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Abstract

We review the scattering from non-linear interfaces containing buckling elas-
tic beams. An illustrative example is discussed here of scattering of linear elastic
pressure waves from a two-mass system connected by a non-linear structured in-
terface modelled as elastica. In the first instance, the interaction between the
masses is linearised. This allows for the study of a time-harmonic transmission
model problem in the subcritical regime. Subsequently, we consider the transient
problem associated with a non-linear ineraction within the interface. The effect
of non-linearity is shown to suppress the transmission resonance observed in the
linearised formulation.

1 Introduction

The idea of longitudinal and transverse waves interaction in beams, in the framework
of the configurational forces approach, was introduced and developed by Bigoni et al.
[1, 2, 3, 4] The results of these papers were applied, in particular, to modelling of
locomotion in challenging biological applications. The variational approach of Bigoni
et al. [1, 2, 3, 4] has led to an accurate evaluation of the longitudinal configurational
force, which exists within an elastic beam subjected to bending by a moment. In
the recent paper by Bosi et al. [5], the solution of the elastica and stability analysis
in a dynamic perturbation problem were developed in the context of an asymptotic
self-stabilisation of a continuous elastic structure.

The Bigoni’s approach based on the notion of configurational forces, which connect
the bending or torsional moments and the longitudinal force in the deformed beam,
has lead to the rigorous modelling and deep physical understanding of instability of
constrained elastic beams under transverse load or torsion in a range of important
applications. In particular, the work [2] considers a blade, which is forced into an
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elastic movable junction: bifurcation and stability analysis has revealed several unusual
features, which include the effect of restabilisation of the straight configuration, and
the configurational forces are shown to be essential in the bifurcation analysis. Dal
Corso et al. in [6] have analysed a bio-inspired model of serpentine locomotion based
on the release of kinetic energy, provided by the configurational potential energy stored
in a beam while constrained by a curved channel. Furthermore, the general analysis
of an asymptotic self-restabilization of continuous elastic systems was presented in
[5]. A structure that self-restabilizes is capable of restoring its initial shape after a
post-bifurcation deformation. The problem has been solved in both quasi-static and
dynamic frameworks, and it has been demonstrated that the asymptotic restabilisation
is determined by the effects produced by configurational forces. Systematic analysis
of material instability is included in the comprehensive research monograph [7]. In
particular, it includes elegant examples of bifurcation of a self-intersecting elastica as
well as examples of bifurcations for structures under tensile loads. Restabilisation was
also explained by analysing structures with trivial configurations unstable at a certain
load, and later returning to a stable state at a higher load.

Non-local structured interface, both in statics and dynamics, were analysed by
Bigoni and Movchan [8], where transmission conditions were derived in conjunction
with the analysis of connections between the discrete and continuous systems. In par-
ticular, the role of discrete structures was studied in the context of wave propagation
in periodic systems, which included discrete and continuous constituents. The paper
[9] has brought an idea of coupling between shear and pressure modes by structured in-
terfaces incorporating rotations - a periodic system of inclusions was embedded into an
elastic continuum via a finite thickness structured interface with tilted elements. Such
structures were shown to be useful in control of negative refraction of elastic waves
across two-dimensional structured interfaces. In the recent article [10] geometrically
chiral lattice interfaces were incorporated into finite coatings surrounding crack-like
defects; the dynamics of such interfaces has provided new insight into controlling dy-
namic response of multi-scale lattice systems, and shielding defects, which otherwise
would be stress concentrators leading to possible structural failure.

In some elastic systems, physical non-linearities or geometrical factors may lead
to the dynamic response of solids which cannot be treated in the standard framework
of linear time-harmonic analysis. Research monographs by Achenbach [11] (Chapter
10) and Samsonov [12] give a comprehensive theoretical description and experimental
survey of non-linear waves in solids, including localisation and well-posedness. Using a
Lagrangian approach, Samsonov [12] derived double-dispersive wave equations in elas-
tic solids, including associated conservation laws and solitary solutions. It has been
shown that the double-dispersive wave equation is a continuous limit of some non-
linear periodic elastic chains. Moreover, the double-dispersive wave equation captures
non-linear wave phenomena in homogeneous and non-homogeneous elastic waveguides.
Most notably, the amplitude of a solitary elastic deformation is focused by a tapered
waveguides, i.e. it is concentrated in a shorter interval of time past the tapered re-
gion, while it remains almost unchanged after travelling through randomly corroded
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regions. These phenomena bring additional inspirations to the researchers working on
wave phenomena in structured solids and metamaterials, such as focusing via negative
refraction and cloaking.

