and 16283 

transcripts were aligned to the reference genome (Rattus norvegicus Rnor_6.0) in control and SFO 

groups, respectively. As a result, 64 up-regulated and 41 down-regulated differentially expressed genes 

(DEGs) were uncovered; among these, the metabolism related DEGs are listed in Table S1 (in 

Supplementary Information). In the GO classification (Figure 2), the top three enriched up-regulated 

biological processes were metabolic, cellular and single-organism processes, while biological 

regulation, cellular processes and single-organism processes were the top three enriched down-

regulated processes. Meanwhile, pancreatic secretion, protein digestion and absorption, and fat 

digestion and absorption were the top three KEGG enrichment pathways for differentially expressed 

genes (Figure 3). Referring to the known pathways in the KEGG database, the schematic downstream 

de novo lipogenesis pathway and acyl-generating pathway in liver cell are illustrated in Figure 4A and 

C, respectively, with corresponding heatmaps of gene expression data shown in Figure 4B and D. 

These expression data were generated based on the RNA-Seq presented FPKM value of each gene. In 

both Figure 4B and D, the control and SFO groups display distinct expression patterns, while there 

existed a consistently high level of gene expression in the SFO group for a number of key enzymes. 
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Validation of the RNA-Seq data was undertaken by qRT-PCR of several genes involved in hepatic 

lipogenesis (Figure 4E). These results are consistent with the conclusion that SFO results in robust 

stimulation of hepatic de novo lipogenesis and acyl-generating pathways, resulting in elevated 

hallmarks of dyslipidemia (Fig. 1). 

3.3 Metabolomics analysis revealed significant alterations in lipid and energy metabolism after 

short-term fructose overfeeding 

To investigate further potential changes in metabolites which might underly the effects of SFO, 

we performed metabolomics analysis on plasma samples, hypothesizing that transcriptome and plasma 

metabolome may demonstrate related alterations. Based on the acquired non-targeted metabolomics 

analysis (NTMA) and quantitative targeted lipidomics analysis (QTLA), the data provided abundant 

qualitative and quantitative information demonstrating altered endogenous metabolites. For the NTMA 

(Figure 5A&B), 198 molecules were unequivocally identified and 30 of them were regarded as 

significantly different metabolites (DMs; see Table S2 in Supplementary Information). The pathway 

analysis of these DMs with MetaboAnalyst 3.0 showed that aminoacyl-tRNA biosynthesis, primary 

bile acid biosynthesis, galactose metabolism are the top three enriched pathways based on the hit 

molecules (Figure 5C; a,b and c). In addition, results from enrichment analysis of the disease-

associated metabolites set (30 metabolites) demonstrated that diabetes mellitus was the top likely 

resulting disease (Figure 5D). In more detail, there were seven metabolites enriched as linked to the 

likely disease of diabetes mellitus, including 3-hydroxybutyric acid, creatinine, taurine, L-glutamine, 

citric acid, D-glucose and L-tryptophan. Regarding the QTLA, 36 fatty acids in plasma were 

quantitatively profiled and the resulting heatmap is shown in Figure 5E. Compared with the control 

group, the content of most fatty acids are elevated in SFO rats, especially the unsaturated fatty acids, 
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including C16:1, C18:1n9c, C18:2n6c, C22:6n3, C20:3n3 and C20:4n6 (Figure 5F). The relative levels 

of polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) in SFO rats were 

much higher than that in the control group; for example, the relative level of C20:4n6 and C22:6n3 

reached almost 120 and 80 fold, respectively. Moreover, the levels of the n3 and n6 fatty acids are also 

increased, but the former increases more than the latter. A similar situation occurs on the cis- and trans- 

fatty acids (Figure 5F). Interestingly, after normalization to the total fatty acids, the relative content of 

cis-fatty acids was higher in the SFO group, with the trans-fatty acids being lower than in the control 

group (Figure 5E). 

