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Chapter 1

Introduction

In this thesis we study the discreteness criteria for complex hyperbolic ultra-parallel
triangle groups of type [m,m, 0;n1, n2, 2] (see the explanation of this notation later),
generated by three complex reflections ι1, ι2 and ι3 of orders n1, n2 and 2 respectively
in complex hyperbolic 2-space H2

C.

A complex hyperbolic triangle group is a group generated by complex reflections
of arbitrary orders in the sides of a complex hyperbolic triangle. We define a trian-
gle in H2

C as three distinct complex slices. The type of triangle formed depends on
how the pairs of slices intersect.

One example is if each pair of complex slices intersect in H2
C ∪ ∂H2

C. The angle
at this vertex is defined as the infimum of the angles between the real geodesics
contained in the complex geodesics and passing through the intersection point. In
this case, a complex hyperbolic triangle group is a group generated by three complex
reflections, denoted ι1, ι2 and ι3, in the three complex geodesics connecting the pairs
of vertices of the triangle.

Another example is if each pair of complex slices are disjoint in H2
C, then we mea-

sure the distance between the real geodesics contained in the complex geodesics. In
this case, a complex hyperbolic ultra-parallel triangle group is a group generated by
three complex reflections, denoted ι1, ι2 and ι3, in the three complex geodesics of
distances m1,m2 and m3 apart.

In principle, a mixed case is also possible, where one or two pairs of complex slices
intersect inside H2

C, while the remaining pairs of complex slices are disjoint in H2
C.

A complex hyperbolic triangle is uniquely determined up to isometry by the angles
or distances between the complex geodesics and the angular invariant α ∈ [0, 2π].
For more details see section 2.1.4. Note that unlike real reflections, complex reflec-
tions can be of arbitrary order. Work on higher order reflections has been discussed
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Chapter 1. Introduction

by Parker and Paupert [19] and Pratoussevitch [21].

One of the main areas of study in complex hyperbolic geometry is lattices in PU(n, 1)
- the holomorphic isometry group of the n-dimensional complex hyperbolic space Hn

C.
Complex hyperbolic space is an example of a non-compact symmetric space of rank
1. Discrete subgroups of finite covolume, i.e. lattices, in H2

C are isolated points
in a large space. A fundamental problem in the study of symmetric spaces is the
existence of non-arithmetic lattices. Complex hyperbolic space is the only class of
symmetric spaces of non-compact type where this question is still open in higher
dimensions.

In 1980, Mostow [13] constructed examples of lattices in H2
C from triangle groups

and gave the first examples of non-arithmetic lattices in PU(2, 1). Following this,
Deligne and Mostow [3] constructed further examples of non-arithmetic lattices in
PU(2, 1) and PU(3, 1). Since then, Deraux, Parker and Paupert [7], [6], [5] have
produced examples of new non-arithmetic lattices in PU(2, 1) which are not com-
mensurable to each other.

More recently, Deraux [4] has given a new non-arithmetic lattice in PU(3, 1) (new
in a sense that they are not commensurable to any Deligne-Mostow examples). The
question still remains open of whether non-arithmetic lattices in PU(n, 1) for n ≥ 4
exist. The question of classifying all such lattices is still open even for complex
hyperbolic 2-space H2

C.

This is the motivation for studying complex hyperbolic triangle groups in H2
C.

In 1992, Goldman and Parker [18] were the first to study the ideal triangle group
(triangles with vertices on the boundary). They proved that an ideal triangle group
representation is a discrete embedding for an interval in the parameter space. They
also conjectured that the ideal triangle group representations were discrete and
faithful if and only if the product of the three generators, ι1ι2ι3, was not elliptic.
A stronger version of this conjecture was then proved by Schwartz [22]. He proved
that ideal triangle group representations are discrete and faithful if and only if ι1ι2ι3
is not elliptic and are not discrete otherwise.

Much work followed that of Goldman and Parker, but the work we are mainly inter-
ested in is the ultra-parallel case. In his thesis [24] in 2000, Justin Wyss-Gallifent
studied ultra-parallel triangle groups. He used a ’ping-pong’ method to show dis-
creteness, similar to that used by Schwartz [22]. Wyss-Gallifent used this approach
in studying ultra-parallel triangle groups with distances between the complex slices
l, l, 2l and l, l, 0 and obtained partial results similar to that of Goldman and Parker
[18] for the ideal case.
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More recently Monaghan [11] and Monaghan, Parker and Pratoussevitch [12] consid-
ered the case of ultra-parallel triangle groups with distances m1,m2, 0 and obtained
more general discreteness results. In these studies, the complex reflections were
all of order 2. As stated earlier, complex reflections can be of arbitrary order. In
this thesis, we will set out the discreteness conditions for the case of complex hyper-
bolic ultra-parallel triangle groups with distances between the complex slices m,m, 0
with complex reflections of orders n1, n2 and 2 respectively. We denote these groups
[m,m, 0;n1, n2, 2]-complex hyperbolic triangle groups.

This thesis is organised as follows. In chapter 2 we discuss the background on
complex hyperbolic geometry and the main tools needed for the proofs. We begin
by introducing the complex hyperbolic 2-space and a model of the complex hyper-
bolic plane. We describe the isometries and how to classify them and then move
on to define complex slices and complex hyperbolic triangle groups. We finish by
introducing chains and Heisenberg space, which is where most of the calculations
and proofs will be performed.

Chapter 3 gives a parametrisation of [m1,m2, 0;n1, n2, n3]-triangle groups. We rein-
troduce criteria for discreteness called the compressing method used in [22] and [24],
which uses a ’ping-pong’ method to show discreteness of a group. We then discuss
the possible orders for the complex reflections ι1 and ι2 and use the work of Her-
sonsky and Paulin [9] and Parker [17] to prove what orders can occur in a discrete
group:

Theorem. (3.3.2) A complex hyperbolic ultra-parallel [m1,m2, 0;n1, n2, 2]-triangle
group can only be discrete if the unordered pair of orders of the complex reflections
ι1 and ι2 is one of

{2, 2}, {2, 3}, {2, 4}, {2, 6}, {3, 3}, {3, 6} or {4, 4}.

In chapter 4 we find discreteness conditions on the angular invariant α and on
the distance m for the complex hyperbolic ultra-parallel [m,m, 0;n1, n2, 0]-triangle
group for all possible orders of the complex reflections ι1 and ι2 (except for the
{2, 2} case as this has been considered previously). We use the ’ping-pong’ method
on the boundary of the complex hyperbolic 2-space ∂H2

C and identify a domain of
discreteness in the parameter space for each case:

Proposition. (4.1.2) & (4.2.2). A complex hyperbolic ultra-parallel [m,m, 0;n, 3, 2]-
triangle group with n ∈ {2, 3} is discrete if the following conditions on the angular
invariant α and on m are satisfied:

cos(α) ≤ −1

2
and m ≥ log(3).
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Chapter 1. Introduction

Proposition. (4.3.2) & (4.4.2). A complex hyperbolic ultra-parallel [m,m, 0;n, 4, 2]-
triangle group with n ∈ {2, 4} is discrete if the following conditions on the angular
invariant α and on m are satisfied:

cos(α) ≤ −
√

3

2
and m ≥ log

(
3 + 2

√
2
)
.

Proposition. (4.5.2) & (4.6.4). A complex hyperbolic ultra-parallel [m,m, 0;n, 6, 2]-
triangle group with n ∈ {2, 3} is discrete if the following conditions on the angular
invariant α and on m are satisfied:

cos(α) ≤ −
√

3

2
and m ≥ log

(
7 + 4

√
3
)
.

Chapter 5 contrasts the discreteness results with non-discreteness results. Here we
use the complex hyperbolic version of Shimizu’s Lemma introduced in [16] to find
the conditions on the angular invariant α and the distance m for which the complex
hyperbolic ultra-parallel [m,m, 0;n1, n2, 2]-triangle groups are not discrete:

Proposition. (5.2.1). A complex hyperbolic ultra-parallel [m,m, 0; 3, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

12
√

3 cosh2
(
m
2

) .
Proposition. (5.3.1). A complex hyperbolic ultra-parallel [m,m, 0; 2, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

48
√

3 cosh2
(
m
2

) .
Proposition. (5.4.1). A complex hyperbolic ultra-parallel [m,m, 0; 2, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

32 · cosh2
(
m
2

) .
Proposition. (5.5.1). A complex hyperbolic ultra-parallel [m,m, 0; 4, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

8 · cosh2
(
m
2

) .
Proposition. (5.6.1). A complex hyperbolic ultra-parallel [m,m, 0; 2, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

8
√

3 cosh2
(
m
2

) .
10



Proposition. (5.7.1). A complex hyperbolic ultra-parallel [m,m, 0; 3, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

4
√

3 cosh2
(
m
2

) .
We then further these non-discreteness results by considering the results of Parker
[15]. Here we obtain further conditions on the angular invariant α and the distance
m for which the complex hyperbolic ultra-parallel [m,m, 0;n1, n2, 2]-triangle groups
are not discrete:

Proposition. (5.8.2). A complex hyperbolic ultra-parallel [m,m, 0; 3, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

6
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

6
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

Proposition. (5.8.3). A complex hyperbolic ultra-parallel [m,m, 0; 2, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

24
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

24
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

Proposition. (5.8.4). A complex hyperbolic ultra-parallel [m,m, 0; 2, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

16 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

16 cosh2
(
m
2

)
for some integer q ≥ 3.

Proposition. (5.8.5). A complex hyperbolic ultra-parallel [m,m, 0; 4, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

4 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

4 cosh2
(
m
2

)
for some integer q ≥ 3.

Proposition. (5.8.6). A complex hyperbolic ultra-parallel [m,m, 0; 2, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

4
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

4
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.
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Chapter 1. Introduction

Proposition. (5.8.7). A complex hyperbolic ultra-parallel [m,m, 0; 3, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

2
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

2
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

Finally chapter 6 gives a brief summary of the results obtained throughout the thesis
and suggestions on how to improve these results. Comparing the values of α and
m for discreteness against non-discreteness for each case, we notice that there is a
gap. This is illustrated for the case of ultra-parallel [m,m, 0; 3, 3, 2]-triangle groups
in the figure below.

α

m

0

2π

0

4π
3

2π
3

log(3)

Figure 1.1: Gap between discreteness (light grey) and non-discreteness (dark grey)
results.

We suggest several ways of attempting to close this gap which would improve the
known results and also give ideas on how to further this work.
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Chapter 2

Preliminaries

2.1 Complex Hyperbolic 2-Space

In order to introduce complex hyperbolic 2-space, H2
C, let C2,1 be the complex vector

space of dimension 3 equipped with a Hermitian form 〈·, ·〉 of signature (2, 1). We
can describe the Hermitian form with a 3 × 3 Hermitian matrix J , with 2 positive
eigenvalues and 1 negative eigenvalue. The choice of a particular Hermitian form
is equivalent to a choice of a basis in C2,1. The Hermitian form we will consider is
defined as

〈z,w〉 = w∗Jz = z1w̄1 + z2w̄2 − z3w̄3,

where z = (z1, z2, z3)t, w = (w1, w2, w3)t, and the Hermitian matrix is given by

J =

1 0 0
0 1 0
0 0 −1

 .

2.1.1 The Projective Model of the Complex Hyperbolic
Plane

If z ∈ C2,1 then 〈z, z〉 is real. Thus we define subsets V−, V0 and V+ of C2,1 as follows

1. V− = {z ∈ C2,1 | 〈z, z〉 < 0};

2. V0 = {z ∈ C2,1 − {0} | 〈z, z〉 = 0};

3. V+ = {z ∈ C2,1 | 〈z, z〉 > 0}.

We say that z ∈ C2,1 is negative, null or positive if z is in V−, V0 or V+ respectively.
For any non-zero complex scalar λ, the point λz is negative, null or positive if and
only if z is. This is because 〈λz, λz〉 = |λ|2 〈z, z〉. We define a projection map P on

13



Chapter 2. Preliminaries

the points of C2,1 with z3 6= 0. This projection map is defined by

P : z =

z1

z2

z3

 7→ (
z1/z3

z2/z3

)
∈ P

(
C2,1

)
.

That is, provided z3 6= 0,

z = (z1, z2, z3) 7→ [z] = [z1 : z2 : z3] =

[
z1

z3

:
z2

z3

: 1

]
.

Definition 2.1.1. The projective model of the complex hyperbolic plane is defined
to be the collection of negative lines in C2,1 and its boundary is defined to be the
collection of null lines. That is

H2
C = P (V−) and ∂H2

C = P (V0) .

Definition 2.1.2. The metric on H2
C, called the Bergman metric, is given by the

distance function ρ defined by the formula

cosh2

(
ρ([z], [w])

2

)
=
〈z, w〉〈w, z〉
〈z, z〉〈w,w〉

,

where [z] and [w] are the images of z and w in C2,1 under the projectivisation map
P.

2.1.2 Isometries

Let A be a 3 × 3 complex matrix that preserves the Hermitian form above, i.e.
A ∈ U(2, 1) is a unitary matrix. That is, for z and w in C2,1, we have

〈Az,Aw〉 = (Aw)∗JAz = w∗A∗JAz = w∗(A∗JA)z.

We want this to be equal to 〈z, w〉 = w∗Jz. Therefore

〈Az,Aw〉 = 〈z, w〉 ⇔ w∗(A∗JA)z = w∗Jz.

If we let z and w run through a basis of C2,1 this implies that the matrices coincide,
so for all z and w we have

〈Az,Aw〉 = 〈z, w〉 ⇔ A∗JA = J ⇔ A−1 = J−1A∗J.

Any matrix in U(2, 1) which is a non-zero complex scalar multiple of the identity
matrix, Id, maps each line in C2,1 to itself and so acts trivially on the complex
hyperbolic space.

14



2.1. Complex Hyperbolic 2-Space

Definition 2.1.3. The projective unitary group PU(2, 1) is the quotient of U(2, 1)
by the right multiplication of U(1), where U(1) is identified with the set
{eiθ Id : 0 ≤ θ ≤ 2π}. That is

PU(2, 1) = U(2, 1)/U(1).

Sometimes we will consider SU(2, 1), the group of matrices with determinant 1
which are unitary with respect to the Hermitian form. The group SU(2, 1) is a
3-fold covering of PU(2, 1):

PU(2, 1) = SU(2, 1)/{Id, w Id, w2 Id},

where w = −1+i
√

3
2

is a cube root of unity.

Since the Bergman metric is given in terms of the Hermitian form, we see
that if A is unitary with respect to the Hermitian form then A acts isometrically on
the projective model of the complex hyperbolic space. Thus PU(2, 1) is a subgroup
of the complex hyperbolic isometry group. There are isometries of H2

C not in
PU(2, 1). For example, consider the complex conjugation z 7→ z̄:

cosh2

(
ρ(z̄, w̄)

2

)
=
〈z, w〉 〈w, z〉
〈z, z〉〈w,w〉

=
〈w, z〉〈z, w〉
〈z, z〉〈w,w〉

= cosh2

(
ρ(z, w)

2

)
.

Therefore, complex conjugation is also an isometry of the complex hyperbolic space.
The following theorem will describe the full isometry group of H2

C:

Theorem 2.1.4. Every isometry of H2
C is either holomorphic or anti-holomorphic.

Moreover, each holomorphic isometry of H2
C is given by a matrix in PU(2, 1) and

each anti-holomorphic isometry is given by complex conjugation followed by a matrix
in PU(2, 1).

Proof. For proof, see [14], Theorem 3.5 and [8], section 6.2.

In a similar way to real hyperbolic geometry, we are able to classify the holomor-
phic isometries by their fixed point behaviour. A holomorphic complex hyperbolic
isometry A is said to be

1. Loxodromic if it has exactly two fixed points in ∂H2
C;

2. Parabolic if it has exactly one fixed point in ∂H2
C;

3. Elliptic if it has at least one fixed point in H2
C;

We are able to further refine this classification by considering eigenvalues and
eigenvectors of matrices in SU(2, 1). An elliptic element is called regular elliptic if
all of its eigenvalues are distinct. An element whose eigenvalues are all 1 is called
unipotent. With the exception of the identity, all unipotent elements are parabolic.
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To determine the type of isometry by the trace of the corresponding matrix,
we can use the discriminant function introduced in [8] (Theorem 6.2.4):

f(z) = |z|4 − 8 Re(z3) + 18|z|2 − 27.

Suppose A ∈ SU(2, 1), then

1. A is regular elliptic if and only if f(tr(A)) < 0;

2. A is loxodromic if and only if f(tr(A)) > 0;

3. A is either a complex reflection in a complex geodesic, or a complex reflection
about a point, or is parabolic if and only if f(tr(A)) = 0.

Remark 2.1.5. The type of isometry can be determined from the position of the trace
of the corresponding matrix in the complex plane. The deltoid curve, f(z) = 0, has
the property that an isometry A ∈ SU(2, 1) is regular elliptic if and only if tr(A) is
inside the deltoid, and is loxodromic if and only if tr(A) is outside the deltoid.

Figure 2.1: The deltoid given by f(z) = 0.

2.1.3 Complex Geodesics

Definition 2.1.6. A complex geodesic is a projectivisation of a 2-dimensional com-
plex subspace of C2,1. In fact, complex geodesics are totally geodesic subspaces of
real dimension 2. Any complex geodesic is isometric to

{[z : 0 : 1] | z ∈ C}

16



2.1. Complex Hyperbolic 2-Space

in the projective model. Given any two points in H2
C there is a unique complex

geodesic containing them. Any positive vector c ∈ C2,1 determines a 2-dimensional
complex subspace

{z ∈ C2,1 | 〈c, z〉 = 0}.

Projecting this subspace we obtain a complex geodesic

P
(
{z ∈ C2,1 | 〈c, z〉 = 0}

)
.

Conversely, any complex geodesic is represented by a positive vector c ∈ C2,1 called
a polar vector of the complex geodesic. To describe how two complex geodesics
intersect, we first need the following definition.

Definition 2.1.7. The Hermitian cross-product is defined to be

� : C2,1 × C2,1 → C2,1,

explicitly given asz1

z2

z3

�

w1

w2

w3

 =

∣∣∣∣∣∣∣
z̄1 w̄1

−→e1

z̄2 w̄2
−→e2

−z̄3 −w̄3
−→e3

∣∣∣∣∣∣∣ =

z3w2 − z2w3

z1w3 − z3w1

z1w2 − z2w1

 .
If we have two complex geodesics, C1 and C2, with respective polar vectors, c1 and
c2, we can normalise the polar vectors so that

〈c1, c1〉 = 〈c2, c2〉 = 1.

Assuming that the complex geodesics do not coincide, then we have three possible
types of intersection:

1. The complex geodesics C1 and C2 intersect at a single point in H2
C if and only

if ∣∣〈c1, c2〉
∣∣ < 1,

in which case c1 � c2 is a negative vector that corresponds to the intersection
point and ∣∣〈c1, c2〉

∣∣ = cos(θ),

where θ ∈ [0, π/2] is the angle of intersection between C1 and C2.

2. The complex geodesics C1 and C2 intersect at a single point in ∂H2
C if and

only if ∣∣〈c1, c2〉
∣∣ = 1,

in which case c1 � c2 is a null vector and corresponds to the intersection point.
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3. The complex geodesics C1 and C2 are disjoint in H2
C ∪ ∂H2

C if and only if∣∣〈c1, c2〉
∣∣ > 1,

in which case c1 � c2 is a positive vector that corresponds to the intersection
point of C1 and C2 outside H2

C ∪ ∂H2
C and∣∣〈c1, c2〉
∣∣ = cosh(m/2),

where m is the distance between C1 and C2, i.e. inf{d(w, z) | w ∈ C1, z ∈ C2}.

