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Tweet 

Check out our latest study, developing an artificial intelligence approach for analysing the corneal 
nerve fibres and diagnosing diabetic neuropathy. Top results in quantifying nerve fibre length, 
branch points, tail points, nerve segments and fractals. Excellent classification of healthy controls 
and participants with neuropathy. Results are fast and accurate. Huge potential for diabetic 
neuropathy screening. 

  



Abstract 

Aims 

Corneal confocal microscopy is a rapid non-invasive ophthalmic imaging technique that identifies 
peripheral and central neurodegenerative disease. Quantification of the corneal subbasal nerve 
plexus morphology, however, currently requires either time-consuming manual annotation or a less 
sensitive automated image analysis approach. The aim of this study was to describe the 
development and validation of an artificial intelligence–based, deep learning algorithm for the 
quantification of nerve fibre properties relevant to the diagnosis of diabetic neuropathy in 
comparison to a validated automated analysis program, ACCMetrics. 

Methods 

Our deep learning algorithm, which employs a convolutional neural network with data 
augmentation, was developed for the automated quantification of the corneal subbasal nerve plexus 
for the diagnosis of diabetic neuropathy. The algorithm was trained using a high-end graphics 
processor unit on 1,698 corneal confocal microscopy images; for external validation, it was further 
tested on 2137 images. The algorithm was developed to identify total nerve fibre length, branch 
points, tail points, number and length of nerve segments, and fractals. Sensitivity analyses were 
undertaken to determine the area under the curve for ACCMetrics and our algorithm for the 
diagnosis of diabetic neuropathy. 

Results 

The intra-class correlation coefficient was superior with our algorithm compared to ACCMetrics for 
total corneal nerve fibre length (0.933 vs 0.825), mean length per segment (0.656 vs 0.325), number 
of branch points (0.891 vs 0.570), number of tail points (0.623 vs 0.257), number of nerve segments 
(0.878 vs 0.504) and fractals (0.927 vs 0.758). In addition, our proposed algorithm achieved an area 
under the curve of 0.83, specificity of 0.87 and sensitivity of 0.68 for the classification of healthy 
controls (n=90) and participants with neuropathy (n=132) (defined by the Toronto Criteria). 

Conclusions 

These results have demonstrated that our deep learning algorithm provides rapid and excellent 
localisation performance for the quantification of corneal nerve parameters. This model has 
potential for adoption into clinical screening programmes for diabetic neuropathy. 
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Research in Context 

What is already known about this subject? 

Diabetic neuropathy can be identified with corneal confocal microscopy, a rapid non-invasive 
ophthalmic imaging technique. 

Corneal confocal microscopy provides an objective quantitative method to diagnose diabetic 
neuropathy which is currently not done in routine clinical practice 

Quantification of the corneal subbasal nerve plexus morphology requires either time-consuming 
manual annotation or a less sensitive automated image analysis approach. 

What is the key question? 

Can a more accurate, fully automated algorithm be developed to quantify corneal nerve fibre 
parameters for the diagnosis of diabetic neuropathy? 

What are the new findings? 

This newly developed algorithm is capable of segmenting the fibres of the subbasal nerve plexus. 

The performance of this algorithm is superior to that of the existing state-of-the-art, ACCMetrics in 
quantifying nerve morphology. 

On the back of this algorithm, good results are achieved in the automated diagnosis of diabetic 
neuropathy. 

How might this impact on clinical practice in the foreseeable future? 

The speed and accuracy of this algorithm give it potential to be adopted into clinical screening 
programmes for diabetic neuropathy. 

  



Abbreviations 

ACCM:  ACCMetrics Model 
ANOVA: Analysis of Variance 
AUC:  Area under Curve 
CCM:  Corneal Confocal Microscopy 
CNN:  Corneal Nerve Fibre 
CNN:  Convolutional Neural Network 
DLA:  Deep Learning Algorithm 
DPN:  Diabetic Peripheral Neuropathy 
DSC:  Dice Similarity Coefficient 
ENA:  Early Neuropathy Assessment 
ICC:  Intra-class Coefficient 
IENF:  Intra-epidermal Nerve Fibres 
IENFD:  Intra-epidermal Nerve Fibres Density 
LCNN:  Our Preliminary Model 
LDLA:  Our Refined Ensemble Deep Learning Algorithm 
LoA:  Limits of Agreement 
MA:  Manual Annotation 
RMSE:  Root Mean Squared Error 
ROC:  Receiver Operating Characteristic 
SBP:  Sub-basal Nerve Plexus 
SD:  Standard Deviation 
SFN:  Small Fibres Neuropathy 
SVM:  Support Vector Machines 