3.4 Short-term fructose overfeeding stresses glycolipid metabolism related pathways 

From the above-mentioned transcriptomics and metabolomics analyses, it was demonstrated that 

an obvious metabolic stress was initiated by SFO. To further illustrate and visualize the underlying 

metabolic stress induced by SFO, the above-mentioned DEGs and DMs were further analyzed using 

Ingenuity Pathways Analysis [20] software to interpret the apparently independent changes into altered 

canonical pathways and gene regulation networks. As a result, two molecular networks were generated 

for metabolites (Figure 6; IPA scores, 47) and for differential gene expression (Figure 7A; IPA scores, 

40). The top metabolic network, which involved 19 molecules in our listed DMs, highlighted a marked 

connection with proinsulin, low-density lipoprotein (LDL), high-density lipoprotein (HDL), nitric 

oxide synthase, superoxide dismutase (Sod), extracellular signal regulated kinase 1 and 2 (ERK1/2), 

and growth hormone (Figure 6). The gene expression network, which involved 16 proteins in our listed 

DEGs, highlighted connections between insulin, ERK1/2, phosphatidyl inositol 3-kinase (PI3K), and 

protein kinase B (Akt) (Figure 7A). Both of these analyses underscored that the ERK signaling pathway, 

a known glycolipid metabolism related pathway, was a major nexus shouldering significant metabolic 
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stress associated with SFO. In addition, an intensive sub-network (Figure 7B), focused on 4 key 

elements related to glycolipid metabolism, namely  metabolism of triacylglycerol, fatty acid 

metabolism, synthesis of fatty acid and synthesis of lipids, demonstrated obvious metabolic 

dysregulation, with a predicted increase in obesity as a likely consequence.  

3.5 Resilient regulation alleviated metabolic stress induced by short-term fructose overfeeding  

Accurate regulation of levels of all kinds of endogenous molecules is critical for cellular and 

organismal homeostasis. Self-adaptive metabolic regulation is inherent for mammals facing biotic or 

abiotic stress [21]. A quantitative annotated basic metabolism network (see Figure S1 in supplementary 

Information) after short-term fructose overfeeding derived from our metabolomics analysis showed 

distinct alterations. It can be deduced that metabolic alterations were associated with SFO, and a 

resilient metabolic response acted positively in SFO. For example, in response to SFO, plasma β-

hydroxybutyrate and asparagine levels altered significantly. β-hydroxybutyrate can act as an indicator 

of energy balance, and can protect against oxidative stress as an endogenous histone deacetylase 

inhibitor [22, 23]. L-asparagine can improve energy status and inhibits AMP-activated protein kinase 

signaling pathways [24, 25]. From the resulting metabolic network, we can infer that a significant 

number of endogenous small molecules take part in SFO metabolic adaptions. Due to the active 

response of many endogenous molecules, metabolic homeostasis is maintained.  

Moreover, to investigate potential mechanisms underlying de novo lipogenesis regulation, we also 

evaluated expression levels of ChREBP, SREBP-1 and SREBP-2 from the insulin-SREBP-1c (sterol 

regulatory element binding protein-1c) and the ChREBP (Carbohydrate Responsive-Element Binding 

Protein) pathways. In addition to the RNA-Seq analysis, we also verified their mRNA expression by 

qRT-PCR (Figure 4E). The results showed that the mRNA expression of ChREBP and SREBP-2 were 



15 
 

not influenced by SFO. Similarly, cholesterol metabolism was not influenced by SFO, consistent with 

previous literature [26, 27] indicating that SREBP-2 is responsible for regulating cholesterol 

biosynthesis. In contrast, SREBP-1 expression was downregulated (Figure 4E). Our western blotting 

results also confirmed this notable finding (Figure 8). As is well known, SREBP1 is bound to ER and 

cleaved in the Golgi before exerting its effects in regard to transcription in the nucleus. Here, down-

regulation of expression of the larger uncleaved form of SREBP1 was demonstrated. This data suggests 

the existence of negative feedback regulation of SREBP-1; this mechanism could be partly responsible 

for resilient metabolic adaption to short-term fructose overfeeding.  

4 Discussion 

    It has been demonstrated that long-term high fructose feeding causes increases in chronic liver 

inflammation, oxidative stress and fibrosis [1]. Here we also uncovered related negative consequences 

associated with SFO, based on both phenotypic change and biochemical examination. Our collective 

omics analysis here provides compelling evidence that SFO can induce a surprisingly rapid 

dyslipidemia. Moreover, IPA network analyses provided unique insights into metabolic stress in liver 

accompanying SFO in rats; linked with the isolated differentially expressed genes (DEGs) and 

significantly different metabolites (DMs) to generate the top most-stressed molecular networks, and 

predicted the most likely consequent conditions. Hypothesizing the aforementioned effects exist, a 

schematic model of short-term fructose overconsumption-induced metabolic disturbances and 

consequences is shown in Figure 9. 

    Although the focus of the present study was on hepatic and serum metabolic alteration, it should 

be acknowledged that the effects of fructose are not solely dependent upon its effects on the liver. 