Definition 2.1.8. For a given complex geodesic C, a minimal complex hyperbolic
reflection of order n in C is the isometry ι

(n)
C (= ιC) in PU(2, 1) of order n with fixed

point set C given by

ι
(n)
C (z) = −z + (1− µ)

〈z, c〉
〈c, c〉

c,

where c is a polar vector of C and µ = exp(2πi/n). To show that ι
(n)
C is of order n

see [21].

2.1.4 Complex Hyperbolic Triangle Groups

Definition 2.1.9. A complex hyperbolic triangle is a triple (C1, C2, C3) of complex
geodesics in H2

C.

The different types of triangle groups depend on how the complex geodesics intersect
each other. The type we will consider is when the complex geodesics do not intersect
in H2

C. That is, the case when each pair of complex geodesics is ultra-parallel.

Definition 2.1.10. A triangle (C1, C2, C3) is a complex hyperbolic ultra-parallel
[m1,m2,m3]-triangle if the complex geodesics Ck−1 and Ck+1 are ultra-parallel at
distance mk ≥ 0 for k = 1, 2, 3 (subscripts are modulo 3).

Remark 2.1.11. The case mk = 0 refers to the case when Ck−1 and Ck+1 are asymp-
totic and so intersect on the boundary with distance equal to 0.

Definition 2.1.12. A complex hyperbolic ultra-parallel [m1,m2,m3;n1, n2, n3]-
triangle group is a subgroup of PU(2, 1) generated by ι1, ι2, ι3 where ιk is the minimal
complex reflection of order nk in Ck and C1, C2, C3 is a complex hyperbolic ultra-
parallel [m1,m2,m3]-triangle (C1, C2, C3).

One of the main questions we can ask is, when is a given complex hyperbolic
ultra-parallel [m1,m2,m3;n1, n2, n3]-triangle group discrete?

For each fixed triple [m1,m2,m3] in H2
C, the space of [m1,m2,m3]-triangles

up to isometry is of real dimension one. We can describe a parametrisation of the
space of complex hyperbolic triangles in H2

C by means of an angular invariant α
(for more details see [21]).

18
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Definition 2.1.13. The angular invariant α of the triangle (C1, C2, C3) is defined
as

α = arg

 3∏
k=1

〈ck−1, ck+1〉

 ,

where ck is the normalised polar vector of the complex geodesic Ck.

We use the following proposition, given in [21], which gives criteria for the existence
of a triangle group in terms of the angular invariant.

Proposition 2.1.14. An [m1,m2,m3]-triangle in H2
C is determined uniquely up to

isometry by the three distances between the pairs of complex geodesics and the angular
invariant α. For any α ∈ [0, 2π], an [m1,m2,m3]-triangle with angular invariant α
exists if and only if

cos(α) <
r2

1 + r2
2 + r2

3 − 1

2r1r2r3

,

where rk = cosh(mk/2).

In the case m3 = 0 we have r3 = 1 and

r2
1 + r2

2 + r2
3 − 1

2r1r2r3

=
r2

1 + r2
2

2r1r2

≥ 1.

So Proposition 2.1.14 states that for any α ∈ (0, 2π) there exists a unique (up to
isometry) [m1,m2, 0]-triangle in H2

C.

2.1.5 Heisenberg Group

In the same way that the boundary of the real hyperbolic space is identified with
the one point compactification of the Euclidean space of one dimension lower, we
can identify the boundary of the complex hyperbolic space ∂H2

C with a one point
compactification of the Heisenberg group.

Definition 2.1.15. The Heisenberg space is defined as

N = C× R ∪ {∞} = {(ζ, ν) | ζ ∈ C, ν ∈ R} ∪ {∞}.

One homeomorphism taking ∂H2
C to N is given by the projection:

[z1 : z2 : z3] 7→

(
z1

z2 + z3

, Im

(
z2 − z3

z2 + z3

))
if z2 + z3 6= 0, [0 : z : −z] 7→ ∞.

We can visualise this projection as a stereographic projection from the 3-dimensional
sphere S3 ∼= ∂H2

C in R4 to R3 ∼= N .
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Definition 2.1.16. The Heisenberg group is the set of all pairs (ζ, ν) ∈ C×R with
the group law

(ζ1, ν1) ∗ (ζ2, ν2) =
(
ζ1 + ζ2, ν1 + ν2 + 2 Im

(
ζ1ζ̄2

))
.

Note that (0, 0) is the identity element and (−ζ,−ν) is the inverse element of (ζ, ν).

The centre of N consists of elements of the form (0, ν) for ν ∈ R. The Heisenberg
group is not abelian but is 2-step nilpotent. To see this, observe that

(ζ1, ν1) ∗ (ζ2, ν2) ∗ (−ζ1,−ν1) ∗ (−ζ2,−ν2) =
(

0, 4 Im
(
ζ1ζ̄2

))
.

Therefore, the commutator of any two elements lies in the centre.

Recall an alternaive description of the Heisenberg group N :

Definition 2.1.17. The three dimensional Heisenberg group is given as

N =


1 x y

0 1 z
0 0 1

∣∣∣∣∣ x, y, z ∈ R

 ,

the group of 3 × 3 upper triangular matrices. The correspondence with C × R is

given as (x, y, z) 7→
(
iz−x

2
, 2y−xz

2

)
.

Definition 2.1.18. For any integer k 6= 0, we obtain a uniform lattice Nk in N
which is the subgroup generated by

a =

1 0 0
0 1 1
0 0 1

 , b =

1 1 0
0 1 0
0 0 1

 and c =

1 0 1
k

0 1 0
0 0 1

 .

The group Nk has the presentation

Nk = 〈a, b, c | [b, a] = ck, [c, a] = [c, b] = 1〉.

Remark 2.1.19. Any uniform lattice in N is isomorphic to Nk for some k 6= 0. For
more details see section 6.1 in [1].

Definition 2.1.20. The group generated by translations and U(n− 1) act isomet-
rically with respect to several left-invariant metrics. This is the group of Heisenberg
isometries. The metric we will consider is the Cygan metric given as

ρ0

(
(ζ1, ν2), (ζ2, ν2)

)
=
∣∣∣|ζ1 − ζ2|2 − i(ν1 − ν2)− 2i Im(ζ1ζ̄2)

∣∣∣1/2.
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Definition 2.1.21. A Heisenberg translation T(ξ,ν) by (ξ, ν) ∈ N is given by

(ζ, ω) 7→ (ξ, ν) ∗ (ζ, ω) = (ξ + ζ, ν + ω + 2 Im(ξζ̄)).

T(ξ,ν) is an isometry of N with respect to the Cygan metric and corresponds to the
following matrix in PU(2, 1): 1 ξ ξ

−ξ̄ 1− |ξ|
2−iν
2

−|ξ|
2−iν
2

ξ̄ |ξ|2−iν
2

1 + |ξ|2−iν
2

 .

A vertical Heisenberg translation is a Heisenberg translation of the form

(ζ, ω) 7→ (0, ν) + (ζ, ω) = (ζ, ω + ν), for ν ∈ R,

which is just a vertical Euclidean translation.

Definition 2.1.22. A Heisenberg rotation Rµ by µ ∈ C, with |µ| = 1, is given by

(ζ, ω) 7→ (µ · ζ, ω).

Rµ is an isometry of N with respect to the Cygan metric and corresponds to the
following matrix in PU(2, 1): µ 0 0

0 1 0
0 0 1

 .

Following Goldman [8], section 4.2.2, we refer to the group generated by Heisenberg
translations and Heisenberg rotations as the group Isom(N ) of Heisenberg isometries
of N . The group of Heisenberg translations can be identified with N , and the group
of Heisenberg rotations can be identified with U(1) = {µ ∈ C | |µ| = 1}. The group
Isom(N ) has the structure of a semi-direct product N o U(1).

2.1.6 Chains

Definition 2.1.23. A complex geodesic in H2
C is homeomorphic to a disc, its in-

tersection with the boundary of the complex hyperbolic plane is homeomorphic to
a circle. Such circles that arise as the boundaries of complex geodesics are called
chains.

There is a bijection between chains and complex geodesics. We can therefore,
without loss of generality, talk about reflections in chains instead of reflections in
complex geodesics.

The description of chains in the Heisenberg space N is as follows, for more
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details see [8]. Chains passing through ∞ are represented as vertical straight lines
defined by ζ = ζ0. Such chains are called vertical. The vertical chain Cζ0 defined by
ζ = ζ0 has a polar vector

cζ0 =

 1
−ζ̄0

ζ̄0

 .
A chain not containing ∞ is called finite. A finite chain is represented by an ellipse
whose vertical projection C×R→ C is a circle in C. There is a unique finite chain
for each point (ζ0, ν0) ∈ C×R and r0 > 0. The projection to C is the circle of radius
of r0 centred at ζ0. The finite chain with centre (ζ0, ν0) ∈ N and radius r0 > 0 has
a polar vector  2ζ0

1 + r2
0 − ζ0ζ̄0 + iν0

1− r2
0 + ζ0ζ̄0 − iν0


and consists of all (ζ, ν) ∈ N satisfying the equations

|ζ − ζ0| = r0, ν = ν0 − 2 Im(ζζ̄0).

For example, the finite chain with centre (0, 0) and radius 1 is the unit circle in the
C× {0} plane. It has a normalised polar vector0

1
0

 .
A complex reflection of order 2 in this chain is given by the matrix−1 0 0

0 1 0
0 0 −1

 ∈ SU(2, 1).

This complex reflection acts as an inversion on the set

U = {(ζ, ν) ∈ N : |ζ|4 + ν2 = 1},

known as the unit spinal sphere, switching the inside of the spinal sphere with the
outside. For more details, see section 2.1.7.

Using the formula for the minimal complex reflection ιCζ of order n in a
vertical chain Cζ with polar vector

cζ =

 1
−ζ̄
ζ̄

 ,
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we are able to find the corresponding element in PU(2, 1). We have that

ιCζ(z) = −z + (1− µ)
〈z, cζ〉
〈cζ , cζ〉

cζ , where µ = exp(2πi/n).

Recall that the hermitian form we are using is 〈z, w〉 = z1w̄1+z2w̄2−z3w̄3. Therefore

〈z, cζ〉 = z1 + z2(−ζ̄)− z3(ζ̄) = z1 − z2ζ − z3ζ and 〈cζ , cζ〉 = 1.

So we have that

ιCζ(z) = −z + (1− µ)(z1 − z2ζ − z3ζ)

 1
−ζ̄
ζ̄


=

−z1

−z2

−z3

+ (1− µ)

 z1 − z2ζ − z3ζ

−ζ̄z1 +|ζ|2 z2 +|ζ|2 z3

ζ̄z1 −|ζ|2 z2 −|ζ|2 z3


=

 (−µ)z1 − (1− µ)ζz2 − (1− µ)ζz3

−(1− µ)ζ̄z1 + ((1− µ)|ζ|2 − 1)z2 + (1− µ)|ζ|2 z3

(1− µ)ζ̄z1 − (1− µ)|ζ|2 z2 − ((1− µ)|ζ|2 + 1)z3


=

 −µ −(1− µ)ζ −(1− µ)ζ

−(1− µ)ζ̄ (1− µ)|ζ|2 − 1 (1− µ)|ζ|2

(1− µ)ζ̄ −(1− µ)|ζ|2 −(1− µ)|ζ|2 − 1


z1

z2

z3

 .

This is the corresponding element in PU(2, 1) of a minimal complex reflection of
order n in the vertical chain Cζ .

What effect does the minimal complex reflection of order n in the vertical
chain Cζ have on another vertical chain, Cξ, which intersects C× {0} at ξ?

We calculate −µ −(1− µ)ζ −(1− µ)ζ

−(1− µ)ζ̄ (1− µ)|ζ|2 − 1 (1− µ)|ζ|2

(1− µ)ζ̄ −(1− µ)|ζ|2 −(1− µ)|ζ|2 − 1


 1
−ξ̄
ξ̄

 =

 −µ
−(1− µ)ζ̄ + ξ̄
(1− µ)ζ̄ − ξ̄

 .
This vector is a multiple of 1

(1− µ)µ̄ζ̄ − µ̄ξ̄
−(1− µ)µ̄ζ̄ + µ̄ξ̄

 =

 1

−
(
µξ − (µ− 1)ζ

)(
µξ − (µ− 1)ζ

)
 ,
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which is the polar vector of the vertical chain that intersects C×{0} at µξ−(µ−1)ζ.
This corresponds to rotating ξ around ζ through 2π

n
. So if we have a vertical chain

Cξ, the minimal complex reflection of order n in another vertical chain Cζ rotates
Cξ as a set around Cζ through 2π

n
. (But not point-wise as there may also be a

vertical translation on the chain).

On the boundary of complex hyperbolic 2-space, ∂H2
C, any complex reflec-

tion ιCζ can be described as a composition of a Heisenberg translation and a
Heisenberg rotation:

ιCζ = Rµ ◦ T(ξ,ν),

where

ξ = (µ̄− 1) ζ and ν = 2|ζ|2 · Im(1− µ) = −2|ζ|2 sin

(
2π

n

)
.

The order of the Heisenberg rotation is equal to the order of the complex reflection.

Alternatively, any complex reflection ιCζ can be described as a composition
of a Heisenberg rotation and a Heisenberg translation given that

T(µξ,ν) ◦Rµ = Rµ ◦ T(ξ,ν).

To see this, observe that(
T(µξ,ν) ◦Rµ

)
(ζ, ω). = T(µξ,ν)

(
Rµ(ζ, ω)

)
= T(µξ,ν) (µζ, ω)

=

(
µξ + µζ, ν + ω + 2 Im

(
(µξ)(µζ)

))
=
(
µ(ξ + ζ), ν + ω + 2 Im

(
ξζ̄
))

= Rµ

(
ξ + ζ, ν + ω + 2 Im

(
ξζ̄
))

=
(
Rµ ◦ T(ξ,ν)

)
(ζ, ω).

2.1.7 Bisectors and Spinal Spheres

Unlike in the real hyperbolic space, there are no totally geodesic real hypersurfaces
in H2

C. An acceptable substitute are the metric bisectors.

Definition 2.1.24. Let z1, z2 ∈ H2
C be two distinct points. The bisector equidistant

from z1 and z2 is defined as

C{z1, z2} = {z ∈ H2
C | ρ(z1, z) = ρ(z2, z)}.

Definition 2.1.25. The intersection of a bisector with the boundary of H2
C is a

smooth hypersurface in ∂H2
C called a spinal sphere, which is diffeomorphic to a

sphere.
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Definition 2.1.26. Let z1, z2 ∈ H2
C be two distinct points. Let Σ ⊂ H2

C be the
complex geodesic spanned by z1 and z2. We call Σ the complex spine of the bisector
C = C{z1, z2}. The spine of C equals

σ{z1, z2} = C{z1, z2} ∩ Σ = {z ∈ Σ | ρ(z1, z) = ρ(z2, z)}.

That is, σ is the orthogonal bisector of the geodesic segment joining z1 and z2 in Σ.

Theorem 2.1.27. Let C ,Σ and σ be as above. Let ΠΣ : H2
C → Σ be the orthogonal

projection onto Σ. Then

C = Π−1
Σ (σ) =

⋃
s∈σ

Π−1
Σ (s).

Proof. For proof, see [8], Theorem 5.1.1.

Definition 2.1.28. The complex hyperplanes Π−1
Σ (s), for s ∈ σ, are called the slices

of C .

From [8], section 5.1.4, we have that the spine σ ⊂ H2
C is completely determined

by the hypersurface C , and not by the pair {z1, z2} used to define C . Associated
to every bisector is a geodesic , i.e. its spine. Conversely, if σ ⊂ H2

C is a geodesic,
there exists a unique bisector C = Cσ that has spine σ.

A fixed point set of an isometry of H2
C is a totally geodesic submanifold, see

[10], Theorem 1.10.15. The only proper totally geodesic submanifolds in H2
C are

complex slices, real slices and real geodesics, see [8], section 5.1.4. In particular,
the real dimension of any proper totally geodesic submanifold of H2

C is at most 2,
hence bisectors are not totally geodesic. It follows that there exists no isometry of
H2

C whose fixed point set is a bisector C .

Instead, for each slice S of a bisector C , inversion ιS in S leaves C invariant,
but pointwise fixes only the slice S. Inversion ιS acts by reflection on the spine σ,
interchanging the two endpoints and fixing the point S ∩ σ.

Definition 2.1.29. The endpoints of the spine of C are called the vertices of the
bisector C .

Theorem 2.1.30. Let S ⊂ H2
C be a complex hyperplane and let ιS denote the in-

version in S. Suppose that u1, u2 ∈ ∂H2
C. Then S is a slice of the bisector C having

vertices u1, u2 if and only if ιS interchanges u1 and u2.

Proof. For proof, see [8], Theorem 5.2.1.
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Chapter 3

A parametrisation of
[m1,m2, 0;n1, n2, n3]-triangle groups

3.1 A parametrisation of [m1,m2, 0;n1, n2, n3]

-triangle groups

As mentioned in the previous chapter, we are interested in the question: When is a
complex hyperbolic ultra-parallel triangle group discrete? We will focus on the case
of complex hyperbolic ultra-parallel [m,m, 0]-triangle groups, i.e. where two of the
complex geodesics intersect on the boundary ∂H2

C. First, we give a parametrisation
of [m1,m2, 0]-triangle groups.

For r1, r2 ≥ 1 and α ∈ (0, 2π), let C1, C2 and C3 be the complex geodesics
with respective polar vectors

c1 =

 1
−r2e

−iθ

r2e
−iθ

 , c2 =

 1
r1e

iθ

−r1e
iθ

 and c3 =

0
1
0

 ,

where θ = (π − α)/2 ∈ (−π/2, π/2). The type of triangle formed by C1, C2

and C3 is an ultra-parallel [m1,m2, 0]-triangle with angular invariant α, where
rk = cosh(mk/2) for k = 1, 2.

Let ιk be the minimal complex reflection of order nk in the chain Ck for
k = 1, 2, 3. The group Γ = 〈ι1, ι2, ι3〉 generated by these three complex reflections
is an ultra-parallel complex hyperbolic triangle group of type [m1,m2, 0;n1, n2, n3].
Looking at the arrangement of the chains C1, C2 and C3 in the Heisenberg space
N , the finite chain C3 is the (Euclidean) unit circle in C× {0}, whereas C1 and C2

are vertical lines through ϕ1 = r2e
iθ and ϕ2 = −r1e

−iθ respectively, see Figure 3.1.
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Figure 3.1: Chains C1, C2 and C3.

3.2 Discreteness Criterion

Let C1, C2 and C3 be chains in N as in the previous section. Let ιk be the minimal
complex reflection of order nk in the chain Ck for k = 1, 2, 3. We will only consider
the case when n3 = 2. Let

Γ = 〈ι1, ι2, ι3〉 and Γ′ = 〈ι1, ι2〉.

Definition 3.2.1. If there exist open subsets U1, U2 and V in N with U1 ∩ U2 = ∅
and V ( U1 such that

1. ι3(U1) = U2;

2. g(U2) ( V, ∀ g ∈ Γ′\{Id}

then the group Γ is compressing.

Remark 3.2.2. Γ is said to be semi-compressing if only the second of these conditions
is met.

To prove the discreteness of the group Γ we will use the following discreteness
criterion discussed in [24]:

Proposition 3.2.3. If Γ is compressing, then Γ is a discrete subgroup of PU(2, 1).