The recent papers by Maurin and Spadoni [13, 14, 15, 16] have discussed non-linear
elastic waves, which may form in a periodic system of buckled beams. Conventionally,
for an isotropic homogeneous elastic beam, in the leading-order linearised approxima-
tion, the flexural vibrations decouple from the longitudinal ones. However, when the
compressive longitudinal load reaches a critical value, an elastic beam buckles, and a
periodic system of many buckled beams can be considered as a structured medium
supporting dynamic localisation. In particular, a fourth-order homogenisation model
was used by Maurin and Spadoni to describe dispersive properties of an infinite system
of buckled beams connecting point masses periodically distributed within the array. In
traditional engineering designs, the post-bifurcation behaviour is often avoided, but as
demonstrated in [13, 14, 15, 16] such problems bring interesting mathematical formula-
tions, and some waveforms can be described as closed form solutions for the differential
equation of the Boussinesq type. In the long-wave regime the homogenisation model is
an acceptable way forward to describe a structured waveguide.

In Fig. 2 below, we show the force versus displacement for a structured interface.
One may get an impression that the axial load transmitted by the structured interface
is similar to the constitutive response of an elastic-perfectly plastic rod. We refer
to the classical publications on dynamic plasticity [17, 18, 19] and claim that on the
one hand there is formal analogy between the elastic-perfectly plastic rod and the
problem considered in this paper. On the other hand, our formulation models different
problems describing waves in elastic-plastic media. In our case, the emphasis is on the
use of configurational forces connecting the flexural displacement of an elastica with the
longitudinal forces of the adiacent elastic rod, in the context of the dynamic response
of a structured interface.

The purpose of the present paper is to highlight new features in the dynamic re-
sponse of elastic solids, which contain non-linear interfaces. The example shown here,
demonstrates the pre-bucked and post-buckled regimes for a system of elastic waveg-
uides with masses connected by an elastic beam within the interface. The model
includes two semi-infinite linearly elastic rods separated by a buckling beam. The as-
sumptions of the model can be extended to other physical configurations which may
include a collection of flexural beams which are able to buckle at different critical loads.
In the current model, it assumed that the semi-infinite elastic rods at both sides of the
interface transmit longitudinal linear waves only.

The structure of the paper is as follows. In section 2 we present the non-linear inter-
face modelled as a two-mass system connected by an Euler-type beam which can buckle.
The pre-buckling and post-buckling regimes are reviewed by standard Euler-type buck-
ling techniques. The non-linear force-compression relations are given in implicit form
for a general compression-level of the two-mass system, and as a truncated series expan-
sion around a special value of the compression level. The two-mass non-linear system
is embedded into an homogeneous elastic bar which supports longitudinal waves. In
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m− m+

x1 = −`/2 x2 = `/2

I

R
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E,S, ρ E, S, ρE1, S, I

Figure 1: Two semi-infinite longitudinal rods (straight lines), of cross-section S,
Young’s modulus E and mass density ρ, are connected by a structured interface. The
interface comprises an elastica arm (cross-section S, second moment of intertia I and
Young’s modulus E1) with masses m− (white circle) and m+ (black circle) at the ends
x = −`/2 and x = +`/2, respectively.

section 3, the solution to a scattering of a time-harmonic longitudinal wave is discussed
and transmission resonances are identified. A transient problem for waves reflecting
from a non-linear interface is analysed in section 4. Section 5 includes concluding
remarks and discussion.