Introduction  

The prevalence of diabetic peripheral neuropathy (DPN) can be as high as 50% in an unselected 
population. Currently, screening for DPN most commonly relies on the 10g monofilament test, which 
identifies those at risk of foot ulceration but is poor for identifying patients with early neuropathy 
[1]. While other methods may be employed for screening i.e. clinical examination, questionnaires, 
vibration perception threshold, they do not directly quantify small nerve fibres directly, which are 
the earliest site of injury. Skin biopsy enables direct visualisation of thinly myelinated and 
unmyelinated nerve fibres, which are the earliest affected in DPN.  Skin biopsy can be used to 
diagnose small fibres neuropathy (SFN) [2]. The assessment of intra-epidermal nerve fibres (IENF) 
and their densities (IENFD) are currently advocated in clinical practice in the US [3] and 
recommended as an endpoint in clinical trials [4]. However, skin biopsy is invasive and requires 
specialised laboratory facilities for analysis. The cornea is the most densely innervated tissue of the 
human body, containing a network of unmyelinated axons (small nerve fibres) called the sub-basal 
nerve plexus (SBP). 

Corneal confocal microscopy (CCM) has been utilised to image the SBP, which has been shown to be 
remarkably stable in healthy corneas over three years [5] but demonstrates early and progressive 
pathology in a range of peripheral and central neurodegenerative conditions [6-11]. Fig. 1 (a, b) and 
(c, d) shows examples from control and diabetic neuropathy participants respectively. Previous 
studies have demonstrated analytical validation by showing that CCM reliably quantifies early axonal 
damage in DPN  [12, 13] with high sensitivity and specificity [14, 15] and closely correlates to the loss 
of intra-epidermal nerve fibres [15, 16]. CCM also predicts incident diabetic neuropathy [17] and can 
detect corneal nerve regeneration in people with DPN [18]. CCM may also detect early nerve fibre 



loss before intra-epidermal nerve fibre loss in skin biopsy [19]. In some patients, corneal nerve fibre 
(CNF) loss may be the first evidence of subclinical DPN [19]; Brines et al. [20] have shown that CNF 
area and width distribution area may improve the diagnostic and predictive ability of CCM.  

To accurately quantify CNF morphology, nerves must be distinguished from background and other 
cell structures accurately. The major limitation for wider clinical utilisation is the need for manual 
image analyses, which is highly labour-intensive and requires considerable expertise to quantify 
nerve pathology [21]. The development of methods for the objective, reliable and rapid analysis of 
corneal nerves is vital if CCM is to be adopted for screening and large clinical trial programmes. 
Furthermore, to be used as a diagnostic tool, it is essential to extract the measurements 
automatically with high reliability [21]. Dabbah et al. [22] presented a dual-model automated 
detection method of CNFs using CCM, showing excellent correlation with manual ground-truth 
analysis (r=0.92). They further refined this method utilising the dual-model property in a multi-scale 
framework to generate feature vectors from localised information at every pixel and showed an 
even stronger correlation with the ground-truth (r=0.95) [21]. This study, however, used neural 
networks without convolution layers [21], which necessitates pre-processing and encourages 
overfitting.  

Kim et al. [23] have also developed a nerve segmentation technique to delineate corneal nerve 
morphology in CCM. These range from filtering methods with rapid implementation but low-contrast 
and imprecise focus, to more complex support vector machine approaches, which rely on features 
defined by the user. Chen et al [24] presented a method based on feature engineering, achieving 
state-of-the-art results; but the reliance on hand-crafted features increases complexity to the user 
and can introduce user-bias, returning sub-optimal results [25]. 