Proof. Consider an element g ∈ Γ. Each g ∈ Γ, g 6= Id, has an action on either U1

or U2 that is isolated from the identity. To see this, notice that any element g can
be written in one of the following 4 forms:

1. κ1ι3κ2ι3...ι3κn,

28



3.2. Discreteness Criterion

2. κ1ι3κ2ι3...ι3,

3. ι3κ2ι3...ι3κn,

4. ι3κ2ι3...ι3,

where all the κj are elements in Γ′ (and assume that the leading and trailing κj’s
are non-identity). For case (1), let x ∈ U2, then g(x) ∈ V and

U2 ∩ V ⊂ U2 ∩ U1 = ∅.

Therefore g is isolated from the identity. For case (2), let x ∈ U1 with x /∈ V , then
x ∈ U1\V . Then g(x) ∈ V and

U1\V ∩ V = ∅.

Therefore g is isolated from the identity. Similarly for case (3), g(U2) ( ι3(V ) and
for case (4), g(U1) ( ι3(V ). We can conclude that in all four cases g is non-trivial
and is isolated from the identity. Therefore Γ is discrete.

As discussed in the previous chapter, the minimal complex reflection ιk of order nk
in the vertical chain Ck rotates any other vertical chain as a set around Ck through
2π
nk

. Projecting the action of the complex reflections ι1 and ι2 to C× {0}, let j1 and

j2 be the rotations of C around ϕ1 = r2e
iθ and ϕ2 = −r1e

−iθ through 2π
n1

and 2π
n2

respectively. Let Λ = 〈j1, j2〉 be the group of isometries of C× {0} generated by j1

and j2. We will need the following Lemma:

Lemma 3.2.4. If
∣∣f(0)

∣∣ ≥ 2 for all f ∈ Λ\{Id} and
∣∣h(0)

∣∣ ≥ 2 for all vertical
translations h ∈ Γ′\{Id}, then the group Γ is discrete.

Proof. We will use Proposition 3.2.3. Consider the unit spinal sphere

U = {(ζ, ν) ∈ N : |ζ|4 + ν2 = 1}.

The complex reflection ι3 in C3 is given by

ι3([z1 : z2 : z3]) = [−z1 : z2 : −z3] = [z1 : −z2 : z3].

The complex reflection ι3 preserves the bisector

C = {[z : it : 1] ∈ H2
C | |z|

2 < 1− t2, z ∈ C, t ∈ R}

and hence preserves the unit spinal sphere U which is the boundary of the bisector
C . The complex reflection ι3 interchanges the points [0 : 1 : 1] and [0 : −1 : 1]
in H2

C, which correspond to the points (0, 0) and ∞ ∈ N . Therefore, ι3 leaves U
invariant and switches the inside of U with the outside.
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Let U1 be the part of N \ U outside U , containing ∞, and let U2 be the
part inside U , containing the origin. Clearly

U1 ∩ U2 = ∅ and ι3(U1) = U2.

Therefore, if we find a subset V ( U1 such that g(U2) ( V for all elements g ∈
Γ′\ {Id}, then this will show that Γ is compressing and hence discrete. Let

W = {(ζ, ν) ∈ N | |ζ| = 1}

be the cylinder consisting of all vertical chains through ζ ∈ C with |ζ| = 1. Let

W1 = {(ζ, ν) ∈ N : |ζ| > 1} and W2 = {(ζ, ν) ∈ N : |ζ| < 1}

be the parts of N \W outside and inside the cylinder W respectively. We have that
U2 ⊂ W2 and so g(U2) ⊂ g(W2) for all elements g ∈ Γ′\{Id}. The set W2 is a union
of vertical chains. We know that elements of Γ′ map vertical chains to vertical
chains. There may also be a vertical translation on the chain itself. Therefore, we
look at both the intersection of the images of W2 with C × {0}, and the vertical
displacement of W2.

Elements of Γ′ move the intersection with C × {0} by rotations j1 and j2

around r2e
iθ and −r1e

−iθ through 2π
n1

and 2π
n2

respectively. Provided that the interior
of the unit circle is mapped completely off itself under all elements in Λ\{Id}, then
the same is true for W2 and hence for U2 under all elements in Γ′ that are not
vertical translations.

Vertical Heisenberg translations are vertical Euclidean translations. Such
translations will shift W2 and U2 and their images g(W2) and g(U2) vertically by
the same distance.

We choose V to be the union of all the images of U2 under all elements of
Γ′\{Id}. This subset will satisfy the compressing conditions assuming that the
interior of the unit circle is mapped off itself by any element in Λ\{Id}, and that
the interior of the spinal sphere is mapped off itself by any vertical translation in
Γ′\{Id}. Since the radius of a circle is preserved under rotations, we need to show
that the origin is moved to a distance of at least twice the radius of the circle by
any element in Λ\{Id}. That is∣∣f(0)

∣∣ ≥ 2 for all f ∈ Λ\{Id}.

Since vertical translations shift the spinal spheres vertically, we need to show that
they shift by at least the height of the spinal sphere. That is∣∣h(0)

∣∣ ≥ 2 for all vertical translations h ∈ Γ′\{Id}.
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3.3. Orders of Reflection

3.3 Orders of Reflection

We are considering the case of complex hyperbolic ultra-parallel
[m1,m2, 0;n1, n2, n3]-triangle groups. We now want to find the possible or-
ders for the complex reflections ι1 and ι2 for the triangle group to be discrete.
To find these orders, we will use the work of Hersonsky and Paulin [9] and Parker [17].

Recall the Heisenberg group N endowed with the group law

(ζ1, ν1) ∗ (ζ2, ν2) =
(
ζ1 + ζ2, ν1 + ν2 + 2 Im

(
ζ1ζ̄2

))
introduced in the previous chapter. We will first use Proposition 5.4 (specifically
when n = 2) of [9]:

Proposition 3.3.1. Let Γ be a discrete cocompact subgroup in N . Let π : N → C
be the canonical projection defined by π(ζ, ν) = ζ. Then π(Γ) is a cocompact lattice
in C.

Proof. From the Heisenberg group N there exists a central extension

0→ R→ N → C→ 0.

By this, we have that

Ker(π) = R and N /R = C.

Note that Γ∩R is a normal subgroup of Γ, since R is in the centre of N . Therefore,
the group

G = Γ/ (Γ ∩ R)

which identifies to π(Γ) acts on C. We can see that G acts with bounded quotient
on N /R and therefore π(Γ) acts cocompactly on C.

We next need to show that G acts discretely on C. For a contradiction,
suppose not. For a sequence to converge on the plane C, we are able to bound their
corresponding elements in Γ by applying a vertical Heisenberg translation H in Γ,
which exists due to Γ being non-abelian. This implies that there is a convergent
subsequence to an element (0, t), t ∈ R. This is the required contradiction since Γ
is discrete, and hence discrete on C, which completes the proof.

With this proposition, we now refer to section 5 of [17] (page 454). For the group
of Heisenberg isometries with a lattice subgroup of index greater than or equal to
3, Parker states that the canonical projection π, with π : N → C, of this isometry
group is a (3, 3, 3)−, (2, 4, 4)−, or (2, 3, 6)−triangle group. This gives rise to the
following theorem:
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Chapter 3. A parametrisation of [m1,m2, 0;n1, n2, n3]-triangle groups

Theorem 3.3.2. A complex hyperbolic ultra-parallel [m1,m2, 0;n1, n2, n3]-triangle
group can only be discrete if the unordered pair of orders of the complex reflections
ι1 and ι2 is one of

{2, 2}, {2, 3}, {2, 4}, {2, 6}, {3, 3}, {3, 6} or {4, 4}.

Note that the subgroup E = 〈ι1, ι2〉 in an ultra-parallel [m1,m2, 0;n1, n2, n3]-triangle
group Γ = 〈ι1, ι2, ι3〉 is an almost crystallographic group in the sense of Dekimpe
[1, 2]:

Definition 3.3.3. Let G be a connected, simply connected nilpotent Lie group,
and C a maximal compact subgroup of Aut(G). A uniform discrete subgroup E of
Go C is called an almost-crystallographic group.

For the group E = 〈ι1, ι2〉, we consider almost-crystallographic groups in the setting
where

G = N , U(1) ⊂ C and E ⊂ N o U(1),

so the theory developed by Dekimpe applies.
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Chapter 4

Discreteness Results

We will now derive the discreteness results for the complex hyperbolic ultra-parallel
[m,m, 0;n1, n2, 2]-triangle groups for all orders of complex reflections {n1, n2}.
Remark 4.0.1. The case {n1, n2} = {2, 2} has already been discussed in [11] and
[12].

Recall that we can assume without loss of generality that the corresponding chains
C1 and C2 are vertical chains through ϕ1 = reiθ and ϕ2 = −re−iθ respectively.
Consider the group Γ′ = 〈ι1, ι2〉. We are able to write every h ∈ Γ′\{Id} as a reduced
word in the generators ι1 and ι2 of order n1 and n2 respectively. Throughout the
thesis we mean that any word is reduced i.e. has at most (n1 − 1) ι1 and at most
(n2 − 1) ι2 in a row. The complex reflections ι1 and ι2 correspond to the following
elements in PU(2, 1) :

ι1 =

δ − 1 −δϕ1 −δϕ1

−δϕ̄1 δ|ϕ1|2 − 1 δ|ϕ1|2

δϕ̄1 −δ|ϕ1|2 −δ|ϕ1|2 − 1

 , ι2 =

φ− 1 −φϕ2 −φϕ2

−φϕ̄2 φ|ϕ2|2 − 1 φ|ϕ2|2

φϕ̄2 −φ|ϕ2|2 −φ|ϕ2|2 − 1

 ,
(4.1)

where

r = cosh(m/2), ϕ1 = reiθ, ϕ2 = −re−iθ, δ = 1− µ, φ = 1− λ,

µ = exp(2πi/n1) and λ = exp(2πi/n2).

For the purpose of the following calculations, we will use the notation

ιa1a2...an = ιa1ιa2 ...ιan .

Projecting ι1 and ι2 to C we obtain rotations j1 and j2 of C× {0} through 2π
n1

and
2π
n2

around ϕ1 and ϕ2 respectively. We will use the notation

ja1a2...an = ja1ja2 ...jan .
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Chapter 4. Discreteness Results

The method for the proof of each case is as follows. We will use Lemma 3.2.4. First
we will find the Heisenberg translations in the group Γ′ = 〈ι1, ι2〉, and then find
the generators for the group that contains all Heisenberg translations. The vertical
Heisenberg translations are used to satisfy the conditions for the second part of
Lemma 3.2.4.

To satisfy the first part of Lemma 3.2.4, we will project ι1 and ι2 to C to
obtain rotations j1 and j2 of C × {0}. We will find the translation maps in the
group Λ = 〈j1, j2〉, and find the generators of this group. We will then obtain a
generating system so that every element f ∈ Λ can be written as a sequence of
translations by ±v1 and ±v2, followed by a word p = w(0) for some remainder
word w. We will then consider each p in turn to confirm that the conditions on the
angular invariant α and on the distance m satisfy the first part of Lemma 3.2.4.

All of the calculations throughout the proofs were solved using Maple. The
Maple document for the case [m,m, 0; 3, 6, 2] can be downloaded and viewed in
[20]. This document can be used for the other cases by altering the orders of the
complex reflections, ι1 and ι2, and the translation maps.

4.1 The case [m,m, 0; 3, 3, 2]

Proposition 4.1.1. Every Heisenberg translation in Γ′ = 〈ι1, ι2〉 is of the form
T x1 T

y
2H

z, where T1 and T2 are Heisenberg translations, H is a vertical Heisenberg
translation and x, y, z ∈ Z. Every vertical Heisenberg translation in Γ′ is of the form
Hz, z ∈ Z. In particular, the shortest non-trivial vertical translations in Γ′ are

H±1 = [T1, T2]±1 = (ι12)±3 .

Proof. The complex reflections ι1 and ι2 are of the form (4.1) with

r = cosh(m/2), ϕ1 = reiθ, ϕ2 = −re−iθ, δ = φ = 1− µ and µ = exp(2πi/3).

As µ is a third root of unity, we will obtain Heisenberg translations from words in
ι1 and ι2 with length divisible by 3. Straightforward computation shows that the
elements ι112, ι121, ι122, ι211, ι212 and ι221 are Heisenberg translations. Let T be the
group generated by these 6 Heisenberg translations. The group T is generated by
T1 = ι212 and T2 = ι112 since all other generators can be expressed in terms of T1

and T2 :

ι121 = T2T
−1
1 T−1

2 , ι122 = T2T
−1
1 , ι211 = T1T

−1
2 and ι221 = T−1

2 .

Therefore, given any reduced word in ι1 and ι2, we are able to break it down into a
sequence of Heisenberg translations T1 and T2 and their inverses, followed by a word
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4.1. The case [m,m, 0; 3, 3, 2]

of length at most 2. Hence T contains all Heisenberg translations in Γ′ = 〈ι1, ι2〉.
The group T has the presentation

〈T1, T2, H | [T1, T2] = H, [T1, H] = [T2, H] = 1〉.

Note that T is isomorphic to N1 (see Definition 2.1.18). Any vertical translation in Γ′

belongs to the subgroup T . Computing the commutator H = [T1, T2] = T−1
1 T−1

2 T1T2

we obtain the Heisenberg translation

(ζ, ω) 7→
(
ζ, ω + 4 Im(ξ1ξ̄2)

)
. (4.2)

So H is the vertical Heisenberg translation in N by
(
0, 4 Im(ξ1ξ̄2)

)
. Recall that all

elements of the form (0, ?) are central in the group N , hence the vertical translation
H commutes with any other Heisenberg translation. Using the identities

T1H = HT1, T2H = HT2 and T1T2 = T2T1H

every element of N1 can be written in the form T x1 T
y
2H

z for some x, y, z ∈ Z. If we
project to C × {0}, the element T x1 T

y
2H

z acts as a translation by xv1 + yv2. That
is, this element is a vertical translation if and only if it is a power of H. Direct
computation should that H±1 = (ι12)±3. Note that this is inline with the results of
Dekimpe [1] (Chapter 7, Case 13).

Proposition 4.1.2. A complex hyperbolic ultra-parallel [m,m, 0; 3, 3, 2]-triangle
group is discrete if the following conditions on the angular invariant α and on m
are satisfied:

cos(α) ≤ −1

2
and m ≥ log(3).

Proof. We will use Lemma 3.2.4. Direct computation shows that the Heisenberg
translations Tk for k = 1, 2 by (ξk, νk) are given as

ξ1 = i · 2r
√

3 cos(θ) and ν1 = 12
√

3r2 cos2(θ),

ξ2 = r
(

3 + i
√

3
)

cos(θ) and ν2 = 12r2 sin(θ) cos(θ).

Substituting ξ1 and ξ2 into (4.2) we have(
ζ, ω + 4 Im

(
i · 2r

√
3 cos(θ)

(
3r cos(θ)− i · r

√
3 cos(θ)

)))

=

(
ζ, ω + 4 Im

(
i · 6
√

3r2 cos2(θ) + 6r2 cos2(θ)
))

=
(
ζ, ω + 24

√
3r2 cos2(θ)

)
.
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Chapter 4. Discreteness Results

So the vertical Heisenberg translation H is given as
(

0, 24
√

3r2 cos2(θ)
)

. To sat-

isfy the second part of Lemma 3.2.4, we need the displacement of every vertical
translation Hz, z 6= 0, to be at least the height of the spinal sphere, i.e.

24
√

3r2 cos2(θ) ≥ 2⇔ r2 cos2(θ) ≥
√

3

36
.

Under our assumptions, cos(α) ≤ −1
2
, hence 2π

3
≤ α ≤ 4π

3
. Using α = π − 2θ, we

have that |θ| ≤ π
6
. We also have that m = 2 cosh−1(r) ≥ log(3), hence r ≥ 2√

3
. So

we have

r2 cos2(θ) ≥
(

2√
3

)2

·

(√
3

2

)2

= 1 >

√
3

36
,

hence the condition
∣∣h(0)

∣∣ ≥ 2 is satisfied for all vertical translations h ∈ Γ′\{Id}.

To satisfy the first part of Lemma 3.2.4, we project ι1 and ι2 to C to obtain
rotations j1 and j2 of C × {0} through 2π

3
around ϕ1 and ϕ2 respectively. We can

write every element f ∈ Λ as a word in the generators j±1
1 and j±1

2 . Using the
relations j−1

k = j2
k , for k = 1, 2, we can rewrite every element f as a word in terms

of j1 and j2.

Figure 4.1 shows the points f(0) for all reduced words f of length up to 6
in the case r = 1 and θ = 0.

Figure 4.1: Points f(0) for all words f up to length 6.

Straightforward computation gives that

ja1a2a3(z) = z + (1− µ)(µ2ϕa3 + µϕa2 + ϕa1),
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4.1. The case [m,m, 0; 3, 3, 2]

where
µ = e

2πi
3 , ϕ1 = reiθ and ϕ2 = −re−iθ.

The explicit formulas for the translations are as follows

j212(z) = z + i
√

3(ϕ1 − ϕ2),

j121(z) = z − i
√

3(ϕ1 − ϕ2),

j122(z) = z +

(
3

2
− i
√

3

2

)
(ϕ1 − ϕ2),

j211(z) = z −

(
3

2
− i
√

3

2

)
(ϕ1 − ϕ2),

j112(z) = z +

(
3

2
+
i
√

3

2

)
(ϕ1 − ϕ2),

j221(z) = z −

(
3

2
+
i
√

3

2

)
(ϕ1 − ϕ2).

Remark 4.1.3. The remaining maps j111(z) and j222(z) are equal to the identity map.

These six translations generate the subgroup of all translations in the group Λ. This
subgroup can be generated by two translations. Notice that the six translations are
in fact three pairs of inverse translations. We can pair these translations to obtain
three generators, the translations by v1, v2 and v3, where

v1 := j212(0),

v2 := j112(0),

v3 := j122(0).

One of these generators can be written as a linear combination of the other two i.e.
v3 = −v1 + v2. Therefore, we have a generating system of two translations

j212(z) = z + v1 and j112(z) = z + v2.

Using the translations ja1a2a3 , we will be able to break down any element of Λ,
written as a word in the generators j1 and j2, into a sequence of translations by ±v1

and ±v2, followed by a word of length at most 2, so that every point in the orbit of
0 under Λ is of the form

fp(x, y) := p+ xv1 + yv2,

where p = w(0) for some word w of length at most 2 and x, y ∈ Z. We can further
reduce the choices of p. Notice that

j2(z) = j211

(
j1(z)

)
, j22(z) = j221

(
j11(z)

)
, j12(z) = j121

(
j11(z)

)
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Chapter 4. Discreteness Results

and j21(z) = j211

(
j11(z)

)
.

Therefore, we can write any element f ∈ Λ as a sequence of translations by ±v1

and ±v2, followed by a word p = w(0) for some word w ∈ {Id, j1, j11}.

To apply lemma 3.2.4, we want to show that
∣∣f(0)

∣∣ ≥ 2 for all f ∈ Λ\{Id}.
This is equivalent to showing that∣∣fp(x, y)

∣∣2 = |p+ xv1 + yv2|2 ≥ 4

for all possible choices of p and for all x, y ∈ Z, except for p = x = y = 0. We have∣∣fp(x, y)
∣∣2 = |p+ xv1 + yv2|2 = (p+ xv1 + yv2) (p̄+ xv̄1 + yv̄2)

= |p|2 + 2xRe(pv̄1) + 2yRe(pv̄2) + x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2). (4.3)

Calculating the terms that do not depend on p, we have

v1 = j212(0) = i
√

3(ϕ1 − ϕ2) = i
√

3
(
reiθ + re−iθ

)
= i · 2r

√
3 cos(θ),

v2 = j112(0) =

(
3

2
+
i
√

3

2

)
(ϕ1 − ϕ2) =

(
3

2
+
i
√

3

2

)(
reiθ + re−iθ

)
=
(

3 + i
√

3
)
r cos(θ).