2 Governing equations

Consider an infinite rod of cross section S, Young’s modulus E and density ρ, where
only longitudinal waves can propagate. Let us assume that a section of length ` is
removed and replaced with a massless flexural beam of bending stiffness B = E1I, and
horizontal in its undeformed configuration. Here, E1 is the Young’s modulus of the
beam, and I is the second moment of inertia of its cross-section, of the same area S as
the exterior elastic rod. The structured interface is formed by point masses, m− and
m+ attached to the ends of the flexural beam, as shown in Fig. 1.

2.1 Equations of motion

The displacement of the ends of the massless flexural beam are denoted by u±(t) =
u(±`/2, t), and u(x, t) satisfies

∂2

∂x2
u(x, t)− 1

v2
∂2

∂t2
u(x, t) = 0, for ‖x‖ > `/2, (1)

with v2 = E/ρ.

2.2 Transmission conditions

The equations of motion for each of the masses m+ and m− have the form

∂

∂x
u(x, t)

∣∣∣∣
x=±`/2

=
1

ES

(
∓m±

d2

dt2
u± + F(u+, u−)

)
, (2)
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where F represents the force describing a non-linear interaction across the interface, as
described in section 2.3 below. We also use the notation

F (χ) = F(u+, u−), where χ = (u− − u+)/`.

The continuity of displacements at x = ±`/2 implies

u(x, t)|x=±`/2 = u±(t). (3)

Eqs (2) and (3) form the transmission conditions for the structured interface.

2.3 Non-linear interaction

In this section, we discuss the exact load-displacement relation of a clamped-clamped
Euler-type elastica. This also includes approximate load-displacement relations for
small post-buckling displacement. The main focus is on the non-linear interaction

10
-8

10
-6

10
-4

10
-2

10
0

χ

10
-5

10
-4

10
-3

10
-2

10
-1

F

Pc

χcr

Figure 2: Axial load F as a function of the normalised axial compression χ = |u− −
u+|/`, in the pre-buckling regime (χ < χcr, see Eq. (21)) and post-buckling regime
(χ > χcr, see Eq. (4)). We fix Pc = 6.6× 10−3 and χcr = 6.6× 10−6.

across the interface, for which the exact load-displacement relation is given by the
solution of the following system of non-linear equations

`
√
F/B = 4K(c)

χ− χcr = 2(1− E(c)/K(c))

, (4)

where B is the bending stiffness, χcr is the critical compression, and

K(c) =

∫ π/2

0

dφ√
1− c2 sin2 φ

, and E(c) =

∫ π/2

0

√
1− c2 sin2 φ dφ (5)
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are complete elliptic integrals of the first and second type, respectively. The force F
as a function of the axial strain χ is shown in Fig. 2. Here, we use the following
parameters

c2 = sin2(ϑ∗/2), `x/` = 1− χ, with χ = (u− − u+)/` = χcr + ∆χ, (6)

where ϑ∗ is the angle of rotation of the tangent line at inflection points (zero moments)
along the elastica. Further down, in Section 2.3.2, we also discuss approximate relations
for the load-displacement equation, which are obtained for 0 < ∆χ� 1, i.e. for small
post-buckling compression. We assume that the elastica undergoes a simple Euler-type
buckling, and do not consider higher-order buckling modes.

2.3.1 Discussion of the non-linear interaction based on the Euler elastica
model

Equation (4) follows from the classical theory of stability of structures, discussed in
detail in the monographs [7, 21, 20]. For convenience of the reader we discuss the
derivation of the formula (4). We note that the case of hinge junctions is discussed
fully in [21]; here we apply a similar scheme to the case of a movable clamp. The
rotation ϑ(s) at a given position s along the deformed configuration of the elastica arm
is governed by the second-order differential equation

E1Iϑ′′ + F sinϑ = 0, (7)

where I is the second moment of inertia, E1 is the Young’s modulus of the beam within
the interface, and B = E1I is the flexural stiffness. Multiplying the left hand side of
Eq. (7) by ϑ′ we deduce