Recently, machine learning based approaches have achieved excellent performance in computer 
vision and medical image analysis tasks. Deep learning and particularly Convolutional Neural 
Networks (CNN), a class of deep neural networks, have emerged as a highly effective branch of 
machine learning for image classification [25]. This approach allows for “end-to-end” classification 
results to be achieved, allowing the end user to obtain a result without the need for specifying or 
designing features or setting example-specific parameters. CNN design follows vision processing in 
living organisms [26] with the connectivity pattern between neurons resembling visual cortex 
organisation. Based on training with pre-annotated data, CNNs combine the traditionally separate 
machine learning tasks of (i) feature designing, (ii) learning and (iii) image classification in a single 
model, relieving the traditional machine-learning burden of designing handcrafted features. More 
recently, this has extended beyond image-wise classification to efficient pixel-wise classification, 
allowing image segmentation to be achieved, i.e. pixels may be classed as belonging to an object of 
interest or not. There has been a significant increase in recent years in the development of deep 
learning algorithms (DLAs) with CNNs achieving excellent performance in many computer vision 
applications and showing significant clinical utility in healthcare [27]. Accurate automated detection 
of corneal nerves from CCM has many potential benefits over manual detection such as objectivity, 
increased efficiency and reproducibility. This can enhance early disease diagnostics and improve 
patient outcomes. In addition, artificial intelligence-based DLAs have the added advantage of 
continual learning and refinement alongside concurrent analysis. 

The aim of this study was to develop and validate a DLA for corneal nerve segmentation in CCM 
images and compare this with a widely used and validated automated image analysis software, 
ACCMetrics (Early Neuropathy Assessment (ENA) group, University of Manchester, Manchester, UK) 
[24]. 



Research Design and Methods 

Participants 

All participants gave informed consent at the respective institutions and the studies were conducted 
in accordance with the Declaration of Helsinki. Relevant ethical and institutional approvals were 
gained prior to the imaging of all participants. 

Image Datasets 

In this study, 3835 confocal images of the sub-basal corneal nerve plexus were utilised from healthy 
volunteers and people with diabetes from Padova, Italy (n=120), Beijing, China (n=1578) and 
Manchester, UK (n=2137). Fig. 1(e) shows an example CCM image, (f) is the manual annotation of (e) 
with branching and tail points highlighted in red and green respectively in (g).  

Dataset 1 (BioImLab, University of Padova, Italy) 

120 images were obtained from Ruggeri’s BioImLab at the Department of Information Engineering, 
University of Padova, Italy. Of these, the first 30 images are from 30 volunteers (1 image per 
volunteer) who are either healthy or showing different pathologies (diabetes, pseudoexfoliation 
syndrome, keratoconus) [28]. The images were captured in tiff format at size 384x384 pixels with a 
Heidelberg Retina Tomograph II using the Rostock Corneal Module (HRTII32-RCM) confocal laser 
microscope (Heidelberg Engineering GmbH, Heidelberg, Germany). The remaining 90 images are of 
the corneal sub-basal epithelium from normal and pathological subjects with one image per subject 
[29] using a ConfoScan 4 CCM at 40X magnification (Nidek Technologies, Padova, Italy). An area of 
460x350μm was captured in 768x576 pixels and stored in monochrome jpg compressed format. 

Dataset 2 (Peking University Third Hospital, Beijing, China) 

1578 images (384x384 pixels in tiff format) were acquired from healthy volunteers (n=90) and 
corneas with various corneal conditions (n=105 including 52 participants with diabetes) using the 
Heidelberg Retina Tomograph 3/Rostock Cornea Module (Heidelberg Engineering, Heidelberg, 
Germany). Six images per eye were obtained where possible from the corneal apex using the same 
methodology developed and utilised by ENA group, University of Manchester, Manchester, UK. 

Dataset 3 (Early Neuropathy Assessment (ENA) Group, University of Manchester, UK) 

2137 images were analysed from healthy-volunteers and participants with diabetes (n=444). All CCM 
images were obtained using the same methodology utilising the standard, internationally accepted 
protocol developed by the ENA group [13]. The images were captured using the Rostock corneal 
module set at +12 objective lens. The image size obtained was 400x400 micrometres (384x384 
pixels). The images were exported in bmp format, which is compatible with the image analysis 
software. Images were from the following cohorts:  

Group 1: Healthy-volunteer controls (n=90). 

Group 2: Participants with impaired glucose tolerance (n=53 including 26 with definite neuropathy). 

Group 3: Participants with type 1 diabetes with definite neuropathy (n=37) 

Group 4: Participants with type 1 diabetes without neuropathy (n=53). 

Group 5: Participants with type 2 diabetes without (n=101) and definite with neuropathy (n=49). 



Group 6: Participants with type 2 diabetes with mild neuropathy (n=41) and definite neuropathy 
(n=20). 