We then obtain

|v1|2 = |v2|2 = 12r2 cos2(θ), v1v̄2 = i · 2
√

3
(

3− i
√

3
)
r2 cos2(θ)

and Re(v1v̄2) = 6r2 cos2(θ).

Hence, x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2) is equal to

x2
(
12r2 cos2(θ)

)
+ y2

(
12r2 cos2(θ)

)
+ 2xy

(
6r2 cos2(θ)

)
= 12r2 cos2(θ)

(
x2 + xy + y2

)
.

So we have∣∣fp(x, y)
∣∣2 = |p|2 + 2xRe(pv̄1) + 2yRe(pv̄2) + x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2)

= 12r2 cos2(θ)
(
x2 + xy + y2

)
+ 2xRe(pv̄1) + 2yRe(pv̄2) +|p|2 .

We want to minimise this expression. In order to do so, we make a coordinate
change. Let u = y − x and v = x+ y, that is,

x =
v − u

2
and y =

u+ v

2
. (4.4)
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4.1. The case [m,m, 0; 3, 3, 2]

Under this change of coordinates, points (x, y) ∈ Z2 are mapped to points (u, v) ∈ Z2

with u ≡ v mod 2. Applying the change of coordinates, we have∣∣fp(u, v)
∣∣2 = 12r2 cos2(θ)

((
v − u

2

)2

+

(
v − u

2

)(
u+ v

2

)
+

(
u+ v

2

)2
)

+ 2

(
v − u

2

)
Re(pv̄1) + 2

(
u+ v

2

)
Re(pv̄2) +|p|2

= 3r2 cos2(θ)
(
v2 − 2uv + u2 + v2 − u2 + u2 + 2uv + v2

)
+ v

(
Re(pv̄1) + Re (pv̄2)

)
+ u

(
Re(pv̄2)− Re(pv̄1)

)
+|p|2

= 3r2 cos2(θ)
(
u2 + 3v2

)
+ v

(
Re(p(v̄1 + v̄2))

)
+ u

(
Re(p(v̄2 − v̄1))

)
+|p|2 .

This can be rewritten as∣∣fp(u, v)
∣∣2 = 3r2 cos2(θ)

(
(u− a)2 + 3(v − b)2

)
,

where

a =
Re(p(v̄1 − v̄2))

6r2 cos2(θ)
= −Re(p(3 + i

√
3))

6r cos(θ)
,

b = −Re(p(v̄1 + v̄2))

18r2 cos2(θ)
= −Re(p(1− i

√
3))

6r cos(θ)
,

a2 + 3b2 =
|p|2

3r2 cos2(θ)
.

Our aim is to show that |p+ xv1 + yv2|2 ≥ 3r2 ≥ 4 for all (x, y) ∈ Z2 excluding the
case p = x = y = 0 which corresponds to the identity case. That is,

3r2 cos2(θ)
(
(u− a)2 + 3(v − b)2

)
≥ 3r2 ⇔ (u− a)2 + 3(v − b)2 ≥ sec2(θ)

for all (u, v) ∈ Z2 with u ≡ v mod 2, excluding the case a = b = u = v = 0. Notice
that this inequality is always satisfied if |u− a| ≥ sec(θ) or |v − b| ≥ sec θ√

3
and so we

only need to check that

g3,3
p (u, v) = (u− a)2 + 3(v − b)2 − sec2(θ) ≥ 0

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box

(a− sec(θ), a+ sec(θ))×
(
b− sec(θ)√

3
, b+

sec(θ)√
3

)
.

For the choices of p, we look at the words w ∈ {Id, j1, j11}. We have 3 possibilities:
the identity Id and

j1(z) =

(
−1

2
+
i
√

3

2

)
z +

(
3

2
− i
√

3

2

)
ϕ1,

j11(z) =

(
−1

2
− i
√

3

2

)
z +

(
3

2
+
i
√

3

2

)
ϕ1.
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Chapter 4. Discreteness Results

Figure 4.2 shows the points w(0) for all words w ∈ {Id, j1, j11} in the case r = 1 and
θ = 0.

Figure 4.2: Points w(0) for all words w ∈ {Id, j1, j11}.

Evaluating these words at z = 0, we have three possible choices for p:

p = 0 and p =

(
3

2
± i
√

3

2

)
ϕ1.

For each choice of p, the following table shows the values of a, b and a2 +3b2 in terms
of t = tan(θ):

p = w(0) a b a2 + 3b2

Id 0 0 0
j1(0) −1 − t√

3
t2 + 1

j11(0) −1
2

(
1− t

√
3
)
−1

6

(
3 + t

√
3
)

t2 + 1

Under the assumption |θ| ≤ π
6

we have that

t = tan(θ) ∈
[
− 1√

3
,

1√
3

]
and sec(θ) ∈

[
1,

2√
3

]
.

So for each p, we need to calculate the bounds on a, b and the size of the bounding
box (

min(a)− 2√
3
, max(a) +

2√
3

)
×
(

min(b)− 2

3
, max(b) +

2

3

)
.

We then need to show that

g3,3
p (u, v) = (u− a)2 + 3(v − b)2 − sec2(θ) ≥ 0

= u2 − 2au+ 3v2 − 6bv + (a2 + 3b2)− (t2 + 1) ≥ 0
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4.1. The case [m,m, 0; 3, 3, 2]

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box.

For p = Id, we have a = 0 and b = 0. The bounding box(
− 2√

3
,

2√
3

)
×
(
−2

3
,
2

3

)
⊂ (−2, 2)× (−1, 1)

contains the point (0, 0) which corresponds to the excluded case.

For p = j1(0), we have a = −1 and b = − t√
3
∈
[
−1

3
, 1

3

]
. The bounding

box (
−1− 2√

3
,−1 +

2√
3

)
×
(
−1

3
− 2

3
,
1

3
+

2

3

)
⊂ (−3, 1)× (−1, 1)

contains the points (−2, 0) and (0, 0). The function

g3,3
1 (u, v) = u2 + 2u+ 3v2 + 2tv

√
3

evaluated at these points is non-negative: g3,3
1 (−2, 0) = g3,3

1 (0, 0) = 0.

Figure 4.3: The level curves g3,3
1 (u, v) = 0 for several θ ∈

[
−π

6
, π

6

]
.

For p = j11(0), we have a = −1
2

(
1− t

√
3
)
∈ [−1, 0] and b = −1

6

(
3 + t

√
3
)

∈
[
−2

3
,−1

3

]
. The bounding box(
−1− 2√

3
,

2√
3

)
×
(
−2

3
− 2

3
,−1

3
+

2

3

)
⊂ (−3, 2)× (−2, 1)

contains the points (−2, 0), (−1,−1), (0, 0) and (1,−1). The function

g3,3
11 (u, v) = u2 +

(
1− t

√
3
)
u+ 3v2 +

(
3 + t

√
3
)
v
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Chapter 4. Discreteness Results

evaluated at these points is non-negative:

g3,3
11 (−2, 0) = 2

(
1 + t

√
3
)
≥ 0, g3,3

11 (−1,−1) = g3,3
11 (0, 0) = 0

and g3,3
11 (1,−1) = 2

(
1− t

√
3
)
≥ 0.

Figure 4.4: The level curves g3,3
11 (u, v) = 0 for several θ ∈

[
−π

6
, π

6

]
.

Therefore, as g3,3
p (u, v) ≥ 0 for all p, we have that∣∣fp(x, y)

∣∣2 = |p+ xv1 + yv2|2 ≥ 3r2 ≥ 4

under the assumption that r ≥ 2√
3
. That is,

∣∣fp(x, y)
∣∣ ≥ 2 for all f ∈ Λ\{Id}. Hence

the conditions of Lemma 3.2.4 are satisfied, and we can conclude that the complex
hyperbolic ultra-parallel [m,m, 0; 3, 3, 2]-triangle group is discrete for

cos(α) ≤ −1

2
and m ≥ log(3).

4.2 The case [m,m, 0; 2, 3, 2]

Proposition 4.2.1. Every Heisenberg translation in Γ′ = 〈ι1, ι2〉 is of the form
T x1 T

y
2H

z, where T1 and T2 are Heisenberg translations, H is a vertical Heisenberg
translation and x, y, z ∈ Z. Every vertical Heisenberg translation in Γ′ is of the form
Hz, z ∈ Z. In particular, the shortest non-trivial vertical translations in Γ′ are

H±1 = [T1, T2]±1 = (ι12)±6 .
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4.2. The case [m,m, 0; 2, 3, 2]

Proof. The complex reflections ι1 and ι2 are of the form (4.1) with

r = cosh(m/2), ϕ1 = reiθ, ϕ2 = −re−iθ, δ = 1− µ,

φ = 1− λ, µ = exp(i · π) and λ = exp(2πi/3).

As µ is a second root of unity, and λ is a third root of unity, we will obtain Heisenberg
translations with words containing an even number of ι1 and a multiple of 3 of
ι2. Straightforward computation shows that the elements ι21212, ι12212, ι22121, ι21221

and ι12122 are Heisenberg translations. Let T be the group generated by these 5
Heisenberg translations. The group T is generated by T1 = ι21212 and T2 = ι12212

since all other generators can be expressed in terms of T1 and T2 :

ι12122 = T2T
−1
1 , ι21221 = T1T

−1
2 and ι22121 = T−1

2 .

The reduced length 5 words which are not Heisenberg translations can be expressed
in terms of the generators T1, T2 and a remainder word of length at most 4:

ι12121 = T2T
−1
1 ι221 and ι22122 = T−1

1 ι21.

Therefore, given any reduced word in ι1 and ι2, we are able to break it down into a
sequence of Heisenberg translations T1 and T2 and their inverses, followed by a word
of length at most 4. Hence T contains all Heisenberg translations in Γ′ = 〈ι1, ι2〉.

The group T has the presentation

〈T1, T2, H | [T1, T2] = H, [T1, H] = [T2, H] = 1〉.

Note that T is isomorphic to N1 (see Definition 2.1.18). Any vertical translation in Γ′

belongs to the subgroup T . Computing the commutator H = [T1, T2] = T−1
1 T−1

2 T1T2

we obtain the Heisenberg translation of the form (4.2) which is a vertical translation
in N . Using the identities

T1H = HT1, T2H = HT2 and T1T2 = T2T1H,

every element of N1 can be written in the form T x1 T
y
2H

z for some x, y, z ∈ Z. If we
project to C × {0}, the element T x1 T

y
2H

z acts as a translation by xv1 + yv2. That
is, this element is a vertical translation if and only if it is a power of H. Direct
computation shows that H±1 = (ι12)±6. Note that this is inline with the results of
Dekimpe [1] (Chapter 7, Case 16).

Proposition 4.2.2. A complex hyperbolic ultra-parallel [m,m, 0; 2, 3, 2]-triangle
group is discrete if the following conditions on the angular invariant α and on m
are satisfied:

cos(α) ≤ −1

2
and m ≥ log(3).
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Chapter 4. Discreteness Results

Proof. We will use Lemma 3.2.4. Direct computation shows that the Heisenberg
translations Tk for k = 1, 2 by (ξk, νk) are given as

ξ1 = i · 4r
√

3 cos(θ) and ν1 = 32
√

3r2 cos2(θ),

ξ2 = 2r
(

3 + i
√

3
)

cos(θ) and ν2 = 24r2 sin(θ) cos(θ)− 8
√

3r2 cos2(θ).

Substituting ξ1 and ξ2 into (4.2) we have that the vertical Heisenberg translation H

is given as
(

0, 96
√

3r2 cos2(θ)
)

. To satisfy the second part of Lemma 3.2.4, we need

the displacement of every vertical translation Hz, z 6= 0, to be at least the height of
the spinal sphere, i.e.

96
√

3r2 cos2(θ) ≥ 2⇔ r2 cos2(θ) ≥
√

3

144
.

By our assumption, cos(α) ≤ −1
2

and m ≥ log(3), hence as in the previous section
we have that |θ| ≤ π

6
and r ≥ 2√

3
. So we have

r2 cos2(θ) ≥
(

2√
3

)2

·

(√
3

2

)2

= 1 >

√
3

144
,

hence the condition
∣∣h(0)

∣∣ ≥ 2 is satisfied for all vertical translations h ∈ Γ′\{Id}.

To satisfy the first part of Lemma 3.2.4, we project ι1 and ι2 to C to obtain
rotations j1 and j2 of C × {0} through π and 2π

3
around ϕ1 and ϕ2 respectively.

We can write every element f ∈ Λ as a word in the generators j1 and j±1
2 . Using

the relation j−1
2 = j2

2 , we can rewrite every element f as a word in terms of j1 and j2.

Figure 4.5 shows the points f(0) for all reduced words f of length up to 6
in the case r = 1 and θ = 0.
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4.2. The case [m,m, 0; 2, 3, 2]

Figure 4.5: Points f(0) for all words f up to length 6.

Projecting the Heisenberg translations to C we obtain Euclidean translations. The
explicit formulas for these Euclidean translations are as follows

j22121(z) = z − (3 + i
√

3) (ϕ1 − ϕ2) ,

j21221(z) = z − (3− i
√

3) (ϕ1 − ϕ2) ,

j21212(z) = z + i · 2
√

3 (ϕ1 − ϕ2) ,

j12212(z) = z + (3 + i
√

3) (ϕ1 − ϕ2) ,

j12122(z) = z + (3− i
√

3) (ϕ1 − ϕ2) .

These translations generate the subgroup of all translations in the group Λ. This
subgroup is generated by two translations

j21212(z) = z + v1 and j12212(z) = z + v2,

where v1 = i · 2
√

3 (ϕ1 − ϕ2) and v2 = (3 + i
√

3) (ϕ1 − ϕ2).

Using these translations, we are able to break down any element of Λ, writ-
ten as a word in the generators j1 and j2, into a sequence of translations by ±v1

and ±v2, followed by a word of length at most 4, so that every point in the orbit of
0 under Λ is of the form

fp(x, y) := p+ xv1 + yv2,

where p = w(0) for some word w of length at most 4 and x, y ∈ Z.

Remark 4.2.3. For words of length 5 which are not translation maps, notice that
these maps are equal to maps of greater length which can be broken down into a
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Chapter 4. Discreteness Results

sequence of translations followed by a word of length at most 4:

j22122(z) = j−1
12212

(
j12(z)

)
;

j12121(z) = j−1
21212

(
j122(z)

)
.

Therefore the form of every point in the orbit of 0 under Λ is still valid.

We can further reduce the choices of p. Notice that

j21(z) = j21212

(
j−1

12212

(
j12(z)

))
,

j121(z) = j12212

(
j−1

21212

(
j2(z)

))
,

j212(z) = j21212

(
j−1

12212

(
j122(z)

))
,

j221(z) = j−1
12212

(
j122(z)

)
,

j1212(z) = j12212

(
j−1

21212

(
j22(z)

))
,

j1221(z) = j12212

(
j22(z)

)
,

j2121(z) = j21212

(
j22(z)

)
,

j2122(z) = j21212

(
j−1

12212

(
j1(z)

))
,

j2212(z) = j−1
12212

(
j1(z)

)
.

Therefore, we can write any element f ∈ Λ as a sequence of translations by ±v1

and ±v2, followed by a word p = w(0) for some word w = {Id, j1, j2, j12, j22, j122}.

To apply lemma 3.2.4, we want to show that∣∣fp(x, y)
∣∣2 = |p+ xv1 + yv2|2 ≥ 3r2 ≥ 4

for all possible choices of p and for all x, y ∈ Z. Using (4.3) we have∣∣fp(x, y)
∣∣2 = |p|2 + 2xRe(pv̄1) + 2yRe(pv̄2) + x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2).

Calculating the terms that do not depend on p, we have

v1 = j21212(0) = i · 2
√

3(ϕ1 − ϕ2) = i · 2
√

3
(
reiθ + re−iθ

)
= i · 4r

√
3 cos(θ),

v2 = j12212(0) =
(

3 + i
√

3
)

(ϕ1 − ϕ2) =
(

3 + i
√

3
)(

reiθ + re−iθ
)

=
(

6 + i2
√

3
)
r cos(θ).

We then obtain

|v1|2 = |v2|2 = 48r2 cos2(θ), v1v̄2 = i · 4
√

3
(

6− i2
√

3
)
r2 cos2(θ)

and Re(v1v̄2) = 24r2 cos2(θ).
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4.2. The case [m,m, 0; 2, 3, 2]

Hence, x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2) is equal to

x2
(
48r2 cos2(θ)

)
+ y2

(
48r2 cos2(θ)

)
+ 2xy

(
24r2 cos2(θ)

)
= 48r2 cos2(θ)

(
x2 + xy + y2

)
.

So we have∣∣fp(x, y)
∣∣2 = 48r2 cos2(θ)

(
x2 + xy + y2

)
+ 2xRe(pv̄1) + 2yRe(pv̄2) +|p|2 .

We want to minimise this expression. In order to do so, we apply the coordinate
change (4.4). Under this coordinate change, we have

∣∣fp(u, v)
∣∣2 = 48r2 cos2(θ)

((
v − u

2

)2

+

(
v − u

2

)(
u+ v

2

)
+

(
u+ v

2

)2
)

+ 2

(
v − u

2

)
Re(pv̄1) + 2

(
u+ v

2

)
Re(pv̄2) +|p|2

= 12r2 cos2(θ)
(
v2 − 2uv + u2 + v2 − u2 + u2 + 2uv + v2

)
+ v

(
Re(pv̄1) + Re (pv̄2)

)
+ u

(
Re(pv̄2)− Re(pv̄1)

)
+|p|2

= 12r2 cos2(θ)
(
u2 + 3v2

)
+ v

(
Re(p(v̄1 + v̄2))

)
+ u

(
Re(p(v̄2 − v̄1))

)
+|p|2 .

This can be rewritten as∣∣fp(u, v)
∣∣2 = 12r2 cos2(θ)

(
(u− a)2 + 3(v − b)2

)
,

where

a = −Re(p(v̄2 − v̄1))

24r2 cos2(θ)
= −Re(p(3 + i

√
3))

12r cos(θ)
,

b = −Re(p(v̄1 + v̄2))

72r2 cos2(θ)
= −Re(p(1− i

√
3))

12r cos(θ)
,

a2 + 3b2 =
|p|2

12r2 cos2(θ)
.

Our aim is to show that |p+ xv1 + yv2|2 ≥ 3r2 for all (x, y) ∈ Z2 excluding the case
p = x = y = 0 which corresponds to the identity case. That is,

12r2 cos2(θ)
(
(u− a)2 + 3(v − b)2

)
≥ 3r2 ⇔ (u− a)2 + 3(v − b)2 ≥ sec2(θ)

4

for all (u, v) ∈ Z2 with u ≡ v mod 2, excluding the case a = b = u = v = 0. Notice

that this inequality is always satisfied if |u− a| ≥ sec(θ)
2

or |v − b| ≥ sec θ
2
√

3
and so we

only need to check that

g2,3
p (u, v) = (u− a)2 + 3(v − b)2 − sec2(θ)

4
≥ 0
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Chapter 4. Discreteness Results

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box(
a− sec(θ)

2
, a+

sec(θ)

2

)
×
(
b− sec(θ)

2
√

3
, b+

sec(θ)

2
√

3

)
.