ϑ′
(
E1Iϑ′′ + 2F sin

ϑ

2
cos

ϑ

2

)
= 2F d

ds

(
ϑ′2

4λ2
+ sin2 ϑ

2

)
= 0, (8)

and hence
ϑ′2

4λ2
+ sin2 ϑ

2
= c2, (9)

with c2 being a constant of integration and λ2 = F/B. Using (9), together with the
transmission conditions at the interface boundary, we derive

c2 =
ϑ′2(0)

4λ2
= sin2 ϑ(`∗)

2
=
ϑ′2(`/2)

4λ2
, (10)

where `∗ denotes the position of the inflexion point, i.e. the coordinate of zero moment
Bϑ′ = 0 along the elastica (also see Fig. 1). It also follows that

ϑ′/(2λ) = +
√
c2 − sin2 ϑ/2 for s ∈ [0, `∗]

ϑ′/(2λ) = −
√
c2 − sin2 ϑ/2 for s ∈ (`∗, `/2]

. (11)
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The change of the variables

sin
ϑ

2
= c sinφ, and dϑ =

2c cosφdφ√
1− c2 sin2 φ

, (12)

is convenient for the integration of (11), which gives

`

√
F

B
= 4K(c), (13)

where K(c) is the complete elliptic integral of the first kind (see (5)).
The distance `x between the ends of the elastica along the x-axis is

`x = 2

∫ `/2

0
cosϑ(s) ds, (14)

where the integration was taken to the midpoint s = `/2, because the Euler-type post-
buckling displacement is symmetric with respect to the midpoint (see Fig. 1). On the
other hand, we can write

`x
`

= 1−∆χ− χcr, (15)

where we express the compression of the beam as (u−−u+)/` = χcr + ∆χ. Evaluating
the integral in Eq. (14) and using the equation (11) we deduce the required result

λ`x = 4 [2E(c)−K(c)] . (16)

2.3.2 Pre- and post-buckling approximations

Here we use the extensible model of an elastic beam in the pre-buckling regime, and
the classical Euler elastica inextensible model at the post-buckling stage, as in equation
(4).

The Taylor expansion of the complete elliptic integrals around c = 0 is

K(c) =
π

2

(
1 +

c2

4
+

9

64
c4 +O(c6)

)
, E(c) =

π

2

(
1− c2

4
− 3

64
c4 +O(c6)

)
. (17)

Using the second equation in (4) and assuming 0 < c� 1 we get

c2 = ∆χ− 1

8
(∆χ)2 +O((∆χ)3). (18)

Using Eq. (18) and the first equation in (4), we deduce the load-displacement relation

`

√
F
B

= 2π

(
1 +

∆χ

4
+

7

64
(∆χ)2 +O((∆χ)3)

)
. (19)
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In the limit case when ∆χ = 0, this implies F = Pc = 4π2B/`2, which is the first
critical buckling load Pc for a beam with the clamped ends. Hence, for small ∆χ the
function F (χ) can be expressed as follows

F (χ) = Pc

(
1 +

∆χ

2
+

9

32
∆χ2 +O[∆χ3]

)
. (20)

In this pre-buckling regime, the interaction between the masses is linear with respect
to the relative displacement, i.e. in Eq. (2) we use

F (χ) = E1Sχ, for χ < χcr, (21)

where we have chosen a positive sign for compression (i.e. positive F for positive χ).
The notation χcr is used for the critical axial compression level

χcr =
Pc
E1S

= 4π2
r2

`2
, with r2 =

I
S
. (22)

3 Time-harmonic scattering in the pre-buckling regime

Here, we focus on the pre-buckling regime where the interaction between the masses is
given by Eq. (21). We seek a solution to (1), with boundary conditions (2) and (3), in
the form

u(x, t) =

{
T ei(k(x−`/2)−ωt), for x ≥ `/2
u0 e

ik(x+`/2)−iωt +Re−ik(x+`/2)−iωt, for x ≤ −`/2
, (23)

where u0/` � χcr, k = ω/v is the wave number, ω is the angular frequency, and R
and T are the reflection and transmission coefficients (to be determined). Using Eqs
(2) and (23) we deduce

m−
d2u−
dt2

= −E1S (u− − u+)/`+ ikES (u0 −R) e−iωt,

m+
d2u+
dt2

= E1S (u− − u+)/`− ikEST e−iωt. (24)