Rather there are several lines of evidence suggesting that a major trigger of the fructose-dependent 

induction of NAFLD is through it´s effects on intestinal barrier function [28-30]. Meanwhile, fructose 

metabolism in the gut also plays a complex role in the process. Do et al. found that the high fructose-

fed mice lost gut microbial diversity, characterized by a lower proportion of Bacteroidetes and a 

markedly increased proportion of Proteobacteria [31]. Crescenzo et al. reported that obesity and insulin 
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resistance are elicited by a high-fructose diet in adult rats [32]. Jena et al. reported a high-fructose diet 

induces inflammation and metabolic dysregulation in the gut and liver due to alterations in gut 

microbial communities [33].  

4.1 Hepatic genes expression networks suffered from short-term fructose overfeeding 

     In the present study, significant alterations in expression of genes involved in hepatic de novo 

lipogenesis were observed in the livers of SFO rats. In turn, it was this not surprising that hepatic lipid 

accumulation and dysregulation of plasma total cholesterol were detected. A significant 

downregulation in liver PTGER2 mRNA expression shows its important role in metabolic adaption 

regulation after short-term fructose overconsumption. PTGER2, a crucial mediator of many 

physiological and pathological events [34], plays a key role in improving angiogenesis and 

subsequently adipogenesis, and metabolic disorders like hyperlipidemia and diabetes occur in 

underweight chronic obstructive pulmonary disease patients [35, 36]. Also of note was up-regulated 

expression of mRNA for trypsin family serine proteases with SFO, which also reveals the potential 

importance of these genes in the development of metabolic disturbances. For example, there existed 

an obvious increase in liver of PRSS1, PRSS2 and PRSS3 transcripts, which encode a series of highly 

similar proteins, namely, trypsinogen 1, 2, and 3. It has been reported that all of these are associated 

with chronic pancreatitis [37-40]. In addition, much higher expression of CEL, a carboxyl ester lipases 

involved in cholesterol biosynthesis and fat digestion and absorption, was also observed. CEL can 

interact with cholesterol and oxidized lipoproteins to modulate the progression of atherosclerosis [41, 

42]. In our study, pancreatic triglyceride lipase (PNLIP), which is essential for dietary fat digestion in 

children and adults, was significantly up-regulated, as were two other homologs, pancreatic lipase-

related protein 1 (PNLIPRP1) and pancreatic lipase-related protein 2 (PNLIPRP2). An altered lipid 

metabolism network, including key lipolytic enzymes PNLIP, PNLIPRP1 and PNLIPRP2, will affect 
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homeostasis of FFAs, and it has been proved that decreased gene expressions of these lipases leads to 

reduced FFAs in pancreatic tumors [8]. The above finding suggested that the surplus energy yield 

accompanying SFO leads to dyslipidaemia, potentially obesity. Inhibition of the activity of pancreatic 

lipase could prevent chronic impairments in the metabolic disorder. Similarly, here, fibroblast growth 

factor 21 (FGF21), an endocrine hormone that regulates energy homeostasis, also showed significant 

up-regulation. FGF21 concentration in plasma is increased in patients with obesity, insulin resistance, 

and metabolic syndrome [43, 44]. Our finding coincided with the aforementioned literature which 

revealed that fructose can activate hepatic transcription factor ChREBP, resulting in stimulation of 

hepatic FGF21 expression [45, 46]. It’s reported that ChREBP is crucial for mediating fructose-

induced metabolic adaptations [27] , but our results supported that SREBP-1 expression may actually 

be more sensitive in response to SFO.  

4.2 Resilient metabolic regulation is instinctive in respond to short-term fructose overfeeding    

Using multivariate statistical analysis, OPLS-DA provided the primary finding from GC-MS 

metabolic profiling that SFO led to acute alterations in the plasma metabolome, where concentrations 

of many endogenous small molecules were altered. Previous work has shown that facing metabolic 

stress, complicated but precise metabolic adjustments are launched almost simultaneously [47]. 

Resilient regulation appears to be an inherent response also to SFO, and our data provide some initial 

insights into some of the significant molecules involved. For instance, the obvious increase of plasma 

citrulline and itaconate level suggests their potential important role in SFO metabolic adaption. 