Definite neuropathy was defined as the presence of an abnormality of nerve conduction studies 
(age-matched) and a symptom or symptoms or a sign or signs of neuropathy as defined by the 
Toronto consensus statement by the American Diabetes Association on DPN [30]. In total, 132 
participants had definite neuropathy across the groups. Note that the depth of images are only 
marginally different for each participant and depends on their corneal thicknesses so there is no 
definitive depth. However, the subbasal nerve plexus occurs at ~50݉ߤ depth in most people, with 
no difference in people with diabetes and healthy volunteer controls [31]. 

Image Annotation 

In order to obtain a ground-truth for each image in the BioImLab and Beijing datasets, the corneal 
nerves in each image were manually traced by a clinical ophthalmologist (DB) using an in-house 
program written in Matlab (Mathworks R2017, Natwick). Our previous work has demonstrated the 
validity of manual annotations in terms of intra- and inter-observer agreements [32]. Dataset 3 was 
not annotated and only used for clinical testing using the deep learning segmentations.  

Methods 

In this section, the new method for automatically segmenting the corneal nerves in CCM images is 
presented. The preparation of our combined datasets for use in a training and testing approach is 
given and we define our automated segmentation method. This is then built on with ensemble 
learning and random sampling. Finally, clinically-relevant parameters were extracted and compared 
with the existing state-of-the-art ACCMetrics. 

Dataset Preparation for Training-Testing Approach 

The BioImLab and Beijing datasets have 1698 images in total and were used for the development of 
the model: 1494 (~90%) images from the Beijing dataset were used for training, while 84 images 
from Beijing and all the BioImLab dataset were used for testing. Each image in these datasets was 
used for either training or testing to avoid overfitting. Dataset 3 (ENA image dataset) was only used 
for clinical testing and validation but not to train the model. The images for training and testing were 
selected using a random permutation at the patient level determined using a Mersenne Twister 
method [33]. Note that splitting took place on the image (rather than patient) level in order to avoid 
potential bias. 

All the images were standardised to have a pixel size of 1.04μm (384x384 pixels) by bilinear 
interpolation. To increase the dataset size, it is augmented by extracting patches of size 128x128 
pixels with a 32-pixel overlap, creating 81 patches per image. The selection of patches used for 
training/testing was done on an image-level to avoid testing patches from images whose data have 
been used for training. 

Image Segmentation Using Deep Learning 

Corneal nerves were segmented adopting U-Net CNN architecture [34]. Unlike conventional CNNs, 
which aim to assign one classification (or more) to an image, this type of architecture aims to 
achieve full-image segmentation by determining a pixel-wise segmentation map. Fig. 2 illustrates the 
architecture of our proposed U-Net model. It can be visualised as a U-shape, whose left side is an 
encoding path and right side is a decoding path. At the end of the architecture, a sigmoid activation 
function is employed to create a segmentation map. A key feature of U-Net is direct connectivity 



between the encoding and decoding layers, allowing extracted feature reuse and strengthening 
feature propagation. The Dice Similarity Coefficient (DSC) was used as a cost function, i.e. to 
measure error during training.  

The models were developed with Python 3.5.2 (https://www.python.org/), Tensorflow 1.0.0 
(https://www.tensorflow.org/, Google Inc, Mountain View, CA), and Keras 1.2.1 (https://keras.io/). 
The model was trained for 200 iterations using an NVIDIA K40 GPU (NVIDIA, Santa Clara, CA). 
Following the training step, the trained model weights were used to obtain the segmentation maps 
of each previously unseen testing patch.   

Ensemble Classification 

In order to improve the accuracy of the model by using multiple copies, an ensemble of 5 U-Net 
networks were trained on the same training data using a random-sample-with-replacement 
approach. The final prediction was computed by a majority vote over the predictions of the 
ensemble network. In the following sections, training with our preliminary model, a single U-Net 
model, is referred to as “LCNN” (Liverpool Convolutional Neural Network) while training with our 
refined ensemble deep learning approach is referred to as “LDLA” (Liverpool Deep Learning 
Algorithm). 

Image Reconstruction and Parameter Extraction 

The trained models were able to produce segmentations on a patch basis. The segmentation of a 
whole CCM image was obtained by combining the segmentations of all its patches using majority 
voting on the overlap regions. From the image-level segmentation result, further analysis was 
carried out to derive the clinically relevant parameters including the corneal nerve length, branch 
points, tail points, and fractal number [35]. 