The continuity conditions (3) impose

u− = (u0 +R) e−iωt, u+ = T e−iωt. (25)

Substitution of Eqs (25) into (24) gives

−m−ω2(u0 +R) = E1S
T −R− u0

`
+ ikES (u0 −R) ,

−m+ω
2T = −E1S

T −R− u0
`

− ikEST , (26)
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which is a linear algebraic system of equations for the scattering coefficients R and T .
The system can be recast into the matrix form

M̂a = b, (27)

where aT = (R, T ),

M̂ =

−m−ω
2 + E1S/`+ iωES/v −E1S/`

−E1S/` −m+ω
2 + iωES/v + E1S/`

 , (28)

and

b =

m−ω
2 + iESω/v − E1S/`

E1S/`

 . (29)

The solution of (27) gives the reflection and transmission coefficients

R =
1

D

[
ω

ω0
− i∆m

M

ω2

ω2
−
− ωω0

ω2
−

(
1− ω2

ω2
+

)]
, T = −2i

D
. (30)

Here

D =
ω

ω0
+
ωω0

ω2
−

(
1− ω2

ω2
+

)
− i
(

2− ω2

ω2
−

)
,

ω0 =
vE1

`E
, ω2

+ =
E1S

µ`
, ω2

− =
E1S

M`
, ,

M = m+ +m−, ∆m = m+ −m−, and µ =
m−m+

m+ +m−
. (31)

3.1 Transmission resonance

The reflection coefficient in Eq. (30) vanishes when

ω0

ω2
−ω

2
+

ω2 − i∆m
M

ω

ω2
−

+
1

ω0
− ω0

ω2
−

= 0 (32)

and the corresponding roots are

ω =
ω2
+

ω0

{
i

2

∆m

M
±
[
−1

4

∆m2

M2
+

1

ω2
+

(
ω2
0 − ω2

−
)]1/2}

. (33)

Eq. (32) has real roots if
∆m = 0, and ω2

0 > ω2
−. (34)
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Figure 3: Reflectance and transmittance calculated using Eq. (30). The transmission
resonance occurs at ω = ωT given in Eq. (35). We have chosen the frequencies ω0 = 3,
ω+ = 2.45, ω− = 1.23, resulting in ωT = 2.24.

The radian frequency corresponding to the transmission resonance is

ω = ωT =
ω2
+

ω0

[
ω2
0 − ω2

−
ω2
+

]1/2
. (35)

If we assume that E1 = E, then Eq. (35) can be rewritten as

ωT =
ES

mv

[
ρ̄

ρ
− 1

]1/2
, where ρ̄ =

2m

`S
, (36)

and m = m− = m+.

4 Transient scattering from the non-linear interface

We note that the time-harmonic form of the displacement field (23) in the problem
with the non-linear interface is no longer valid. At both sides from the non-linear
interface, a general solution of the wave equation is employed and it represents traveling
waves in the semi-infinite rods whose shape is determined as a result of the interaction
with the non-linear interface. A solution to the transient problem (1) with non-linear
transmission conditions (2) can be sought using the travelling wave Ansatz
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Figure 4: Transient solutions of the system (41) with homogeneous initial conditions
(42). The parameters are the same as in Fig. 2. The different panels refer to different
values of the incident wave amplitude u0. The frequency of the incident wave is chosen
to be ω = ωT = 44.7, for which a transmission resonance (see Fig. 3) in the time-
harmonic linear problem occurs, as demonstrated in the diagram (a) for u0 = 0.1 ucr.
For larger amplitude, the simulation in the diagram (b) shows a higher reflection.

u(x, t) =

{
u1(x, t) = u0 cos

(
ω
v (x+ `

2)− ωt
)

+R
(
−ω
v (x+ `

2)− ωt
)
, if x ≤ −`/2

u2(x, t) = T
(
ω
v (x− `

2)− ωt
)
, if x ≥ `/2

,

(37)
where we have chosen to express the functions R and T in the form of left-propagating

and right-propagating waves, respectively. By introducing the variables τ = −ωt and
ξ± = ω(±x/v − t), we observe that