Citrulline is a non-essential amino acid and in-vivo studies have demonstrated it can attenuate the 

development of western-diet or high-fructose induced non-alcoholic fatty liver disease [7]. Citrulline 

appears to act directly on hepatic lipid metabolism by partially preventing hypertriglyceridemia and 
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steatosis through decreasing fatty acid synthase gene expression, probably via its action on the 

expression of the transcription factor sterol regulatory element binding protein-1c (SREBP-1c), a key 

regulator of hepatic de novo lipogenesis [48-50]. Here, our data was consistent with these studies. 

Moreover, there probably existed a citrulline-linked negative feedback regulation of SREBP-1, which 

contributed to resilience. In addition, a significantly altered concentration of plasma citrulline may be 

an indicator of SFO metabolic stress. Itaconate is another interesting molecule which can reduce 

visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver [51]. Itaconate is validated as 

a mammalian metabolite induced during macrophage activation [52] and which can act as regulatory 

mediator of the inflammatory response; it regulates succinate levels, mitochondrial respiration, and 

cytokine production [53]. Our data also suggests that a significantly un-regulated itaconate 

accumulation may be due to the chronic inflammatory reactions occurring during SFO; it may thus be 

regarded as a candidate biomarker of SFO metabolism disturbance.  

Moreover, there are also some other molecules we noted that are related to the development of 

hyperlipidemia, obesity, and non-alcohol fatty liver disease. For example, deoxycholic acid, L-

tryptophan, taurine, mannitol and 3-hydroxybutyric acid were all significantly up-regulated in SFO 

rats. According to the literature, tryptophan can reduce the levels of pro-inflammatory cytokines and 

may be of benefit for patients with nonalcoholic fatty liver disease [54]; D-mannitol can suppress 

aspartate aminotransferase activity and reduce hepatic mitochondrial lipid peroxidation [55]. It is also 

interesting that lowering deoxycholic acid concentrations may mitigate vascular calcification in 

chronic kidney disease [56]. Taurine can improve obesity-induced inflammatory responses and 

modulates the unbalanced phenotype of adipose tissue macrophages [57]. 3-hydroxybutyric acid is a 

ketone body and acts as an indicator of energy balance and a central regulator of energy homeostasis, 
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and 3-hydroxybutyric acid can protect against oxidative stress as an endogenous histone deacetylase 

inhibitor [23].  

Changes in all the aforementioned endogenous small molecules may reflect that SFO promotes 

a widespread attack on the normal rat metabolic network, requiring significant effort by resilience 

mechanisms to adapt to the metabolic stress. It can be expected that once the tolerable limits if this 

resilience is exceeded, high fructose intake associated metabolic disturbance will contribute to 

hyperlipidemia, obesity and non-alcohol fatty liver disease risk. Therefore, we propose that a focus on 

maintaining resilience would be a promising way to prevent and treat metabolic disorder-like 

conditions. Collectively, the distinct hepatic gene expression patterns and disordered metabolic 

networks occurring during SFO echoed the phenotypic changes at the transcriptome and metabolome 

levels respectively. Omics evidence supported that SFO disturbed metabolic homeostasis and that 

endogenous small molecules positively mediated SFO metabolic adaption. However, this metabolic 

regulation is clearly highly complex and other underlying mechanisms probably exist and should 

provide a fruitful area for further more detailed studies.  

5 Conclusions 

     Using an integrated metabolomics and transcriptomics analyses, the present study provides a 

systematic omics insight into the consequences of SFO. The results provide further evidence that SFO 

induces major metabolic stress. We also identified negative feedback regulation of hepatic SREBP-1 

mRNA and protein expression as a potential underlying mechanism playing an active role in regulating 

hepatic de novo lipogenesis while mediating SFO metabolic adaption. IPA molecular network analysis 

of the data showed that SFO can disturb metabolic homeostasis, but that inherent resilience 

mechanisms exist that might be targeted as an effective measure for preventing the development of 
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hyperlipidemia, obesity, and even diabetes. Moreover, endogenous metabolites and genes sensitive to 

SFO revealed in this study present meaningful clues for discovering and evaluating molecular 

biomarkers or gene targets underlying metabolic diseases, to underpin further physiopathological and 

pharmacological research. 
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Figure 1: Short-term fructose overfeeding leads rapidly to dyslipidemia. The control group (con; 
n=6) and short-term fructose overfeeding group (SFO; n=6)) rats were measured for body weight (A) 
and adiposity (B). Plasma lipid levels (C) and glucose levels (D) were also measured. Liver tissue 
sections were stained by H&E and O.R.O and imaged by microscopy (representative samples shown; 
×40 magnification) (E). Relative O.R.O stained plaque areas were quantitated using image J software 
(F), hepatic TG levels were also measured (G). Data are presented as mean ± SD (n=6), *p<0.05, 
**p<0.01. TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-
C, high-density lipoprotein cholesterol. NFG, non-fasting glucose; FG, fasting glucose. 
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Figure 2: Gene Ontology classifications of differentially expressed genes between short-term 
fructose overfeeding group (SFO) and control group rats. Based on sequence homology, 105 
differentially expressed genes could be categorized into three main categories (biological process, 
cellular component, and molecular function); these included 18, 14, and 8 functional groups, 
respectively. 
 