For the choices of p, we look at the words w = {Id, j1, j2, j12, j22, j122}. We have 6
possibilities: the identity Id and

j1(z) = 2ϕ1 − z,

j2(z) = −

(
1

2
− i
√

3

2

)
z +

(
3

2
− i
√

3

2

)
ϕ2,

j12(z) =

(
1

2
− i
√

3

2

)
z + 2ϕ1 −

(
3

2
− i
√

3

2

)
ϕ2,

j22(z) = −

(
1

2
+
i
√

3

2

)
z +

(
3

2
+
i
√

3

2

)
ϕ2,

j122(z) =

(
1

2
+
i
√

3

2

)
z + 2ϕ1 −

(
3

2
+
i
√

3

2

)
ϕ2.

Figure 4.6 shows the points w(0) for all words w = {Id, j1, j2, j12, j22, j122} in the
case r = 1 and θ = 0.

Figure 4.6: Points w(0) for all words w = {Id, j1, j2, j12, j22, j122}.

Evaluating these words at z = 0, we have six possible choices for p:

p = 0, p = 2ϕ1, p =

(
3

2
± i
√

3

2

)
ϕ2,

and p = 2ϕ1 −

(
3

2
± i
√

3

2

)
ϕ2.
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4.2. The case [m,m, 0; 2, 3, 2]

For each choice of p, the following table shows the values of a, b and a2 +3b2 in terms
of t = tan(θ):

p = w(0) a b a2 + 3b2

0 0 0 0

j1(0) 1
2
√

3

(
t−
√

3
)

− 1
2
√

3

(
t+ 1√

3

)
1
3

(
t2 + 1

)
j2(0) 1

2
− t

2
√

3
1
4

(
t2 + 1

)
j12(0) 1

2
√

3

(
t− 2

√
3
)

−1
6

1
12

(
t2 − 4t

√
3 + 13

)
j22(0) 1

4

(
1 + t

√
3
)

1
4
√

3

(√
3− t

)
1
4

(
t2 + 1

)
j122(0) − 1

4
√

3

(
t+ 3

√
3
)
− 1

4
√

3

(
t+ 5√

3

)
1
12

(
t2 + 4t

√
3 + 13

)
Under the assumption |θ| ≤ π

6
we have that

t = tan(θ) ∈
[
− 1√

3
,

1√
3

]
and sec(θ) ∈

[
1,

2√
3

]
.

So for each p, we need to calculate the bounds on a, b and the size of the bounding
box (

min(a)− 1√
3
, max(a) +

1√
3

)
×
(

min(b)− 1

3
, max(b) +

1

3

)
.

We then need to show that

g2,3
p (u, v) = (u− a)2 + 3(v − b)2 − sec2(θ)

4

= u2 − 2au+ 3v2 − 6bv + (a2 + 3b2)−

(
t2 + 1

4

)
≥ 0

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box.

For p = Id, we have a = 0 and b = 0. The bounding box(
− 1√

3
,

1√
3

)
×
(
−1

3
,
1

3

)
⊂ (−1, 1)× (−1, 1)

contains the point (0, 0) which corresponds to the excluded case f = Id.

For p = j1(0), we have a = 1
2
√

3

(
t−
√

3
)
∈
[
−2

3
,−1

3

]
and b = − 1

2
√

3

(
t+ 1√

3

)
∈[

−1
3
, 0
]
. The bounding box(

−2

3
− 1√

3
,−1

3
+

1√
3

)
×
(
−1

3
− 1

3
,
1

3

)
⊂ (−2, 1)× (−1, 1)
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Chapter 4. Discreteness Results

contains the point (0, 0). The function

g2,3
1 (u, v) = u2 +

(
1− t√

3

)
u+ 3v2 +

(
1 + t

√
3
)
v +

t2 + 1

12

evaluated at this point is non-negative: g2,3
1 (0, 0) = t2+1

12
≥ 1

12
> 0.

Figure 4.7: The level curves g2,3
1 (u, v) = 0 for several θ ∈

[
−π

6
, π

6

]
.

For p = j2(0), we have a = 1
2

and b = − t
2
√

3
∈
[
−1

6
, 1

6

]
. The bounding box(

1

2
− 1√

3
,
1

2
+

1√
3

)
×
(
−1

6
− 1

3
,
1

6
+

1

3

)
⊂ (−1, 2)× (−1, 1)

contains the point (0, 0). The function

g2,3
2 (u, v) = u2 − u+ 3v2 + tv

√
3

evaluated at this point is non-negative: g2,3
2 (0, 0) = 0.

Figure 4.8: The level curves g2,3
2 (u, v) = 0 for several θ ∈

[
−π

6
, π

6

]
.
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4.2. The case [m,m, 0; 2, 3, 2]

For p = j12(0), we have a = 1
2
√

3

(
t− 2

√
3
)
∈
[
−7

6
,−5

6

]
and b = −1

6
. The bounding

box

(
−7

6
− 1√

3
,−5

6
+

1√
3

)
×
(
−1

6
− 1

3
,−1

6
+

1

3

)
⊂ (−2, 0)× (−1, 1)

contains no points (u, v) ∈ Z2 with u ≡ v mod 2.

Figure 4.9: The level curves g2,3
12 (u, v) = 0 for several θ ∈

[
−π

6
, π

6

]
.

For p = j22(0), we have a = 1
4

(
1 + t

√
3
)
∈
[
0, 1

2

]
and b = 1

4
√

3

(√
3− t

)
∈
[

1
6
, 1

3

]
.

The bounding box

(
− 1√

3
,
1

2
+

1√
3

)
×
(

1

6
− 1

3
,
1

3
+

1

3

)
⊂ (−1, 2)× (−1, 1)

contains the point (0, 0). The function

g2,3
22 (u, v) = u2 − u

2

(
1 + t

√
3
)

+ 3v2 − v

2

(
3− t

√
3
)

evaluated at this point is non-negative: g2,3
22 (0, 0) = 0.
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Chapter 4. Discreteness Results

Figure 4.10: The level curves g2,3
22 (u, v) = 0 for several θ ∈

[
−π

6
, π

6

]
.

Finally for p = j122(0), we have a = − 1
4
√

3

(
t+ 3

√
3
)
∈
[
−5

6
,−2

3

]
and b =

− 1
4
√

3

(
t+ 5√

3

)
∈
[
−1

2
,−1

3

]
. The bounding box(

−5

6
− 1√

3
,−2

3
+

1√
3

)
×
(
−1

2
− 1

3
,−1

3
+

1

3

)
⊂ (−2, 0)× (−1, 0)

contains no points (u, v) ∈ Z2 with u ≡ v mod 2.

Figure 4.11: The level curves g2,3
122(u, v) = 0 for several θ ∈

[
−π

6
, π

6

]
.

Therefore, as g2,3
p (u, v) ≥ 0 for all p, we have that∣∣fp(x, y)

∣∣2 = |p+ xv1 + yv2|2 ≥ 3r2 ≥ 4

under the assumption that r ≥ 2√
3
. That is,

∣∣fp(x, y)
∣∣ ≥ 2 for all f ∈ Λ\{Id}. Hence

the conditions of Lemma 3.2.4 are satisfied, and we can conclude that the complex
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4.3. The case [m,m, 0; 2, 4, 2]

hyperbolic ultra-parallel [m,m, 0; 2, 3, 2]-triangle group is discrete for

cos(α) ≤ −1

2
and m ≥ log(3).

4.3 The case [m,m, 0; 2, 4, 2]

Proposition 4.3.1. Every Heisenberg translation in Γ′ = 〈ι1, ι2〉 is of the form
T x1 T

y
2H

z, where T1 and T2 are Heisenberg translations, H is a vertical Heisenberg
translation and x, y, z ∈ Z. Every vertical Heisenberg translation in Γ′ is of the form
Hz, z ∈ Z. In particular, the shortest non-trivial vertical translations in Γ′ are

H±1 = [T1, T2]±1 = (ι12)±4 .

Proof. The complex reflections ι1 and ι2 are of the form (4.1) with

r = cosh(m/2), ϕ1 = reiθ, ϕ2 = −re−iθ, δ = 1− µ,

φ = 1− λ, µ = exp(i · π) and λ = exp(i · π/2).

As µ is a second root on unity and λ is a fourth root of unity, we will obtain
Heisenberg translations with words containing x ι1 and y ι2 where y

2
+ x ≡ 0

mod 2. Straightforward computation shows that the elements ι122, ι212 and ι221

are Heisenberg translations. Let T be the group generated by these 3 Heisenberg
translations. The group T is generated by T1 = ι212 and T2 = ι122 since ι221 = T−1

2 .

The reduced length 3 words which are not Heisenberg translations can be
expressed in terms of the generators T1, T2 and a remainder term of length at most
2:

ι121 = T2T
−1
1 ι2 and ι222 = T−1

1 ι21.

Therefore, given any reduced word in ι1 and ι2, we are able to break it down into a
sequence of Heisenberg translations T1 and T2 and their inverses, followed by a word
of length at most 2. Hence T contains all Heisenberg translations in Γ′ = 〈ι1, ι2〉.

The group T has the presentation

〈T1, T2, H | [T1, T2] = H, [T1, H] = [T2, H] = 1〉.

Note that T is isomorphic to N1 (see Definition 2.1.18). Any vertical translation in Γ′

belongs to the subgroup T . Computing the commutator H = [T1, T2] = T−1
1 T−1

2 T1T2

we obtain the Heisenberg translation of the form (4.2) which is a vertical translation
in N . Using the identities

T1H = HT1, T2H = HT2 and T1T2 = T2T1H
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every element of N1 can be written in the form T x1 T
y
2H

z for some x, y, z ∈ Z. If we
project to C × {0}, the element T x1 T

y
2H

z acts as a translation by xv1 + yv2. That
is, this element is a vertical translation if and only if it is a power of H. Direct
computation should that H±1 = (ι12)±4. Note that this is inline with the results of
Dekimpe [1] (Chapter 7, Case 10).

Proposition 4.3.2. A complex hyperbolic ultra-parallel [m,m, 0; 2, 4, 2]-triangle
group is discrete if the following conditions on the angular invariant α and on m
are satisfied:

cos(α) ≤ −
√

3

2
and m ≥ log

(
3 + 2

√
2
)
.

Proof. We will use Lemma 3.2.4. Direct computation shows that the Heisenberg
translations Tk for k = 1, 2 by (ξk, νk) are given as

ξ1 = i · 4r cos(θ) and ν1 = 16r2 cos2(θ),

ξ2 = 4r cos(θ) and ν2 = 16r2 sin(θ) cos(θ).

Substituting ξ1 and ξ2 into (4.2) we have that the vertical Heisenberg translation H
is given as

(
0, 64r2 cos2(θ)

)
. To satisfy the second part of Lemma 3.2.4, we need the

displacement of every vertical translation Hz, z 6= 0, to be at least the height of the
spinal sphere, i.e.

64r2 cos2(θ) ≥ 2⇔ r2 cos2(θ) ≥ 1

32
.

By our assumption, cos(α) ≤ −
√

3
2

, hence 5π
6
≤ α ≤ 7π

6
. Using α = π − 2θ, we have

that |θ| ≤ π
12

. We also have that m = 2 cosh−1(r) ≥ log(3 + 2
√

2), hence r ≥
√

2. So
we have

r2 cos2(θ) ≥
(√

2
)2

·

(
1 +
√

3

2
√

2

)2

= 1 +

√
3

2
>

1

32
,

hence the condition
∣∣h(0)

∣∣ ≥ 2 is satisfied for all vertical translations h ∈ Γ′\{Id}.

To satisfy the first part of Lemma 3.2.4, we project ι1 and ι2 to C to obtain
rotations j1 and j2 of C× {0} through π and π

2
around ϕ1 and ϕ2 respectively. We

can write every element f ∈ Λ as a word in the generators j1 and j±1,2
2 . Using the

relations j−2
2 = j2

2 and j−1
2 = j3

2 , we can rewrite every element f as a word in terms
of j1 and j2.

Figure 4.12 shows the points f(0) for all reduced words f of length up to 6
in the case r = 1 and θ = 0.
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Figure 4.12: Points f(0) for all words f up to length 6.

Projecting the Heisenberg translations to C we obtain Euclidean translations. The
explicit formulas for these Euclidean translations are as follows

j122(z) = z + 2 (ϕ1 − ϕ2) ,

j212(z) = z + 2i (ϕ1 − ϕ2) ,

j221(z) = z − 2 (ϕ1 − ϕ2) .

These translations generate the subgroup of all translations in the group Λ. This
subgroup is generated by two translations

j212(z) = z + v1 and j122(z) = z + v2,

where v1 = i · 2 (ϕ1 − ϕ2) and v2 = 2 (ϕ1 − ϕ2).

Under the translations, we will be able to break down any element of Λ,
written as a word in the generators j1 and j2, into a sequence of translations by
±v1 and ±v2, followed by a word of length at most 2, so that every point in the
orbit of 0 under Λ is of the form

fp(x, y) := p+ xv1 + yv2,

where p = w(0) for some word w of length at most 2 and x, y ∈ Z.

Remark 4.3.3. For words of length 3 which are not translation maps, notice that
these maps are equal to maps of greater length which can be broken down into a
sequence of translations followed by a word of length at most 2:

j121(z) = j122

(
j−1

212

(
j2(z)

))
and j222(z) = j−1

212

(
j21(z)

)
.

Therefore the form of the orbit of 0 under Λ is still valid.
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We can further reduce the choices of p. Notice that

j12(z) = j122

(
j−1

212

(
j21(z)

))
and j22(z) = j−1

122

(
j1(z)

)
.

Therefore, we can write any element f ∈ Λ as a sequence of translations by ±v1

and ±v2, followed by a word p = w(0) for some word w ∈ {Id, j1, j2, j21}.

To apply lemma 3.2.4, we want to show that∣∣fp(x, y)
∣∣2 = |p+ xv1 + yv2|2 ≥ 2r2 ≥ 4

for all possible choices of p and for all x, y ∈ Z. Using (4.3) we have∣∣fp(x, y)
∣∣2 = |p|2 + 2xRe(pv̄1) + 2yRe(pv̄2) + x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2).

Calculating the terms that do not depend on p, we have

v1 = i · 2 (ϕ1 − ϕ2) = i · 4r cos(θ) and v2 = 2 (ϕ1 − ϕ2) = 4r cos(θ).

We then obtain

|v1|2 = |v2|2 = 16r2 cos2(θ), v1v̄2 = i · 16r2 cos2(θ) and Re(v1v̄2) = 0.

Hence, x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2) is equal to 16r2 cos2(θ)
(
x2 + y2

)
. So we have∣∣fp(x, y)

∣∣2 = 16r2 cos2(θ)
(
x2 + y2

)
+ 2xRe(pv̄1) + 2yRe(pv̄2) +|p|2 .

We want to minimise this expression. In order to do so, we apply the coordinate
change (4.4). Under this coordinates change, we have∣∣fp(u, v)

∣∣2 = 16r2 cos2(θ)

((
v − u

2

)2

+

(
u+ v

2

)2
)

+ (v − u) Re(pv̄1)

+ (u+ v) Re(pv̄2) +|p|2

= 4r2 cos2(θ)
(
v2 − 2uv + u2 + u2 + 2uv + v2

)
+ v

(
Re(pv̄1) + Re (pv̄2)

)
+ u

(
Re(pv̄2)− Re(pv̄1)

)
+|p|2

= 8r2 cos2(θ)
(
u2 + v2

)
+ v

(
Re(p(v̄1 + v̄2))

)
+ u

(
Re(p(v̄2 − v̄1))

)
+|p|2 .

This can be rewritten as∣∣fp(u, v)
∣∣2 = 8r2 cos2(θ)

(
(u− a)2 + (v − b)2

)
,

where

a = −Re(p(v̄2 − v̄1))

16r2 cos2(θ)
= −

Re
(
p(1 + i)

)
4r cos(θ)

,

b = −Re(p(v̄1 + v̄2))

16r2 cos2(θ)
= −

Re
(
p(1− i)

)
4r cos(θ)

,

a2 + b2 =
|p|2

8r2 cos2(θ)
.
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Our aim is to show that |p+ xv1 + yv2|2 ≥ 2r2 for all (x, y) ∈ Z2 excluding the case
p = x = y = 0 which corresponds to the identity case. That is,

8r2 cos2(θ)
(
(u− a)2 + (v − b)2

)
≥ 2r2 ⇔ (u− a)2 + (v − b)2 ≥ sec2(θ)

4

for all (u, v) ∈ Z2 with u ≡ v mod 2, excluding the case a = b = u = v = 0. Notice

that this inequality is always satisfied if |u− a| ≥ sec(θ)
2

or |v − b| ≥ sec θ
2

and so we
only need to check that

g2,4
p (u, v) = (u− a)2 + (v − b)2 − sec2(θ)

4
≥ 0

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box(
a− sec(θ)

2
, a+

sec(θ)

2

)
×
(
b− sec(θ)

2
, b+

sec(θ)

2

)
.

For the choices of p, we look at the words w ∈ {Id, j1, j2, j21}. We have 4 possibilities:
the identity Id and

j1(z) = 2ϕ1 − z,
j2(z) = iz + (1− i)ϕ2,

j21(z) = −iz + 2iϕ1 + (1− i)ϕ2.

Figure 4.13 shows the points w(0) for all words w ∈ {Id, j1, j2, j21} in the case r = 1
and θ = 0.

Figure 4.13: Points w(0) for all words w ∈ {Id, j1, j2, j21}.
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Evaluating these words at z = 0, we have four possible choices for p:

p = 0,

p = 2ϕ1,

p = (1− i)ϕ2,

p = 2iϕ1 + (1− i)ϕ2.

For each choice of p, the following table shows the values of a, b and a2 + b2 in terms
of t = tan(θ):

p = w(0) a b a2 + b2

Id 0 0 0
j1(0) 1

2
(t− 1) −1

2
(t+ 1) 1

2

(
t2 + 1

)
j2(0) 1

2
− t

2
1
4

(
t2 + 1

)
j21(0) 1

2
(t+ 2) −1

2
1
4

(
t2 + 4t+ 5

)
Under the assumption |θ| ≤ π

12
we have that

t = tan(θ) ∈
[√

3− 2, 2−
√

3
]

and sec(θ) ∈
[
1,
√

2
(√

3− 1
)]

.

So for each p, we need to calculate the bounds on a, b and the size of the bounding
box(

min(a)−
√

3− 1√
2

, max(a) +

√
3− 1√

2

)
×

(
min(b)−

√
3− 1√

2
, max(b) +

√
3− 1√

2

)
.

We then need to show that

g2,4
p (u, v) = (u− a)2 + (v − b)2 − sec2(θ)

4

= u2 − 2au+ v2 − 2bv + (a2 + b2)−

(
t2 + 1

4

)
≥ 0

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box. For the purposes of

the following calculations, we will denote tπ/12 = tan
(
π
12

)
and γ =

√
3−1√

2
.

For p = Id, we have a = 0 and b = 0. The bounding box

(−γ, γ)× (−γ, γ) ⊂ (−1, 1)× (−1, 1)

contains the point (0, 0) which corresponds to the excluded case f = Id.
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4.3. The case [m,m, 0; 2, 4, 2]

For p = j1(0), we have a = 1
2

(t− 1) ∈
[
−1

2
− tπ/12

2
,−1

2
+

tπ/12
2

]
and

b = −1
2

(t+ 1) ∈
[
−1

2
− tπ/12

2
,−1

2
+

tπ/12
2

]
. The bounding box

(
−1

2
−
tπ/12

2
− γ,−1

2
+
tπ/12

2
+ γ

)
×
(
−1

2
−
tπ/12

2
− γ,−1

2
+
tπ/12

2
+ γ

)
⊂ (−2, 1)× (−2, 1)

contains the points (−1,−1) and (0, 0). The function

g2,4
1 (u, v) = u2 + (1− t)u+ v2 + (1 + t) v +

t2 + 1

4

evaluated at these points is non-negative: g2,4
1 (−1,−1) = g2,4

1 (0, 0) = t2+1
4
≥ 1

4
> 0.