∂

∂x
f(ξ±) = ∓ω

v
f ′(ξ±), and

∂

∂t
f(ξ±) = ωf ′(ξ±), (38)
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Figure 5: Transient solutions of (41) with parameters as in Fig. 2 with non-
homogeneous initial conditions (43). The panels (a) and (b) refer to different values
of the incident wave amplitude u0. The frequency of the incident wave is chosen to
be ω = ωT = 44.7, for which a transmission resonance in the time-harmonic linear
problem occurs.

where f is a given scalar function. Using (37) and (38) the transmission conditions (2)
and (3) can be written in the form

ü1(x, t)|x=−`/2 = −ω2
(
u0 cos(τ)−R′′(τ)

)
,

∂

∂x
u1(x, t)

∣∣∣∣
x=−`/2

=
ω

v

(
u0 sin(τ) +R′(τ)

)
,

ü2(x, t)|x=+`/2 = ω2T ′′(τ),

∂

∂x
u2(x, t)

∣∣∣∣
x=+`/2

= −ω
v
T ′(τ). (39)
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Figure 6: Transient solutions of the system (41) with parameters as in Fig. 2 and
non-homogeneous initial conditions (43). The different panels refer to different values
of the incident wave amplitude u0. The frequency of the incident wave is chosen to
be ω = ωT = 28.3, for which a transmission resonance in the time-harmonic linear
problem exists (see u0 = 0.1 ucr and cf. with Fig. 3).

Furthermore, the transmission conditions (2) yield

−ω2m−
(
u0 cos(τ)−R′′(τ)

)
=
ESω

v

(
u0 sin(τ) +R′(τ)

)
−F(u0 cos(τ) +R(τ), T (τ)),

ω2m+T
′′(τ) =

ESω

v
T ′(τ) + F(u0 cos(τ) +R(τ), T (τ)), (40)

or equivalently

R′′(τ) = u0 cos(τ) +
ES

m−ωv
u0 sin(τ) +

ES

m−ωv
R′(τ)− F(u0 cos(τ) +R(τ), T (τ))

m−ω2
,

T ′′(τ) =
ES

vωm+
T ′(τ) +

F(u0 cos(τ) +R(τ), T (τ))

m+ω2
. (41)

In Eqs (41), we use the expression (4) for the load-displacement relation F(u−, u+),
with notation consistent with the one already introduced in the context of Eq. (2).

Initial conditions and numerical simulations. In the computations discussed
here, R(t) and T (t) are measured at the left and right ends of the interface, respectively.
In order to compute functions R and T , a set of initial conditions for the system (41)
has to be chosen.

First, we consider homogeneous initial conditions

R(0) = T (0) = R′(0) = T ′(0) = 0. (42)

For this case, the results of the numerical simulations are shown in Fig. 4, which
includes two parts: in the first part (a) the amplitude of the incident wave is small,
while in the second part (b) the amplitude has been increased. In both cases we used
the transmission resonance frequency for the incident wave.
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Second, the time-harmonic analysis conducted in section 3.1, suggests the use of
initial conditions compatible with the prediction of the time-harmonic analysis. Thus,
at the transmission resonance frequency, we choose

R(0) = R′(0) = T ′(0) = 0, and T (0) = u0. (43)

For this case, the results of the simulations are shown in Fig. 5, which also includes
two parts, corresponding to a small amplitude (part (a)) and a finite amplitude (part
(b)) of the incident wave.

In both cases, it has been shown that the small amplitude incident wave is consistent
with the transmission resonance, while increase in the amplitude triggers the non-linear
response from the structured interface.

In both cases it has been observed that the non-linear response of the structured
interface has suppressed the resonance transmission, and hence has lead to a higher
reflection from the interface region.