 

 

Figure 3: Top 20 enriched pathways of differentially expressed genes between the short-term 
fructose overfeeding and control group rats. The Y-axis on the left represents KEGG pathways, 
and the X-axis indicates the enrichment factor. Low Q-values are shown in red, and high Q-values in 
green.  
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Figure 4: Hepatic lipogenesis gene expression is disturbed by short-term fructose overfeeding. 
(A, C) The schematic shows de novo lipogenesis pathways and acyl generating pathways in liver cells 
respectively. (B, D) Heatmaps display the expression of genes involved in the de novo biosynthesis 
pathway and acyl generating pathway respectively. (E) The relative mRNA expression level of several 
genes involved in lipogenesis was examined by qRT-PCR to validate RNA-Seq data. ACCase, Acetyl-
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CoA carboxylease. Acca, Acetyl CoA acyltransferase. Acads, short-chain specific acyl-CoA 
dehydrogenase, mitochondrial precursor. Acadm, medium-chain specific acyl-CoA dehydrogenase, 
mitochondrial precursor. Acadl, long-chain specific acyl-CoA dehydrogenase, mitochondrial 
precursor.Ppt1, palmitoyl-protein thioesterase 1 precursor. Ppt2, palmitoyl-protein thioesterase 2. 
Fads2,fatty acid desaturase 2. Fads1, fatty acid desaturase 1.tecr, very-long-chain enoyl-CoA 
reductase. Acd1, acyl-CoA desaturase 1. Acd2, acyl-CoA desaturase 2. Acot12, acyl-coenzyme A 
thioesterase 12. Acot13, acyl-coenzyme A thioesterase 13. Acot5, acyl-coenzyme A thioesterase 5. 
Acot4, acyl-coenzyme A thioesterase 4. Acadvl,Acyl-Coenzyme A dehydrogenase, very long chain. 
Hadh,hydroxyacyl-coenzyme A dehydrogenase, mitochondrial precursor.Elovl1,elongation of very 
long chain fatty acids protein 1. Elovl2,elongation of very long chain fatty acids protein 2. Elovl5, 
elongation of very long chain fatty acids protein 5. Elovl6, elongation of very long chain fatty acids 
protein 6. Pecr,peroxisomal trans-2-enoyl-CoA reductase. Scd1, acyl-CoA desaturase 1. Scd2, acyl-
CoA desaturase 2. Cel, carboxyl ester lipase. Pnlip, pancreatic lipase. Pnliprp1, pancreatic lipase-
related protein 1. Pnliprp2, pancreatic lipase related protein 2. Pnpla2, patatin-like phospholipase 
domain containing 2. Pnpla3, patatin-like phospholipase domain containing 3. Pla2g2a, phospholipase 
A2 group IIA. Pla2g1b, phospholipase A2 group IB. Pla2g16, phospholipase A2, group XVI. Srebp-
1, sterol regulatory element binding protein 1; Srebp-2, sterol regulatory element binding transcription 
factor 2; Chrebp, carbohydrate responsive-element binding protein. 
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Figure 5: Non-targeted metabolomics (NTM) and quantitative targeted lipidomics analysis 
(QTLA) of rat plasma from control and SFO rats. (A) OPLS-DA plot of GC-MS profiling of high-
fructose intake group and control group plasma, R2Y=0.9896, Q2=0.9844. (B) S-plot of OPLS-DA 
analyzed by SIMCA-P 12 (Umetrics, Umeå, Sweden). (C) Summary of pathway analysis with 
MetaboAnalyst 3.0; (a) Aminoacyl-tRNA biosynthesis; (b) Primary bile acid biosynthesis; (c) 
galactose metabolism; (d) Alanine, aspartate and glutamate metabolism; (e) Methane metabolism; (f) 
Taurine and hypotaurine metabolism; (g) Phenylalanine, tyrosine and tryptophan biosynthesis; (h) 
Glycine, serine and threonine metabolism. (D) Quantitative enrichment analysis performed using the 
metabolites set enrichment analysis with MetaboAnalyst 3.0. (E) Heatmap of 36 fatty acid species 
alteration calculated by normalization method. Red shading indicates upregulation and green indicates 
downregulation. (F) Relative levels of some significantly altered plasma fatty acids. The total fatty 
acid (TFA), saturated fatty acid (SFA), unsaturated fatty acid (UFA), monounsaturated fatty acid 
(MUFA), polyunsaturated fatty acid (PUFA), n3 or n6 fatty acid and cis-or trans- fatty acid were 
calculated on the 36 fatty acid profiles respectively.  
 