Figure 4.14: The level curves g2,4
1 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

For p = j2(0), we have a = 1
2

and b = − t
2
∈
[
− tπ/12

2
,
tπ/12

2

]
. The bounding box

(
1

2
− γ, 1

2
+ γ

)
×
(
−
tπ/12

2
− γ,

tπ/12

2
+ γ

)
⊂ (−1, 2)× (−1, 1)

contains the point (0, 0). The function

g2,4
2 (u, v) = u2 − u+ v2 + tv

evaluated at this point is non-negative: g2,4
2 (0, 0) = 0.
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Chapter 4. Discreteness Results

Figure 4.15: The level curves g2,4
2 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

Finally for p = j21(0), we have a = 1
2

(t+ 2) ∈
[
1− tπ/12

2
, 1 +

tπ/12
2

]
and b = −1

2
.

The bounding box(
1−

tπ/12

2
− γ, 1 +

tπ/12

2
+ γ

)
×
(
−1

2
− γ,−1

2
+ γ

)
⊂ (0, 2)× (−2, 1)

contains the point (1,−1). The function

g2,4
21 (u, v) = u2 − (2 + t)u+ v2 + v + 1 + t

evaluated at this point is non-negative: g2,4
21 (1,−1) = 0.

Figure 4.16: The level curves g2,4
21 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

Therefore, as g2,4
p (u, v) ≥ 0 for all p, we have that∣∣fp(x, y)

∣∣2 = |p+ xv1 + yv2|2 ≥ 2r2 ≥ 4
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4.4. The case [m,m, 0; 4, 4, 2]

under the assumption that r ≥
√

2. That is,
∣∣fp(x, y)

∣∣ ≥ 2 for all f ∈ Λ\{Id}. Hence
the conditions of Lemma 3.2.4 are satisfied, and we can conclude that the complex
hyperbolic ultra-parallel [m,m, 0; 2, 4, 2]-triangle group is discrete for

cos(α) ≤ −
√

3

2
and m ≥ log

(
3 + 2

√
2
)
.

4.4 The case [m,m, 0; 4, 4, 2]

Proposition 4.4.1. Every Heisenberg translation in Γ′ = 〈ι1, ι2〉 is of the form
T x1 T

y
2H

z, where T1 and T2 are Heisenberg translations, H is a vertical Heisenberg
translation and x, y, z ∈ Z. Every vertical Heisenberg translation in Γ′ is of the form
Hz, z ∈ Z. In particular, the shortest non-trivial vertical translations in Γ′ are

H±1 = (ι12)±2 .

Proof. The complex reflections ι1 and ι2 are of the form (4.1) with

r = cosh(m/2), ϕ1 = reiθ, ϕ2 = −re−iθ, δ = φ = 1− µ

and µ = λ = exp(i · π/2).

As µ is a fourth root of unity, we will obtain Heisenberg translations from words in ι1
and ι2 with length divisible by 4. Straightforward computation shows that the ele-
ments ι1112, ι1121, ι1211, ι2111, ι2211, ι1221, ι1122, ι2112, ι1212, ι2121, ι1222, ι2122, ι2212 and ι2221

are Heisenberg translations. Let T be the group generated by these 14 Heisenberg
translations. The group T is generated by T1 = ι1112, T2 = ι2111 and H = ι1212 since
all other generators can be expressed in terms of T1, T2 and H:

ι1121 = T1H
−1T−1

2 T−1
1 , ι1211 = HT−1

1 , ι2211 = T2HT
−1
1 , ι1221 = T−1

2 T−1
1 ,

ι1122 = T1H
−1T−1

2 , ι2112 = T2T1, ι2121 = T2T1H
−1T−1

2 T−1
1 , ι1222 = T−1

2 ,

ι2122 = T2T1H
−1T−1

2 , ι2212 = T2H and ι2221 = T−1
1 .

Therefore, given any reduced word in ι1 and ι2, we are able to break it down into a
sequence of Heisenberg translations T1, T2, H and their inverses, followed by a word
of length at most 3. Hence T contains all Heisenberg translations in Γ′ = 〈ι1, ι2〉.

Direct computation shows that Tk for k = 1, 2, 3, where T3 = H, is a Heisenberg
translation by (ξk, νk), where

ξ1 = 2r(1 + i) cos(θ) and ν1 = 8r2 sin(θ) cos(θ),

ξ2 = −2r(1− i) cos(θ) and ν2 = −8r2 sin(θ) cos(θ),

ξ3 = 0 and ν3 = 16r2 cos2(θ).
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Chapter 4. Discreteness Results

Computing the commutator [T2, T1] = T−1
2 T−1

1 T2T1 we obtain the Heisenberg trans-
lation of the form

(ζ, ω) 7→
(
ζ, ω + 4 Im(ξ2ξ̄1)

)
(4.5)

which is a vertical translation in N . Substituting ξ1 and ξ2 into (4.5) we have the
vertical Heisenberg translation by (0, 32r2 cos2(θ)). That is, [T2, T1] = H2.

The group T has the presentation

〈T1, T2, H | [T2, T1] = H2, [H,T1] = [H,T2] = 1〉.

Note that T is isomorphic to N2 (see Definition 2.1.18). Any vertical translation in
Γ′ belongs to the subgroup T . Using the identities

T1H = HT1, T2H = HT2 and T2T1 = T1T2H
2

every element of N2 can be written in the form T x1 T
y
2H

z for some x, y, z ∈ Z. If we
project to C × {0}, the element T x1 T

y
2H

z acts as a translation by xv1 + yv2. That
is, this element is a vertical translation if and only if it is a power of H. We can see
that H±1 = (ι12)±2. Note that this is inline with the results of Dekimpe [1] (Chapter
7, Case 10).

Proposition 4.4.2. A complex hyperbolic ultra-parallel [m,m, 0; 4, 4, 2]-triangle
group is discrete if the following conditions on the angular invariant α and on m
are satisfied:

cos(α) ≤ −
√

3

2
and m ≥ log

(
3 + 2

√
2
)
.

Proof. We will use Lemma 3.2.4. To satisfy the second part of Lemma 3.2.4, we
need the displacement of every vertical translation Hz, z 6= 0, to be at least the
height of the spinal sphere, i.e.

16r2 cos2(θ) ≥ 2⇔ r2 cos2(θ) ≥ 1

8
.

Under our assumptions, cos(α) ≤ −
√

3
2

and m ≥ log
(

3 + 2
√

2
)

, hence as in the

previous section |θ| ≤ π
12

and r ≥
√

2. So we have

r2 cos2(θ) ≥
(√

2
)2

·

(
1 +
√

3

2
√

2

)2

= 1 +

√
3

2
>

1

8
,

hence the condition
∣∣h(0)

∣∣ ≥ 2 is satisfied for all vertical translation h ∈ Γ′\{Id}.

To satisfy the first part of Lemma 3.2.4, we project ι1 and ι2 to C to obtain
rotations j1 and j2 of C × {0} through π

2
around ϕ1 and ϕ2 respectively. We can

62



4.4. The case [m,m, 0; 4, 4, 2]

write every element f ∈ Λ as a word in the generators j±1,2
1 and j±1,2

2 . Using the
relations j−1

k = j3
k and j−2

k = j2
k , for k = 1, 2, we can rewrite every element f as a

word in terms of j1 and j2.

Figure 4.17 shows the points f(0) for all reduced words f of length up to 6
in the case r = 1 and θ = 0.

Figure 4.17: Points f(0) for all words f up to length 6.

Projecting the Heisenberg translations to C we obtain Euclidean translations.
Straightforward computation gives that

ja1a2a3a4(z) = z + (1− µ)(µ3ϕa4 + µ2ϕa3 + µϕa2 + ϕa1),

where
µ = e

πi
2 , ϕ1 = reiθ and ϕ2 = −re−iθ.

The explicit formulas for the Euclidean translations are as follows

j1112(z) = j2122(z) = z + (1 + i)(ϕ1 − ϕ2),

j1211(z) = j2221(z) = z − (1 + i)(ϕ1 − ϕ2),

j1222(z) = j1121(z) = z + (1− i)(ϕ1 − ϕ2),

j2111(z) = j2212(z) = z − (1− i)(ϕ1 − ϕ2),

j1122(z) = z + 2(ϕ1 − ϕ2),

j2211(z) = z − 2(ϕ1 − ϕ2),

j2112(z) = z + i · 2(ϕ1 − ϕ2),

j1221(z) = z − i · 2(ϕ1 − ϕ2),
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Chapter 4. Discreteness Results

Remark 4.4.3. The remaining maps j1111(z), j1212(z), j2121(z) and j2222(z) are equal
to the identity map.

These translations generate the subgroup of all translations in the group Λ. This
subgroup can be generated by two translations

j2111(z) = z + v1 and j1112(z) = z + v2.

where v1 = −(1− i)(ϕ1 − ϕ2) and v2 = (1 + i)(ϕ1 − ϕ2).

Using the translations ja1a2a3a4 , we will be able to break down any element
of Λ, written as a word in the generators j1 and j2, into a sequence of translations
by ±v1 and ±v2, followed by a word of length at most 3, so that every point in the
orbit of 0 under Λ is of the form

fp(x, y) := p+ xv1 + yv2,

where p = w(0) for some word w of length at most 3 and x, y ∈ Z. We can further
reduce the choices of p. Notice that for T1 = ι1112, T2 = ι2111 and H = ι1212, we have

ι2 = T2ι1, ι12 = HT−1
1 ι11, ι21 = T2ι11, ι22 = T2HT

−1
1 ι11,

ι112 = T1H
−1T−1

2 T−1
1 ι111, ι121 = HT−1

1 ι111, ι211 = T2ι111,

ι221 = T2HT
−1
1 ι111 and ι122 = T−1

2 T−1
1 ι111.

We are able to rewrite the translation element of each map in the form T x1 T
y
2H

z,
for x, y, z ∈ Z, so that every map can be written as T x1 T

y
2H

z · ιa1 for x, y, z ∈ Z and
rotation element ιa1 . Projecting to C×{0} (i.e. setting H to the identity map, Id),
we obtain the maps

j2(z) = j2111

(
j1(z)

)
,

j12(z) = j−1
1112

(
j11(z)

)
,

j21(z) = j2111

(
j11(z)

)
,

j22(z) = j2111

(
j−1

1112

(
j11(z)

))
,

j112(z) = j−1
2111

(
j111(z)

)
,

j121(z) = j−1
1112

(
j111(z)

)
,

j211(z) = j2111

(
j111(z)

)
,

j221(z) = j2111

(
j−1

1112

(
j111(z)

))
,

j122(z) = j−1
2111

(
j−1

1112

(
j111(z)

))
.

Therefore, we can write any element f ∈ Λ as a sequence of translations by ±v1

and ±v2, followed by a word p = w(0) for some word w ∈ {Id, j1, j11, j111}.

64
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To apply lemma 3.2.4, we want to show that∣∣fp(x, y)
∣∣2 = |p+ xv1 + yv2|2 ≥ 2r2 ≥ 4

for all possible choices of p and for all x, y ∈ Z. Using (4.3) we have∣∣fp(x, y)
∣∣2 = |p|2 + 2xRe(pv̄1) + 2yRe(pv̄2) + x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2).

Calculating the terms that do not depend on p, we have

v1 = j2111(0) = −(1− i)(ϕ1 − ϕ2) = −(1− i)
(
reiθ + re−iθ

)
= −2r(1− i) cos(θ),

v2 = j1112(0) = (1 + i)(ϕ1 − ϕ2) = (1 + i)
(
reiθ + re−iθ

)
= 2r(1 + i) cos(θ).

We then obtain

|v1|2 = |v2|2 = 8r2 cos2(θ), v1v̄2 = −4r2(1− i)2 cos2(θ) = i · 8r2 cos2(θ)

and Re(v1v̄2) = 0.

Hence, x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2) is equal to

x2
(
8r2 cos2(θ)

)
+ y2

(
8r2 cos2(θ)

)
= 8r2 cos2(θ)

(
x2 + y2

)
.

So we have∣∣fp(x, y)
∣∣2 = |p|2 + 2xRe(pv̄1) + 2yRe(pv̄2) + x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2)

= 8r2 cos2(θ)
(
x2 + y2

)
+ 2xRe(pv̄1) + 2yRe(pv̄2) +|p|2 .

We want to minimise this expression. In order to do so, we apply the coordinate
change (4.4). Under this coordinate change, we have

∣∣fp(u, v)
∣∣2 = 8r2 cos2(θ)

((
v − u

2

)2

+

(
u+ v

2

)2
)

+ 2

(
v − u

2

)
Re(pv̄1)

+ 2

(
u+ v

2

)
Re(pv̄2) +|p|2

= 2r2 cos2(θ)
(
v2 − 2uv + u2 + u2 + 2uv + v2

)
+ v

(
Re(pv̄1) + Re (pv̄2)

)
+ u

(
Re(pv̄2)− Re(pv̄1)

)
+|p|2

= 4r2 cos2(θ)
(
u2 + v2

)
+ v

(
Re(p(v̄1 + v̄2))

)
+ u

(
Re(p(v̄2 − v̄1))

)
+|p|2 .

This can be rewritten as∣∣fp(u, v)
∣∣2 = 4r2 cos2(θ)

(
(u− a)2 + (v − b)2

)
,
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where

a =
Re(p(v̄1 − v̄2))

8r2 cos2(θ)
= − Re(p)

2r cos(θ)
, b = −Re(p(v̄1 + v̄2))

8r2 cos2(θ)
= − Im(p)

2r cos(θ)
,

and a2 + b2 =
|p|2

4r2 cos2(θ)
.

Our aim is to show that |p+ xv1 + yv2|2 ≥ 2r2 for all (x, y) ∈ Z2 excluding the case
p = x = y = 0 which corresponds to the identity case. That is,

4r2 cos2(θ)
(
(u− a)2 + (v − b)2

)
≥ 2r2 ⇔ (u− a)2 + (v − b)2 ≥ sec2(θ)

2

for all (u, v) ∈ Z2 with u ≡ v mod 2, excluding the case a = b = u = v = 0. Notice

that this inequality is always satisfied if |u− a| ≥ sec(θ)√
2

or |v − b| ≥ sec θ√
2

and so we
only need to check that

g4,4
p (u, v) = (u− a)2 + (v − b)2 − sec2(θ)

2
≥ 0

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box(
a− sec(θ)√

2
, a+

sec(θ)√
2

)
×
(
b− sec(θ)√

2
, b+

sec(θ)√
2

)
.

For the choices of p, we look at the words w ∈ {Id, j1, j11, j111}. We have 4 possibil-
ities: the identity Id and

j1(z) = i · z + (1− i)ϕ1,

j11(z) = −z + 2ϕ1,

j111(z) = −i · z + (1 + i)ϕ1.

Figure 4.18 shows the points w(0) for all words w ∈ {Id, j1, j11, j111} in the case
r = 1 and θ = 0.

Figure 4.18: Points w(0) for all words w ∈ {Id, j1, j11, j111}.
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Evaluating these words at z = 0, we have four possible choices for p:

p = 0, p = (1± i)ϕ1 and p = 2ϕ1.

For each choice of p, the following table shows the values of a, b and a2 + b2 in terms
of t = tan(θ):

p = w(0) a b a2 + b2

Id 0 0 0
j1(0) −1

2
(1 + t) 1

2
(1− t) 1

2

(
t2 + 1

)
j11(0) −1 −t t2 + 1
j111(0) 1

2
(t− 1) −1

2
(t+ 1) 1

2

(
t2 + 1

)
Under the assumption |θ| ≤ π

12
we have that

t = tan(θ) ∈
[√

3− 2, 2−
√

3
]

and sec(θ) ∈
[
1,
√

2
(√

3− 1
)]

.

So for each p, we need to calculate the bounds on a, b and the size of the bounding
box(

min(a)−
(√

3− 1
)
, max(a) +

(√
3− 1

))
×
(

min(b)−
(√

3− 1
)
, max(b) +

(√
3− 1

))
.

We then need to show that

g4,4
p (u, v) = (u− a)2 + (v − b)2 − sec2(θ)

2

= u2 − 2au+ v2 − 2bv + (a2 + b2)−

(
t2 + 1

2

)
≥ 0

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box. For the purposes of
the following calculations, we will denote tπ/12 = tan

(
π
12

)
and γ =

√
3− 1.

For p = Id, we have a = 0 and b = 0. The bounding box

(−γ, γ)× (−γ, γ) ⊂ (−1, 1)× (−1, 1)

contains the point (0, 0) which corresponds to the excluded case f = Id.

For p = j1(0), we have a = −1
2

(t+ 1) ∈
[
−1

2
− tπ/12

2
,−1

2
+

tπ/12
2

]
and

b = 1
2

(1− t) ∈
[

1
2
− tπ/12

2
, 1

2
+

tπ/12
2

]
. The bounding box(

−1

2
−
tπ/12

2
− γ,−1

2
+
tπ/12

2
+ γ

)
×
(

1

2
−
tπ/12

2
− γ, 1

2
+
tπ/12

2
+ γ

)
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⊂ (−2, 1)× (−1, 2)

contains the points (−1, 1) and (0, 0). The function

g4,4
1 (u, v) = u2 + (1 + t)u+ v2 − (1− t) v

evaluated at these points is non-negative: g4,4
1 (−1, 1) = g4,4

1 (0, 0) = 0.

Figure 4.19: The level curves g4,4
1 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

For p = j11(0), we have a = −1 and b = −t ∈
[
−tπ/12, tπ/12

]
. The bounding box

(−1− γ,−1 + γ)×
(
−tπ/12 − γ, tπ/12 + γ

)
⊂ (−2, 0)× (−1, 1)

contains no points (u, v) ∈ Z2 with u ≡ v mod 2.

Figure 4.20: The level curves g4,4
11 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.
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For p = j111(0), we have a = 1
2

(t− 1) ∈
[
−1

2
− tπ/12

2
,−1

2
+

tπ/12
2

]
and b =

−1
2

(t+ 1) ∈
[
−1

2
− tπ/12

2
,−1

2
+

tπ/12
2

]
. The bounding box

(
−1

2
−
tπ/12

2
− γ,−1

2
+
tπ/12

2
+ γ

)
×
(
−1

2
−
tπ/12

2
− γ,−1

2
+
tπ/12

2
+ γ

)

⊂ (−2, 1)× (−2, 1)

contains the points (−1,−1) and (0, 0). The function

g4,4
111(u, v) = u2 + (1− t)u+ v2 + (1 + t) v

evaluated at these points is non-negative: g4,4
111(−1,−1) = g4,4

111(0, 0) = 0.