Evaluation 

Our models, LCNN and LDLA, together with the state-of-the-art ACCMetrics approach [24], denoted 
as “ACCM” were compared with the manual annotation. The performance of the algorithm was 
measured using the Bland-Altman approach. Agreement between the automatic segmentations and 
manual annotations were assessed using the intra-class coefficient (ICC). For the clinical evaluations, 
analysis of variance (ANOVA) with Tukey post-hoc analysis was performed for comparison between 
different patient groups. Area under curve (AUC) was calculated to compare the detection 
performance of different models. SPSS for Windows, version 22.0 (IBM-SPSS, Chicago, IL) was used 
for the statistical analysis with a p-value of <0.05 deemed statistically significant. 

Results 

Fig. 3 shows four example testing images along with their ‘ground-truth’ manual annotations (MA) 
and segmentation results obtained by LCNN, LDLA, and ACCM. LCNN and LDLA produced more 
faithful results to the manual annotations than ACCM, particularly in example 4 where ACCM failed 
to detect the nerves at the top middle and right bottom. Overall, the segmentation performance is 
consistent and there is no obvious failed case. For illustration, the supplementary Fig SM1 shows the 
results of all the first 30 images of Dataset 1, Fig SM2 shows the results of 12 randomly chosen 
images from Dataset 2, and Fig SM3 shows the results of 12 randomly chosen images from Dataset 
3.  

Analysis of dataset 1 and 2 shows the mean total CNF length from the manual ‘ground-truth’ 
annotation was highest (2441.4 ± 919.5 μm) compared to the 3 automated approaches (LCNN: 



2089.4 ± 804.6 μm, LDLA: 2260.3 ± 835.3 μm, ACCM: 2394.1 ± 768.1 μm). Total CNF length was 
greater in ACCM and closer to manual annotation than LCNN or LDLA. However, the ICC analysis 
(Table 1) demonstrated that both LCNN and LDLA produce more consistent results to the manual 
annotations when compared to ACCM. Furthermore, our two methods performed consistently 
better than ACCM in terms of correct segment length, number of branching points, and fractal 
numbers. Bland-Altman analysis (Fig. 4) further confirmed that the limits of agreement (LoA) of 
ACCM were greater than both LCNN and LDLA, implying greater variability despite ACCM’s mean 
total corneal lengths. In other words, although the results of ACCM are closer to the manual 
annotation in this case, the variation due to over- and under-segmentation was much larger than 
both LCNN and LDLA; ACCM may therefore have produced heterogeneous results. 

Based on the 95% confidence interval of the ICC estimate, values less than 0.5, between 0.5 and 
0.75, between 0.75 and 0.9, and greater than 0.90 are indicative of poor, moderate, good, and 
excellent reliability, respectively [36]. 

Table 2 shows the comparisons of the root mean squared error and standard deviations of the 
derived measures ݒ௜ over each image ݅, against the manual annotations, in terms of (i) number of 
branching points, (ii) number of terminal points, (iii) number of segments, (iv) total nerve fibre 
length, (v) mean nerve fibre length, (vi) standard deviation of nerve fibre length, and (vii) fractal 
number for each of the methods ܯ using: 

ܧܵܯܴ = ඨ
1
݊
෍ ௜ܸ,ெ

ଶ

௜

, ܦܵ = ඨ
1

݊ − 1
෍൫ ௜ܸ,ெ − ெܸതതതത൯

ଶ

௜

, തܸ = ෍ ௜ܸ,ெ
௜

, ܸ = ௜,ெݒ −  ௜,ெ஺ݒ

As shown in Table 2, LDLA has lower values for every measure, indicating closer agreement with the 
ground-truth annotation. For each measure, LCNN has the second-lowest RMSE and ACCM has the 
highest, indicating weaker agreement. LDLA has the lowest standard deviation for all except the 
number of terminal points, indicating more consistent agreement with the ground-truth over the set 
of images, while ACCM has the highest deviation for all measures. From this, it can be concluded 
that both LCNN and LDLA outperform ACCM, while LDLA clearly has the best performance. 

Given the convincing performance of LDLA, which outperforms both LCNN and ACCM in each metric, 
it was applied to the third dataset and the results were used for clinical evaluation. 

Clinical Testing and Validation Based on ENA Image Dataset 

ANOVA analysis demonstrated that differences in the total CNF length between the six groups (of 
dataset 3) are in keeping with their neuropathy phenotype (Table 3 and Fig. 5). A Tukey post-hoc 
analysis was performed, which demonstrated that length in healthy-volunteer controls is higher than 
all the other groups (p<0.01) while total CNF length in people with type 1 diabetes and neuropathy 
(Group 3) was lower than all other groups (p<0.001). ACCM consistently yielded higher total CNF 
length than LDLA. 