 
 
 



31 
 

 

Figure 6: Top regulated metabolic network in short-term fructose overfeeding group rats (IPA 
score 47). Molecules in red were up-regulated while those in green were down-regulated (control group 
versus short-term fructose overfeeding group). LDL-C, low-density lipoprotein; HDL-C, high-density 
lipoprotein. ERK1/2, extracellular regulating kinase 1/2; Nos, nitric oxide synthase. Sod, superoxide 
dismutase; ALT, alanine aminotransferase; GOT, glutamic oxalacetic transaminase; Ldh, lactate 
dehydrogenase. 
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Figure 7: Molecular network of differentially-expressed genes between short-term fructose 
overfeeding rats and control rats using IPA. (A) Analysis based on top network with IPA score 40. 
(B) Intensive sub-network from (A) related to glycolipids metabolism in high-fructose intake group 
rats. Molecules in red were up-regulated while those in green were down-regulated (short-term 
fructose overfeeding group versus control group). Pla2g16, phospholipase A2, group XVI; Me1, malic 
enzyme 1; Fgf21, fibroblast growth factor 21; Slc3a2, solute carrier family 3 member 2; Pla2g1b, 
phospholipase A2, group IB; Ptger2, prostaglandin E receptor 2; Psat1, phosphoserine 
aminotransferase 1; Il33, interleukin 33; Abcb1b, ATP-binding cassette, subfamily B (MDR/TAP), 
member 1B; Mmp8, matrix metallopeptidase 8; Ctrl, chymotrypsin-like; Ctrb2, chymotrypsinogen B2; 
Prss1, protease, serine, 1; Prss2, protease, serine, 2; Tmprss15, transmembrane protease, serine 15; 
Ctrc, chymotrypsin C; Cpa1, carboxypeptidase A1; Prss3, protease, serine, 3; Cpa2, carboxypeptidase 
A2; 2210010C04Rik, RIKEN cDNA 2210010C04 gene; Nphp3, nephrocystin 3; Rbpjl, recombination 
signal binding protein for immunoglobulin kappa J region-like; Bhlha15, basic helix-loop-helix family, 
member a15; Scd, stearoyl-CoA desaturase (delta-9-desaturase); Pnlip, pancreatic lipase; Pnliprp2, 
pancreatic lipase related protein 2; Amy2b, amylase 2b; Pde4b, phosphodiesterase 4B; Cel, carboxyl 
ester lipase; Phgdh,phosphoglycerate dehydrogenase. 
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Figure 8: Self-adaptive regulation of hepatic ChREBP, SREBP-1 and SREBP-2 expression in 
response to short-term fructose overfeeding. Representative western blots (4 samples per group) are 
shown; β-actin levels were used as a loading control (A). Bar graphs show densitometry analysis of specific 
bands expressed as fold change (B). The values are given as mean ± SD (n = 6 each).*p < 0.05.	
   	
  
 
 
 

 
Figure 9: Schematic illustration of metabolic disturbances and their consequences induced by 
short-term fructose overconsumption. GLUT5, glucose transporter 5; GLUT2, glucose transporter 
2;F-1-P, fructose-1-phosphate; Glu, D-Glucose; Cit, citrulline; 3-Hyd, 3-Hydroxybutyric acid; Tau, 
taurine; Glut, L-glutamine; Try, L-tryptophan; Cre, creatinine; Ita, itaconate; 5-oxop, 5-oxoproline; 
FFA, free fatty acids; Cho, cholesterol; DG, diacylglycerol; TG, triglycerides; LDL, low-density 
lipoprotein; PC, phosphatidylcholine; CLPS, colipase; Cer, ceramide; SREBP-1, sterol regulatory 
element binding protein 1; ChREBP, carbohydrate responsive-element binding protein. 

 

 