Figure 4.21: The level curves g4,4
111(u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

Therefore, as g4,4
p (u, v) ≥ 0 for all p, we have that

∣∣fp(x, y)
∣∣2 = |p+ xv1 + yv2|2 ≥ 2r2 ≥ 4

under the assumption that r ≥
√

2. That is,
∣∣fp(x, y)

∣∣ ≥ 2 for all f ∈ Λ\{Id}. Hence
the conditions of Lemma 3.2.4 are satisfied, and we can conclude that the complex
hyperbolic ultra-parallel [m,m, 0; 4, 4, 2]-triangle group is discrete for

cos(α) ≤ −
√

3

2
and m ≥ log

(
3 + 2

√
2
)
.
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4.5 The case [m,m, 0; 2, 6, 2]

Proposition 4.5.1. Every Heisenberg translation in Γ′ = 〈ι1, ι2〉 is of the form
T x1 T

y
2H

z, where T1 and T2 are Heisenberg translations, H is a vertical Heisenberg
translation and x, y, z ∈ Z. Every vertical Heisenberg translation in Γ′ is of the form
Hz, z ∈ Z. In particular, the shortest non-trivial vertical translations in Γ′ are

H±1 = (ι12)±3 .

Proof. The complex reflections ι1 and ι2 are of the form (4.1) with

r = cosh(m/2), ϕ1 = reiθ, ϕ2 = −re−iθ, δ = 1− µ,

φ = 1− λ, µ = exp(i · π) and λ = exp(i · π/3).

As µ is a second root of unity and λ is a sixth root of unity, we will obtain Heisenberg
translations with words containing x ι1 and y ι2 where y

3
+ x ≡ 0 mod 2. Straight-

forward computation shows that the elements ι1222, ι2122, ι2212, ι2221 and ι121212 are
Heisenberg translations. Let T be the group generated by these 5 Heisenberg trans-
lations. The group T is generated by T1 = ι2122, T2 = ι2212 and H = ι121212 since all
other generators can be expressed in terms of T1, T2 and H:

ι1222 = HT−1
2 T1, and ι2221 = T−1

1 T2H
−1.

The reduced length 4 words which are not Heisenberg translations can be expressed
in terms of the generators, T1, T2, H and a remainder term of length at most 3:

ι1212 = HT−1
2 ι22, ι1221 = HT−1

2 T1T
−1
2 ι22, ι2121 = T1T

−1
2 ι22 and ι2222 = T−1

1 ι21.

Therefore, given any reduced word in ι1 and ι2, we are able to break it down into a
sequence of Heisenberg translations T1, T2, H and their inverses, followed by a word
of length at most 3. Hence T contains all Heisenberg translations in Γ′ = 〈ι1, ι2〉.
Direct computation shows that Tk for k = 1, 2, 3, where T3 = H, is a Heisenberg
translation by (ξk, νk), where

ξ1 = 2r(1 + i
√

3) cos(θ) and ν1 = 8
√

3r2 cos2(θ) + 8r2 sin(θ) cos(θ),

ξ2 = −2r(1− i
√

3) cos(θ) and ν2 = 8
√

3r2 cos2(θ)− 8r2 sin(θ) cos(θ),

ξ3 = 0 and ν2 = 16
√

3r2 cos2(θ).

Computing the commutator [T2, T1] = T−1
2 T−1

1 T2T1 we obtain the Heisenberg
translation of the form (4.5) which is a vertical translation in N . Substituting ξ1

and ξ2 into (4.5) we have the vertical Heisenberg translation by (0, 32
√

3r2 cos2(θ)).
That is, [T2, T1] = H2.

The group T has the presentation

〈T1, T2, H | [T2, T1] = H2, [H,T1] = [H,T2] = 1〉.
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4.5. The case [m,m, 0; 2, 6, 2]

Note that T is isomorphic to N2 (see Definition 2.1.18). Any vertical translation in
Γ′ belongs to the subgroup T . Using the identities

T1H = HT1, T2H = HT2 and T2T1 = T1T2H
2

every element of N2 can be written in the form T x1 T
y
2H

z for some x, y, z ∈ Z. If we
project to C × {0}, the element T x1 T

y
2H

z acts as a translation by xv1 + yv2. That
is, this element is a vertical translation if and only if it is a power of H. We can see
that H±1 = (ι12)±3. Note that this is inline with the results of Dekimpe [1] (Chapter
7, Case 16).

Proposition 4.5.2. A complex hyperbolic ultra-parallel [m,m, 0; 2, 6, 2]-triangle
group is discrete if the following conditions on the angular invariant α and on m
are satisfied:

cos(α) ≤ −
√

3

2
and m ≥ log

(
7 + 4

√
3
)
.

Proof. We will use Lemma 3.2.4. To satisfy the second part of Lemma 3.2.4, we
need the displacement of every vertical translation Hz, z 6= 0, to be at least the
height of the spinal sphere, i.e.

16
√

3r2 cos2(θ) ≥ 2⇔ r2 cos2(θ) ≥ 1

8
√

3
.

By our assumption, cos(α) ≤ −
√

3
2

, hence |θ| ≤ π
12

. We also have that m =

2 cosh−1(r) ≥ log
(

7 + 4
√

3
)

hence r ≥ 2. So we have

r2 cos2(θ) ≥ 22 ·

(
1 +
√

3

2
√

2

)2

= 2 +
√

3 >
1

8
√

3
,

hence the condition
∣∣h(0)

∣∣ ≥ 2 is satisfied for all vertical translation h ∈ Γ′\{Id}.

To satisfy the first part of Lemma 3.2.4, we project ι1 and ι2 to C to obtain
rotations j1 and j2 of C× {0} through π and π

3
around ϕ1 and ϕ2 respectively. We

can write every element f ∈ Λ as a word in the generators j1 and j±1,2,3
2 . Using the

relations j−3
2 = j3

2 , j
−2
2 = j4

2 and j−1
2 = j5

2 , we can rewrite every element f as a word
in terms of j1 and j2.

Figure 4.22 shows the points f(0) for all reduced words f of length up to 6
in the case r = 1 and θ = 0.
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Figure 4.22: Points f(0) for all words f up to length 6.

Projecting the Heisenberg translations to C we obtain Euclidean translations. The
explicit formulas for the Euclidean translations are as follows

j1222(z) = z + 2 (ϕ1 − ϕ2) ,

j2122(z) = z +
(

1 + i
√

3
)

(ϕ1 − ϕ2) ,

j2212(z) = z −
(

1− i
√

3
)

(ϕ1 − ϕ2) ,

j2221(z) = z − 2 (ϕ1 − ϕ2) .

Remark 4.5.3. The remaining map j121212(z) is equal to the identity map.

These translations generate the subgroup of all translations in the group Λ. This
subgroup is generated by two translations

j2122(z) = z + v1 and j2212(z) = z + v2,

where v1 =
(

1 + i
√

3
)

(ϕ1 − ϕ2) and v2 = −
(

1− i
√

3
)

(ϕ1 − ϕ2).

Under the translations, we will be able to break down any element of Λ,
written as a word in the generators j1 and j2, into a sequence of translations by
±v1 and ±v2, followed by a word of length at most 3, so that every point in the
orbit of 0 under Λ is of the form

fp(x, y) := p+ xv1 + yv2,

where p = w(0) for some word w of length at most 3 and x, y ∈ Z.
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4.5. The case [m,m, 0; 2, 6, 2]

Remark 4.5.4. For words of length 4 which are not translation maps, notice that
these maps are equal to maps of greater length which can be broken down into a
sequence of translations followed by a word of length at most 3:

j2222(z) = j−1
2122

(
j21(z)

)
,

j1221(z) = j−1
2212

(
j2122

(
j−1

2212

(
j22(z)

)))
,

j1212(z) = j−1
2212

(
j22(z)

)
,

j2121(z) = j2122

(
j−1

2212

(
j22(z)

))
.

Therefore the form of the orbit of 0 under Λ is still valid.

We can further reduce the choices of p. Notice that for T1 = ι2122, T2 = ι2212 and
H = ι121212, we have

ι12 = HT−1
2 ι21, ι121 = HT−1

2 ι2, ι122 = HT−1
2 T1T

−1
2 ι221,

ι212 = T1T
−1
2 ι221 and ι222 = T−1

1 T2H
−1ι1.

We are able to rewrite the translation element of each map in the form T x1 T
y
2H

z, for
x, y, z ∈ Z, so that every map above can be written as T x1 T

y
2H

z · ιa1 for x, y, z ∈ Z
and rotation element ιa1 . Projecting to C×{0} (i.e. setting H to the identity map,
Id), we obtain the maps

j12(z) = j−1
2212

(
j21(z)

)
,

j121(z) = j−1
2212

(
j2(z)

)
,

j122(z) = j−2
2212

(
j2122

(
j221(z)

))
,

j212(z) = j2122

(
j−1

2212

(
j221(z)

))
,

j222(z) = j−1
2122

(
j2212

(
j1(z)

))
.

Therefore, we can write any element f ∈ Λ as a sequence of translations by ±v1

and ±v2, followed by a word p = w(0) for some word w ∈ {Id, j1, j2, j21, j22, j221}.

To apply lemma 3.2.4, we want to show that∣∣fp(x, y)
∣∣2 = |p+ xv1 + yv2|2 ≥ r2 ≥ 4

for all possible choices of p and for all x, y ∈ Z. Using (4.3) we have∣∣fp(x, y)
∣∣2 = |p|2 + 2xRe(pv̄1) + 2yRe(pv̄2) + x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2).

Calculating the terms that do not depend on p, we have

v1 = (1 + i
√

3) (ϕ1 − ϕ2) = 2r(1 + i
√

3) cos(θ)

v2 = −(1− i
√

3) (ϕ1 − ϕ2) = −2r(1− i
√

3) cos(θ).
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We then obtain

|v1|2 = |v2|2 = 16r2 cos2(θ), v1v̄2 = 8r2 cos2(θ)− i · 8
√

3r2 cos2(θ)

and Re(v1v̄2) = 8r2 cos2(θ).

Hence,

x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2) = 16r2 cos2(θ)
(
x2 + xy + y2

)
.

So we have∣∣fp(x, y)
∣∣2 = 16r2 cos2(θ)

(
x2 + xy + y2

)
+ 2xRe(pv̄1) + 2yRe(pv̄2) +|p|2 .

We want to minimise this expression. In order to do so, we apply the coordinate
change (4.4). Under this coordinate change, we have

∣∣fp(u, v)
∣∣2 = 16r2 cos2(θ)

((
v − u

2

)2

+

(
v − u

2

)(
u+ v

2

)
+

(
u+ v

2

)2
)

+ (v − u) Re(pv̄1) + (u+ v) Re(pv̄2) +|p|2

= 4r2 cos2(θ)
(
v2 − 2uv + u2 + v2 − u2 + u2 + 2uv + v2

)
+ v

(
Re(pv̄1) + Re (pv̄2)

)
+ u

(
Re(pv̄2)− Re(pv̄1)

)
+|p|2

= 4r2 cos2(θ)
(
u2 + 3v2

)
+ v

(
Re(p(v̄1 + v̄2))

)
+ u

(
Re(p(v̄2 − v̄1))

)
+|p|2 .

This can be rewritten as∣∣fp(u, v)
∣∣2 = 4r2 cos2(θ)

(
(u− a)2 + 3(v − b)2

)
,

where

a = −Re(p(v̄2 − v̄1))

8r2 cos2(θ)
=

Re(p)

2r cos(θ)
,

b = −Re(p(v̄1 + v̄2))

24r2 cos2(θ)
= − Im(p)

2
√

3r cos(θ)
,

a2 + 3b2 =
|p|2

4r2 cos2(θ)
.

Our aim is to show that |p+ xv1 + yv2|2 ≥ r2 for all (x, y) ∈ Z2 excluding the case
p = x = y = 0 which corresponds to the identity case. That is,

4r2 cos2(θ)
(
(u− a)2 + 3(v − b)2

)
≥ r2 ⇔ (u− a)2 + 3(v − b)2 ≥ sec2(θ)

4
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4.5. The case [m,m, 0; 2, 6, 2]

for all (u, v) ∈ Z2 with u ≡ v mod 2, excluding the case a = b = u = v = 0. Notice

that this inequality is always satisfied if |u− a| ≥ sec(θ)
2

or |v − b| ≥ sec θ
2
√

3
and so we

only need to check that

g2,6
p (u, v) = (u− a)2 + 3(v − b)2 − sec2(θ)

4
≥ 0

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box(
a− sec(θ)

2
, a+

sec(θ)

2

)
×
(
b− sec(θ)

2
√

3
, b+

sec(θ)

2
√

3

)
.

For the choices of p, we look at the words w ∈ {Id, j1, j2, j21, j22, j221}. We have 6
possibilities: the identity Id and

j1(z) = −z + 2ϕ1,

j2(z) =

(
1

2
+
i
√

3

2

)
z +

(
1

2
− i
√

3

2

)
ϕ2,

j21(z) = −

(
1

2
+
i
√

3

2

)
z + (1 + i

√
3)ϕ1 +

(
1

2
− i
√

3

2

)
ϕ2,

j22(z) = −

(
1

2
− i
√

3

2

)
z +

(
3

2
− i
√

3

2

)
ϕ2,

j221(z) =

(
1

2
− i
√

3

2

)
z − (1− i

√
3)ϕ1 +

(
3

2
− i
√

3

2

)
ϕ2.

Figure 4.23 shows the points w(0) for all words w ∈ {Id, j1, j2, j21, j22, j221} in the
case r = 1 and θ = 0.

Figure 4.23: Points w(0) for all words w ∈ {Id, j1, j2, j21, j22, j221}.
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Evaluating these words at z = 0, we have 6 possible choices for p:

p = 0, p = 2ϕ1, p =

(
1

2
− i
√

3

2

)
ϕ2,

p = (1 + i
√

3)ϕ1 +

(
1

2
− i
√

3

2

)
ϕ2,

p =

(
3

2
− i
√

3

2

)
ϕ2,

p = −(1− i
√

3)ϕ1 +

(
3

2
− i
√

3

2

)
ϕ2.

For each choice of p, the following table shows the values of a, b and a2 +3b2 in terms
of t = tan(θ):

p = w(0) a b a2 + 3b2

Id 0 0 0
j1(0) 1 − t√

3
t2 + 1

j2(0) 1
4

(
t
√

3− 1
)

− 1
4
√

3

(
t+
√

3
)

1
4

(
t2 + 1

)
j21(0) 1

4

(
1− t

√
3
)

−1
4

(
t
√

3 + 3
)

1
4

(
3t2 + 4t

√
3 + 7

)
j22(0) 1

4

(
t
√

3− 3
)

−1
4

(
t
√

3 + 1
)

3
4

(
t2 + 1

)
j221(0) −1

4

(
t
√

3 + 5
)
− 1

4
√

3

(
t+ 3

√
3
)

1
4

(
t2 + 4t

√
3 + 13

)
Under the assumption |θ| ≤ π

12
we have that

t = tan(θ) ∈
[√

3− 2, 2−
√

3
]

and sec(θ) ∈
[
1,
√

2
(√

3− 1
)]

.

So for each p, we need to calculate the bounds on a, b and the size of the bounding
box(

min(a)−
√

3− 1√
2

, max(a) +

√
3− 1√

2

)
×

(
min(b)−

√
3− 1√

6
, max(b) +

√
3− 1√

6

)
.

We then need to show that

g2,6
p (u, v) = (u− a)2 + 3(v − b)2 − sec2(θ)

4

= u2 − 2au+ v2 − 6bv + (a2 + 3b2)−

(
t2 + 1

4

)
≥ 0
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4.5. The case [m,m, 0; 2, 6, 2]

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box. For the purposes of

the following calculations, we will denote tπ/12 = tan
(
π
12

)
, γ1 =

√
3−1√

2
and γ2 =

√
3−1√

6
.

For p = Id, we have a = 0 and b = 0. The bounding box

(−γ1, γ1)× (−γ2, γ2) ⊂ (−1, 1)× (−1, 1)

contains the point (0, 0) which corresponds to the excluded case f = Id.

For p = j1(0), we have a = 1 and b = − t√
3
∈
[
− tπ/12√

3
,
tπ/12√

3

]
. The bounding

box

(1− γ1, 1 + γ1)×
(
−
tπ/12√

3
− γ2,

tπ/12√
3

+ γ2

)
⊂ (0, 2)× (−1, 1)

contains no points (u, v) ∈ Z2 with u ≡ v mod 2.

Figure 4.24: The level curves g2,6
1 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

For p = j2(0), we have a = 1
4

(
t
√

3− 1
)
∈
[
−1

4
− tπ/12

√
3

4
,−1

4
+

tπ/12
√

3

4

]
and b =

− 1
4
√

3

(
t+
√

3
)
∈
[
−1

4
− tπ/12

4
√

3
,−1

4
+

tπ/12

4
√

3

]
. The bounding box(

−1

4
−
tπ/12

√
3

4
− γ1,−

1

4
+
tπ/12

√
3

4
+ γ1

)
×
(
−1

4
−
tπ/12

4
√

3
− γ2,−

1

4
+
tπ/12

4
√

3
+ γ2

)
⊂ (−1, 1)× (−1, 1)

contains the point (0, 0). The function

g2,6
2 (u, v) = u2 +

(
1− t

√
3

2

)
u+ 3v2 +

(
3− t

√
3

2

)
v
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Chapter 4. Discreteness Results

evaluated at this point is non-negative: g2,6
2 (0, 0) = 0.

Figure 4.25: The level curves g2,6
2 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

For p = j21(0), we have a = 1
4

(
1− t

√
3
)
∈
[

1
4
− tπ/12

√
3

4
, 1

4
+

tπ/12
√

3

4

]
and b =

−1
4

(
t
√

3 + 3
)
∈
[
−3

4
− tπ/12

√
3

4
,−3

4
+

tπ/12
√

3

4

]
. The bounding box

(
1

4
−
tπ/12

√
3

4
− γ1,

1

4
+
tπ/12

√
3

4
+ γ1

)
×

(
−3

4
−
tπ/12

√
3

4
− γ2,−

3

4
+
tπ/12

√
3

4
+ γ2

)

⊂ (−1, 1)× (−2, 0)

contains no points (u, v) ∈ Z2 with u ≡ v mod 2.

Figure 4.26: The level curves g2,6
21 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.
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4.5. The case [m,m, 0; 2, 6, 2]

For p = j22(0), we have a = 1
4

(
t
√

3− 3
)
∈
[
−3

4
− tπ/12

√
3

4
,−3

4
+

tπ/12
√

3

4

]
and b =

−1
4

(
t
√

3 + 1
)
∈
[
−1

4
− tπ/12

√
3

4
,−1

4
+

tπ/12
√

3

4

]
. The bounding box

(
−3

4
−
tπ/12

√
3

4
− γ1,−

3

4
+
tπ/12

√
3

4
+ γ1

)
×

(
−1

4
−
tπ/12

√
3

4
− γ2,−

1

4
+
tπ/12

√
3

4
+ γ2

)

⊂ (−2, 0)× (−1, 1)

contains no points (u, v) ∈ Z2 with u ≡ v mod 2.

Figure 4.27: The level curves g2,6
22 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

Finally for p = j221(0), we have a = −1
4

(
t
√

3 + 5
)
∈
[
−5

4
− tπ/12

√
3

4
,−5

4
+

tπ/12
√

3

4

]
and b = − 1

4
√

3

(
t+ 3

√
3
)
∈
[
−3

4
− tπ/12

4
√

3
,−3

4
+

tπ/12

4
√

3

]
. The bounding box

(
−5

4
−
tπ/12

√
3

4
− γ1,−

5

4
+
tπ/12

√
3

4
+ γ1

)
×
(
−3

4
−
tπ/12

4
√

3
− γ2,−

3

4
+
tπ/12

4
√

3
+ γ2

)

⊂ (−2, 0)× (−2, 0)

contains the point (−1,−1). The function

g2,6
221(u, v) = u2 −

(
5 + t

√
3

2

)
u+ 3v2 +

(
9 + t

√
3

2

)
v + 3 + t

√
3

evaluated at this point is non-negative: g2,6
221(−1,−1) = 0.
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Chapter 4. Discreteness Results

Figure 4.28: The level curves g2,6
221(u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

Therefore, as g2,6
p (u, v) ≥ 0 for all p, we have that∣∣fp(x, y)

∣∣2 = |p+ xv1 + yv2|2 ≥ r2 ≥ 4

under the assumption that r ≥ 2. That is,
∣∣fp(x, y)

∣∣ ≥ 2 for all f ∈ Λ\{Id}. Hence
the conditions of Lemma 3.2.4 are satisfied, and we can conclude that the complex
hyperbolic ultra-parallel [m,m, 0; 2, 6, 2]-triangle group is discrete for

cos(α) ≤ −
√

3

2
and m ≥ log

(
7 + 4

√
3
)
.