Furthermore, area under curve (AUC) analysis was undertaken to compare LDLA and ACCM (Fig. 5b 
and c). First, total corneal nerve length alone was used to classify control and neuropathy cases. 
There were 132 patients with neuropathy in total (from groups 2, 3, 5 and 6) and 90 controls (group 
1). The resulting Receiver Operating characteristic (ROC) curve in Fig. 5 (b) shows that the AUC is 
0.826 for LDLA and 0.801 for ACCM, respectively. To determine the sensitivity and specific of the 
model, optimal cut points are determined by the commonly used Youden index [37], i.e. the sum of 
sensitivity and specificity minus one. In a perfect test, Youden's index is equal to 1. For LDLA, the 
optimal cut determined a specificity of 0.867 and sensitivity of 0.677 while ACCM achieved 



specificity 0.800 and sensitivity 0.699. LDLA showed better prediction performance than ACCM when 
utilising CNF length. Similarly, Fig. 5(c) shows that LDLA has better prediction performance in 
classifying controls (n=90) and all patients with diabetes (n=301 from group 3, 4, 5 and 6) than ACCM 
when utilising CNF length: The AUC is 0.806 for LDLA and 0.780 for ACCM. The optimal cut points of 
LDLA are: specificity 0.7222 and sensitivity 0.784 while for ACCM: specificity 0.7222 and sensitivity 
0.745. 

Discussion 

In this study, an artificial intelligence-based DLA has been developed for the analysis and 
quantification of corneal nerves in CCM images. To our knowledge, this is the first DLA for the 
analysis of corneal nerve morphology and pathology. This study validates our DLA and demonstrates 
its superior performance compared to ACCMetrics, the existing state-of-the-art system. In particular, 
there are more consistent results as evidenced by a superior intra-class correlation for a number of 
metrics including total CNF length. In addition to the total CNF length, this DLA is also capable of 
producing the number of branching and tail points, fractal numbers, tortuosity and segment length. 
As such, these quantitative parameters may provide additional utility to diagnose diabetic 
neuropathy and neuropathic severity. 

A fractal is a visual product of non-linear system characterised by its complexity and by the quality of 
self-similarity or scale invariance. Fractal analysis of the corneal subbasal nerve plexus has been 
proposed by several authors [38, 39]. We believe that the additional utility of fractal dimensions 
provide an additional means of differentiating patients with early/ subclinical DPN. Corneal nerve 
fibre length is a robust measure of DPN and small fibre neuropathy. A large multicentre pooled 
concurrent diagnostic validity study revealed that CNFL was the optimal CCM variable [40]. CNFL has 
also shown to be a measure of early small fibre regeneration [41]. From published data, CNFL and 
CNFD are the most robust measures of DPN. Our data confirms the validity of CNFL. However, we 
feel other metrics are also of importance and require further scientific interrogation in a real world 
clinically-oriented study. 

In this study, the quantification of images in healthy-volunteer controls and groups with and without 
diabetic neuropathy (group 1-6) demonstrates a reduction in total CNF length in patients with 
neuropathy compared to healthy controls. This study is in keeping with other data on the utility of 
CNF length as a valid biomarker of diabetic neuropathy [11, 12, 15, 18]. The sensitivity and specificity 
of our DLA for gold standard DPN diagnosis with CCM (using the Toronto Criteria) is far superior to 
currently used clinical methods such as the 10g monofilament and 128Hz tuning fork [42] (with 
rudimentary clinical assessments) thus providing a strong rationale for its use in clinical 
screening/practice. 

This work extends our preliminary work on 584 CCM images where the initial DLA demonstrated 
good localisation performance for the detection of corneal nerves [43]. This study has further 
refined our preliminary model with the ensemble (LDLA) model, which is now validated in large 
image datasets to diagnose diabetic neuropathy using CCM. 

The strength of deep learning is echoed by Oakley et al [44] who used corneal nerve segmentation in 
macaque images. Deep learning-based approaches make the segmentation task relatively easier for 
the end-user compared to conventional approaches with various filters and graph approaches [23]. 
In particular, compared to conventional machine learning methods such as support vector machines 
(SVM), deep learning reduces the need and additional complexity of feature selection and 
extraction, allowing the computer to learn features alongside the segmentation. The training of deep 



learning approaches is computationally expensive; for example, it takes approximately 30 minutes 
per epoch to train a single U-Net model. The advantage is that, once the model is trained, the 
segmentation is very fast, taking milliseconds to segment CCM images. 