Furthermore, in Fig. 6 we present the case of a lower frequency for the transmis-
sion resonance. The initial conditions (43) are used in this simulation. The part (a)
of the figure is fully consistent with the transmission resonance and shows very low
reflection, while the part (b) corresponding to a larger amplitude shows a completely
different process, where the reflection from the non-linear interface is significant. In
this frequency regime, the function R(t) is asymmetric which corresponds to relatively
low resistance of the buckled beam when the left end of the interface moves in the
positive direction.

5 Concluding remarks and discussion

Motivated by the work of Bigoni et al. [1, 2, 3, 4, 7], and Maurin and Spadoni [13,
14, 15, 16] we have identified interesting transmission/reflection configurations in the
context of the dynamic response of a non-linear structured interface embedded into the
linear elastic bar. It has been demonstrated that a transmission resonance, existing in
the linearised system, can be suppressed via the non-linear response of the interface
interacting with an incident transient waveform.

This study brought further thoughts, based on the homogenisation of a nonlinear
chain. Assuming a linear semi-infinite elastic bar,

∂2u

∂t2
− c2∂

2u

∂x2
= 0, x < 0, (44)

is in contact with a semi-infinite non-linear chain of point-masses of magnitude m
which occupies the region x > 0 (as in [13, 14]), one may be interested in evaluating
the reflection from the interface subjected to an incident pulse. In Eq. (44), u(x, t) is
the longitudinal displacement, and c is the longitudinal wave speed. The semi-infinite
non-linear chain of masses is assumed to possess a homogeneous buckling level `x, and
we consider the dynamics response of the system about such buckled configuration,
in the post-buckling regime and for small amplitude with respect to such buckling
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level. The homogenisation approach was discussed in [15], where the dynamic response
was studied for a periodic post-buckled lattice, with an elementary cell including a
buckled beam with hinge junctions. In the long wavelength regime and when the wave
amplitude is smaller than the static buckling level `x the homogenisation approximation
is governed by the equation of the Boussinesq type [13]

∂2u

∂t2
= c20

∂2u

∂x2
+ 2c0γ

∂4u

∂x4
− c21

∂2u

∂x2
∂u

∂x
, x > 0, (45)

where c20 = Pc`
2
x/(2

7m`)(1+`x/`)
3, c21 = 3/211(Pc`

3
x/(`

2m)(1+`x/`)
4 and γ = c0`

2
x/24;

the notations of Section 2.3 are used here, apart from Pc which represents the critical
buckling load for a beam with hinged ends. In the above equation, the coefficients c0
and c1 have the dimensions of the wave speed, and the coefficient γ near the fourth-
order term is determined via the higher-order lattice homogenisation procedure.

We note the different orders of the equations (44), (45) at different sides of the inter-
face, which suggests the requirement for the boundary layer analysis in the transition
region. Problems of this kind also occur for formulations based on configurational force
models involving a dynamic transition from the longitudinal elastic waves to buckled
beams across the sliding sleeve interface.

The dynamics of the non-linear interface incorporating a system of movable clamps
and buckled beams can be traced without additional use of the boundary layers near
the junction region; in this case, the shape of the envelope function may depend on
the initial conditions and the amplitude of the incident wave. The appropriate choice
of initial conditions may lead to the higher transmission over the given time interval.
Although this observation is not surprising, it is important as generally transmission
resonances observed in linearised time-harmonic formulations for structured interfaces
are suppressed by the non-linear interaction in the transient regime (see Figs 4 and 5).
In addition, by observing Fig. 4 we note that, at sufficiently large times, the reflection
functions converge to a constant non-zero asymptotic value (see dashed black line),
while in Fig. 5 the average value of the reflection function converges to zero. This
corresponds to the two-mass system moving its centre of mass over time as a result of
the driving elastic waves. The asymptote is reached when the momentum per unit time
provided by the wave is equilibrated by the surrounding elastic bar. A non-zero average
asymptotic value could be measured experimentally, by measuring the time-dependent
phase shift of outgoing waves.

Further extension of the analysis of dynamic non-linear interfaces is envisaged to
configurational force models, which may incorporate an additional boundary layer study
to account for possible discontinuity in the displacements or their derivatives.
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