In recent years, CNNs and DLAs have been added to the algorithms used to screen for diabetic 
retinopathy. DLAs promise to leverage the large amounts of images for physician interpreted 
screening and learn from raw pixels. The high variance and low bias of these models will allow DLAs 
to diagnose diabetic neuropathy through the utilisation of CCM images without the pre-processing 
requirements and more likely overfitting of earlier approaches such as [25]. This automated DLA for 
the detection of diabetic neuropathy offers a number of advantages including consistency of 
interpretation, high sensitivity and specificity, and near instantaneous reporting of results. In this 
study, good sensitivity and adequate specificities were achieved using our DLA. 

This is the largest study to date for the development and validation of corneal nerve segmentation 
and supersedes the numbers in the study by Chen et al [24], who used 1088 images from 176 
subjects with 200 images for training and 888 for testing. Our study utilised a robust dataset; 
however, further development of this DLA requires the prerequisite that a developmental set of 
images with large numbers (tens of thousands) of normal and abnormal cases is required. An area of 
further research is that of interrupted CNF segments which are challenging cases that often appear 
in the CNF segmentation results in previous methods [24]. This problem is mainly caused by non-
uniform illumination and contrast variations of CNF in images. Since quantitative biomarkers like 
CNF length and density are important measures for computer-aided diagnosis, missing CNF 
segments may theoretically reduce the diagnostic reliability of any automated system. In our 
previous work, the automatic gap reconnection method proposed by Zhang et al. [45] was employed 
to bridge the interrupted nerve fibre structures. The gap-filling task is achieved by enforcing line 
propagation using the stochastic contour completion process with iterative group convolutions. 
Geometric connectivity of local CNF fibre structures can be easily recovered based on their 
contextual information [45]. However, this connection step was not included in this model as there 
was only a modest improvement in the quantification of CNF length despite extra computation time 
of about 1 minute per image. This is an area of future development of the DLA. It will also be 
important to investigate the potential for bias to be introduced by factors such as camera  type.  The 
major advantage of this DLA is the continual learning and refinement of the algorithm over standard 
automated techniques. 

Given that four hundred and twenty million people worldwide have been diagnosed with diabetes 
mellitus [46] and the prevalence of diabetic neuropathy is ~50% [47] there is a need for valid 
quantitative population screening of diabetic neuropathy to prevent or limit sequelae such a foot 
ulcers and amputations. Skin biopsy with quantification of intra-epidermal nerve fibres has been 
considered the ‘reference standard’ test for the diagnosis of small fibre neuropathy [48]. It is an 
invasive test, however, which needs specialist diagnostic facilities and repeated tests at the same 
site are not feasible. CCM is a rapid non-invasive ophthalmic imaging modality, which quantifies 
early axonal damage in diabetic neuropathy with high sensitivity and specificity [12-16, 49]. CCM 
also predicts incident neuropathy [17] and accurately detects CNF regeneration [18, 50]. The utility 
of CCM in diagnosing and monitoring the progression of diabetic neuropathy has been extensively 
evaluated [11, 12, 15, 16, 18, 38]. 

Further studies are required to determine the feasibility of applying this algorithm in clinical settings 
and to determine outcomes compared with currently used diabetic neuropathy screening methods 
as they typically have low sensitivity for detection except in advanced neuropathy. There is also a 
need to compare the diagnostic ability of this DLA with tests of small fibre dysfunction (thermal 



thresholds/sudomotor/autonomic) and IENFD in skin biopsy in diabetic and other peripheral 
neuropathies. The next key step is also to utilise the DLA alongside clinical neuropathy screening in a 
multi-centre primary care study. 

Conclusion 

Automated detection and screening offer a unique opportunity to detect early neuropathy and 
prevent the sequelae of advanced diabetic neuropathy. Our results demonstrate that this artificial 
intelligence-based DLA provides excellent localisation performance for the quantification of corneal 
nerve parameters and therefore has potential to be adopted for screening and assessment of 
diabetic neuropathy. 
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Tables 

Table 1. Absolute agreement measured by intraclass correlation coefficient (ICC) 

Method Total 
length 

Mean length 
per segment 

Number of 
branch 
points 

Number of 
tail points 

Number of 
nerve 
segments 

Fractal 

LCNN 0.867 0.596 0.809 0.647 0.844 0.887 

LDLA 0.933 0.656 0.891 0.623 0.878 0.927 

ACCM 0.825 0.352 0.570 0.257 0.504 0.758 

 

Table 2: Root mean squared error (RMSE) and standard deviations of the error (SD) of each of the 
methods for different measures. Lower results indicate closer agreement with the manual 
annotation. 

  
LCNN LDLA ACCM 

Number of Branching 
Points 

RMSE 5.1326 4.1603 7.3667 

SD 4.3934 4.1652 6.9110 

Number of Terminal Points 
RMSE 8.7127 8.6766 13.0271 

SD 8.0985 8.3479 11.6407 



Number of Segments 
RMSE 8.9521 8.3752 15.0708 

SD 8.4248 8.3929 15.0296 

Total Fibre Length 
RMSE 463.4712 326.0016 501.6230 

SD 302.2312 271.7448 500.6295 

Mean Fibre Length 
RMSE 40.0348 37.6684 51.1406 

SD 37.9770 34.3762 50.6172 

Standard Deviation of Fibre 
Length 

RMSE 27.6372 24.0555 33.4168 

SD 26.8020 22.6133 32.4616 

Fractal Number 
RMSE 0.0403 0.0307 0.0518 

SD 0.0278 0.0273 0.0519 

 

Table 3. Total corneal nerve fibre length (μm) for Dataset 3 utilising the LDLA (Deep Learning 
Algorithm) model. 

Group 
Participant 

numbers 
Mean (μm) Std. Deviation 

1 90 2695.2 606.8 

2 53 2245.2 648.6 

3 37 1229.0 710.4 

4 53 1917.1 732.2 

5 108 2000.4 710.0 

6 41 2131.7 803.7 

Total 382 2125.9 800.6 

 

  



Figures 

Figure 1. CCM image examples from control (a,b) and diabetic neuropathy (c,d) cases. An example 
image (e) with manual annotation (f). Branch and terminal points (manually added) are shown in (g), 
where green triangles denote tail points and blue squares denote branching points. 

Figure 2. Diagram of the proposed U-Net architecture. 

Figure 3. Four example of segmentation of corneal nerves. From the left to right columns are the 
original images, manual annotations, segmentation results of LCNN, LDLA and ACCM respectively 
where red lines denotes the centrelines of the segmented nerves.  

Figure 4. Bland Altman plots on the total corneal fibre length (μm) for the LCNN, LDLA and ACCM 
methods respectively. The limits of agreement (LoA) are defined as the mean difference ± 1.96 
standard deviation of differences. Error bars representing the 95% confidence interval for both the 
upper and lower limits of agreement. 

Figure 5. Graphs showing the results on Dataset 3. (a) Box plot in combination of dot plot of the total 
corneal nerve fibre length of 6 groups with our LDLA model and ACCM. The line within each box 
represents the median, and the top and bottom of the box represent the 75th and 25th percentiles, 
respectively. The whiskers indicate the maximum and minimum values excluding outliers. (b) ROC 
curves of classification of controls and participants with diabetic neuropathy comparing LDLA and 
ACCM. (c) ROC curves of classification of controls and participants with diabetes comparing LDLA and 
ACCM. 













In this supplementary material, we show further examples of our LDLA on all 30 images forming the first part of 
Dataset 1 from BioImLab [34] in ESM Figs. 1a and 1b, on 10 randomly selected images from Dataset 2 from Beijing in 
ESM Fig. 2, and on 10 randomly selected images from Dataset 3 in ESM Fig. 3. 

  



ESM Fig. 1a 

 

ESM Fig. 1a: Original and segmentation results from our LDLA overlaid (red) on 18 of the 30 images forming the first 
part of Dataset 1 from BioImLab [34]. 

  



ESM Fig. 1b 

 

ESM Fig. 1b: Original and segmentation results from our LDLA overlaid (red) on 12 of the 30 images forming the first 
part of Dataset 1 from BioImLab [34]. 

  



ESM Fig. 2 

 

Figure SM2: Original and segmentation results from our LDLA overlaid (red) on 10 randomly selected images from 
Dataset 2 from Beijing. 

 

  



ESM Fig. 3 

 

Figure SM3: Original and segmentation results from our LDLA overlaid (red) on 10 randomly selected images from 
Dataset 3. 