4.6 The case [m,m, 0; 3, 6, 2]

Proposition 4.6.1. Every Heisenberg translation in Γ′ = 〈ι1, ι2〉 is of the form
T x1 T

y
2H

z, where T1 and T2 are Heisenberg translations, H is a vertical Heisenberg
translation and x, y, z ∈ Z. Every vertical Heisenberg translation in Γ′ is of the form
Hz, z ∈ Z. In particular, the shortest non-trivial vertical translations in Γ′ are

H±1 = (ι12)±2 .

Proof. The complex reflections ι1 and ι2 are of the form (4.1) with

r = cosh(m/2), ϕ1 = reiθ, ϕ2 = −re−iθ, δ = 1− µ,

φ = 1− λ, µ = exp(i · 2π/3) and λ = exp(i · π/3).

As µ is a third root of unity and λ is a sixth root of unity, we will obtain Heisenberg
translations with words containing x ι1 and y ι2 where y

2
+ x ≡ 0 mod 3. Straight-

forward computation shows that the elements ι1122, ι1212, ι1221, ι2112, ι2121 and ι2211 are
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4.6. The case [m,m, 0; 3, 6, 2]

Heisenberg translations. Consider the elements T1 = ι1122, T2 = ι2211 and H = ι1212.
Direct computation shows that Tk for k = 1, 2, 3, where T3 = H, is a Heisenberg
translation by (ξk, νk), where

ξ1 = r(3 + i
√

3) cos(θ) and ν1 = 12r2 sin(θ) cos(θ),

ξ2 = −r(3− i
√

3) cos(θ) and ν2 = −12r2 sin(θ) cos(θ),

ξ3 = 0 and ν3 = 8
√

3r2 cos2(θ).

Computing the commutator [T2, T1] = T−1
2 T−1

1 T2T1 we obtain the Heisenberg
translation of the form (4.5) which is a vertical translation in N . Substituting ξ1

and ξ2 into (4.5) we have the vertical Heisenberg translation by (0, 24
√

3r2 cos2(θ)).
That is, [T2, T1] = H3.

Let T be the group generated by the 6 Heisenberg translations above. The
group T is generated by T1 = ι1122, T2 = ι2211 and H = ι1212 since all other
generators can be expressed in terms of T1, T2 and H:

ι1221 = T−1
2 T−1

1 , ι2112 = T1T2H
2 and ι2121 = H.

Remark 4.6.2. It is difficult to show that the words ι1212 and ι2121 are equal by
expressing ι2121 in terms of T1, T2 and H. However, direct computation shows that
the word ι2121 is a Heisenberg translation by (ξ, ν), where

ξ = 0 and ν = 8
√

3r2 cos2(θ).

This is the exact Heisenberg translation for the word ι1212. Given that ι1212 = ι2121

we are able to show the equality of the element ι2112:

T1 · T2 ·H2 = ι1122 · ι2211 · ι1212 · ι1212

= ι1122221112121212 = ι1122222121212

= ι1122222 · ι1212 · ι12

= ι1122222 · ι2121 · ι12

= ι1122222212112 = ι1112112 = ι2112.

The reduced length 4 words which are not Heisenberg translations can be expressed
in terms of the generators T1, T2, H and a remainder term of length at most 3:

ι1121 = T−1
2 Hι2, ι1211 = H−1T−1

2 T−1
1 ι2, ι1222 = T−1

2 H−1ι121, ι2122 = Hι112

ι2212 = T2ι112, ι2221 = T2HT
−1
1 ι112 and ι2222 = T−1

1 ι11.

Remark 4.6.3. To show that ι1121 = T−1
2 Hι2, ι1211 = H−1T−1

2 T−1
1 ι2 and ι2122 =

Hι112, one must use the fact that ι1212 = ι2121.
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Chapter 4. Discreteness Results

Therefore, given any reduced word in ι1 and ι2, we are able to break it down into a
sequence of Heisenberg translations T1, T2, H and their inverses, followed by a word
of length at most 3. Hence T contains all Heisenberg translations in Γ′ = 〈ι1, ι2}.

The group T has the presentation

〈T1, T2, H | [T2, T1] = H3, [H,T1] = [H,T2] = 1〉.

Note that T is isomorphic to N3 (see Definition 2.1.18). Any vertical translation in
Γ′ belongs to the subgroup T . Using the identities

T1H = HT1, T2H = HT2 and T2T1 = T1T2H
3

every element of N3 can be written in the form T x1 T
y
2H

z for some x, y, z ∈ Z. If we
project to C × {0}, the element T x1 T

y
2H

z acts as a translation by xv1 + yv2. That
is, this element is a vertical translation if and only if it is a power of H. We can see
that H±1 = (ι12)±2. Note that this is inline with the results of Dekimpe [1] (Chapter
7, Case 16).

Proposition 4.6.4. A complex hyperbolic ultra-parallel [m,m, 0; 3, 6, 2]-triangle
group is discrete if the following conditions on the angular invariant α and on m
are satisfied:

cos(α) ≤ −
√

3

2
and m ≥ log

(
7 + 4

√
3
)
.

Proof. We will use Lemma 3.2.4. To satisfy the second part of Lemma 3.2.4, we
need the displacement of every vertical translation Hz, z 6= 0, to be at least the
height of the spinal sphere, i.e.

8
√

3r2 cos2(θ) ≥ 2⇔ r2 cos2(θ) ≥ 1

4
√

3
.

By our assumption, cos(α) ≤ −
√

3
2

and m = 2 cosh−1(r) ≥ log
(

7 + 4
√

3
)

, hence, as

in the previous section, we have that |θ| ≤ π
12

and r ≥ 2. So we have

r2 cos2(θ) ≥ 22 ·

(
1 +
√

3

2
√

2

)2

= 2 +
√

3 >
1

4
√

3
,

hence the condition
∣∣h(0)

∣∣ ≥ 2 is satisfied for all vertical translation h ∈ Γ′\{Id}.

To satisfy the first part of Lemma 3.2.4, we project ι1 and ι2 to C to obtain
rotations j1 and j2 of C×{0} through 2π

3
and π

3
around ϕ1 and ϕ2 respectively. We

can write every element f ∈ Λ as a word in the generators j±1,2
1 and j±1,2,3

2 . Using
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4.6. The case [m,m, 0; 3, 6, 2]

the relations j−2
1 = j1, j

−1
1 = j2

1 , j
−3
2 = j3

2 , j
−2
2 = j4

2 and j−1
2 = j5

2 , we can rewrite
every element f as a word in terms of j1 and j2.

Figure 4.29 shows the points f(0) for all reduced words f of length up to 6
in the case r = 1 and θ = 0.

Figure 4.29: Points f(0) for all words f up to length 6.

Projecting the Heisenberg translations to C we obtain Euclidean translations. The
explicit formulas for the Euclidean translations are as follows

j1122(z) = z +

(
3

2
+
i
√

3

2

)
(ϕ1 − ϕ2) ,

j2211(z) = z −

(
3

2
− i
√

3

2

)
(ϕ1 − ϕ2) ,

j1221(z) = z − i
√

3 (ϕ1 − ϕ2) ,

j2112(z) = z + i
√

3 (ϕ1 − ϕ2) .

Remark 4.6.5. The remaining maps j1212(z) and j2121(z) are equal to the identity
map.

These translations generate the subgroup of all translations in the group Λ. This
subgroup can be generated by two translations

j1122(z) = z + v1 and j2211(z) = z + v2,

where v1 =
(

3
2

+ i
√

3
2

)
(ϕ1 − ϕ2) and v2 = −

(
3
2
− i
√

3
2

)
(ϕ1 − ϕ2).
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Chapter 4. Discreteness Results

Under the translations, we will be able to break down any element of Λ,
written as a word in the generators j1 and j2, into a sequence of translations by
±v1 and ±v2, followed by a word of length at most 3, so that every point in the
orbit of 0 under Λ is of the form

fp(x, y) := p+ xv1 + yv2,

where p = w(0) for some word w of length at most 3 and x, y ∈ Z.

Remark 4.6.6. For words of length 4 which are not translation maps, notice that
these maps are equal to maps of greater length which can be broken down into a
sequence of translations followed by a word of length at most 3:

j1121(z) = j−1
2211

(
j2(z)

)
,

j1211(z) = j−1
2211

(
j−1

1122

(
j2(z)

))
,

j1222(z) = j−1
2211

(
j−1

1122

(
j112(z)

))
,

j2122(z) = j112(z),

j2212(z) = j2211

(
j112(z)

)
,

j2221(z) = j2211

(
j−1

1122

(
j112(z)

))
,

j2222(z) = j−1
1122

(
j−1

2211

(
j221(z)

))
.

Therefore the form of the orbit of 0 under Λ is still valid.

We can further reduce the choices of p. Notice that for T1 = ι1122, T2 = ι2211 and
H = ι1212, we have that

ι1 = T−1
2 ι22, ι11 = T−1

2 ι221, ι12 = T−1
2 ι222, ι21 = HT1ι222,

ι121 = HT−1
1 ι112, ι122 = T−1

2 T−1
1 T−1

2 ι221 and ι211 = HT1T2HT
−1
1 ι112.

We are able to rewrite the translation element of each map in the form T x1 T
y
2H

z, for
x, y, z ∈ Z, so that every map above can be written as T x1 T

y
2H

z · ιa1 for x, y, z ∈ Z
and rotation element ιa1 . Projecting to C×{0} (i.e. setting H to the identity map,
Id), we obtain the maps

j1(z) = j−1
2211

(
j22(z)

)
,

j11(z) = j−1
2211

(
j221(z)

)
,

j12(z) = j−1
2211

(
j222(z)

)
,

j21(z) = j1122

(
j222(z)

)
,

j121(z) = j−1
1122

(
j112(z)

)
,

j122(z) = j−2
2211

(
j−1

1122

(
j221(z)

))
,

j211(z) = j2211

(
j112(z)

)
.
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4.6. The case [m,m, 0; 3, 6, 2]

Therefore, we can write any element f ∈ Λ as a sequence of translations by ±v1

and ±v2, followed by a word p = w(0) for some word w ∈ {Id, j2, j22, j112, j221, j222}.

To apply lemma 3.2.4, we want to show that∣∣fp(x, y)
∣∣2 = |p+ xv1 + yv2|2 ≥ r2 ≥ 4

for all possible choices of p and for all x, y ∈ Z. Using (4.3) we have∣∣fp(x, y)
∣∣2 = |p|2 + 2xRe(pv̄1) + 2yRe(pv̄2) + x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2).

Calculating the terms that do not depend on p, we have

v1 =

(
3

2
+
i
√

3

2

)
(ϕ1 − ϕ2) = r(3 + i

√
3) cos(θ)

v2 = −

(
3

2
− i
√

3

2

)
(ϕ1 − ϕ2) = r(−3 + i

√
3) cos(θ).

We then obtain

|v1|2 = |v2|2 = 12r2 cos2(θ), v1v̄2 = −r2(3+i
√

3)2 cos2(θ) = −6r2 cos2(θ)
(

1 + i
√

3
)

and Re(v1v̄2) = −6r2 cos2(θ).

Hence,

x2|v1|2 + y2|v2|2 + 2xyRe(v1v̄2) = 12r2 cos2(θ)
(
x2 − xy + y2

)
.

So we have∣∣fp(x, y)
∣∣2 = 12r2 cos2(θ)

(
x2 − xy + y2

)
+ 2xRe(pv̄1) + 2yRe(pv̄2) +|p|2 .

We want to minimise this expression. In order to do so, we apply the coordinate
change (4.4). Under this coordinate change, we have

∣∣fp(u, v)
∣∣2 = 12r2 cos2(θ)

((
v − u

2

)2

−
(
v − u

2

)(
u+ v

2

)
+

(
u+ v

2

)2
)

+ (v − u) Re(pv̄1) + (u+ v) Re(pv̄2) +|p|2

= 3r2 cos2(θ)
(
v2 − 2uv + u2 − v2 + u2 + u2 + 2uv + v2

)
+ v

(
Re(pv̄1) + Re (pv̄2)

)
+ u

(
Re(pv̄2)− Re(pv̄1)

)
+|p|2

= 3r2 cos2(θ)
(
3u2 + v2

)
+ v

(
Re(p(v̄1 + v̄2))

)
+ u

(
Re(p(v̄2 − v̄1))

)
+|p|2 .
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Chapter 4. Discreteness Results

This can be rewritten as∣∣fp(u, v)
∣∣2 = 3r2 cos2(θ)

(
3(u− a)2 + (v − b)2

)
,

where

a = −Re(p(v̄2 − v̄1))

18r2 cos2(θ)
=

Re(p)

3r cos(θ)
,

b = −Re(p(v̄1 + v̄2))

6r2 cos2(θ)
= − Im(p)

r
√

3 cos(θ)
,

3a2 + b2 =
|p|2

3r2 cos2(θ)
.

Our aim is to show that |p+ xv1 + yv2|2 ≥ r2 for all (x, y) ∈ Z2 excluding the case
p = x = y = 0 which corresponds to the identity case. That is,

3r2 cos2(θ)
(
3(u− a)2 + (v − b)2

)
≥ r2 ⇔ 3(u− a)2 + (v − b)2 ≥ sec2(θ)

3

for all (u, v) ∈ Z2 with u ≡ v mod 2, excluding the case a = b = u = v = 0. Notice

that this inequality is always satisfied if |u− a| ≥ sec(θ)
3

or |v − b| ≥ sec θ√
3

and so we
only need to check that

g3,6
p (u, v) = 3(u− a)2 + (v − b)2 − sec2(θ)

3
≥ 0

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box(
a− sec(θ)

3
, a+

sec(θ)

3

)
×
(
b− sec(θ)√

3
, b+

sec(θ)√
3

)
.

For the choices of p, we look at the words w ∈ {Id, j2, j22, j112, j221, j222}. We have 6
possibilities: the identity Id and

j2(z) =

(
1

2
+
i
√

3

2

)
z +

(
1

2
− i
√

3

2

)
ϕ2,

j22(z) = −

(
1

2
− i
√

3

2

)
z +

(
3

2
− i
√

3

2

)
ϕ2,

j112(z) =

(
1

2
− i
√

3

2

)
z +

(
3

2
+
i
√

3

2

)
ϕ1 − ϕ2,

j221(z) = −

(
1

2
+
i
√

3

2

)
z + i

√
3ϕ1 +

(
3

2
− i
√

3

2

)
ϕ2,

j222(z) = −z + 2ϕ2.
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Figure 4.30 shows the points w(0) for all words w ∈ {Id, j2, j22, j112, j221, j222} in the
case r = 1 and θ = 0.

Figure 4.30: Points w(0) for all words w ∈ {Id, j2, j22, j112, j221, j222}.

Evaluating these words at z = 0, we have six possible choices for p:

p = 0, p =

(
1

2
− i
√

3

2

)
ϕ2, p =

(
3

2
− i
√

3

2

)
ϕ2,

p =

(
3

2
+
i
√

3

2

)
ϕ1 − ϕ2, p = i

√
3ϕ1 +

(
3

2
− i
√

3

2

)
ϕ2 and p = 2ϕ2.

For each choice of p, the following table shows the values of a, b and 3a2 +b2 in terms
of t = tan(θ):

p = w(0) a b 3a2 + b2

Id 0 0 0

j2(0) 1
2
√

3

(
t− 1√

3

)
− 1

2
√

3

(
t+
√

3
)

1
3

(
t2 + 1

)
j22(0) 1

2
√

3

(
t−
√

3
)

−1
2

(
t
√

3 + 1
)

t2 + 1

j112(0) 1
2
√

3

(
5√
3
− t
)

− 1
2
√

3

(
t+
√

3
)

1
3

(
t2 − 2t

√
3 + 7

)
j221(0) − 1

2
√

3

(
t+
√

3
)
−1

2

(
t
√

3 + 3
)

t2 + 2t
√

3 + 3

j222(0) −2
3

− 2t√
3

4
3

(
t2 + 1

)
Under the assumption |θ| ≤ π

12
we have that

t = tan(θ) ∈
[√

3− 2, 2−
√

3
]

and sec(θ) ∈
[
1,
√

2
(√

3− 1
)]

.
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So for each p, we need to calculate the bounds on a, b and the size of the bounding
box min(a)−

√
2
(√

3− 1
)

3
, max(a) +

√
2
(√

3− 1
)

3


×

min(b)−

√
2
(√

3− 1
)

√
3

, max(b) +

√
2
(√

3− 1
)

√
3

 .

We then need to show that

g3,6
p (u, v) = 3(u− a)2 + (v − b)2 − sec2(θ)

3

= 3u2 − 6au+ v2 − 2bv + (3a2 + b2)−

(
t2 + 1

3

)
≥ 0

for all (u, v) ∈ Z2 with u ≡ v mod 2 inside the bounding box. For the purposes

of the following calculations, we will denote tπ/12 = tan
(
π
12

)
, γ1 =

√
2(
√

3−1)
3

and

γ2 =
√

2(
√

3−1)√
3

.

For p = Id, we have a = 0 and b = 0. The bounding box

(−γ1, γ1)× (−γ2, γ2) ⊂ (−1, 1)× (−1, 1)

contains the point (0, 0) which corresponds to the excluded case f = Id.

For p = j2(0), we have a = 1
2
√

3

(
t− 1√

3

)
∈
[
−1

6
− tπ/12

2
√

3
,−1

6
+

tπ/12

2
√

3

]
and

b = − 1
2
√

3

(
t+
√

3
)
∈
[
−1

2
− tπ/12

2
√

3
,−1

2
+

tπ/12

2
√

3

]
. The bounding box

(
−1

6
−
tπ/12

2
√

3
− γ1,−

1

6
+
tπ/12

2
√

3
+ γ1

)
×
(
−1

2
−
tπ/12

2
√

3
− γ2,−

1

2
+
tπ/12

2
√

3
+ γ2

)
⊂ (−1, 1)× (−2, 1)

contains the point (0, 0). The function

g3,6
2 (u, v) = 3u2 + (1− t

√
3)u+ v2 +

(
1 +

t√
3

)
v

evaluated at this point is non-negative: g3,6
2 (0, 0) = 0.
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Figure 4.31: The level curves g3,6
2 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

For p = j22(0), we have a = 1
2
√

3

(
t−
√

3
)
∈
[
−1

2
− tπ/12

2
√

3
,−1

2
+

tπ/12

2
√

3

]
and b =

−1
2

(
t
√

3 + 1
)
∈
[
−1

2
− tπ/12

√
3

2
,−1

2
+

tπ/12
√

3

2

]
. The bounding box

(
−1

2
−
tπ/12

2
√

3
− γ1,−

1

2
+
tπ/12

2
√

3
+ γ1

)
×

(
−1

2
−
tπ/12

√
3

2
− γ2,−

1

2
+
tπ/12

√
3

2
+ γ2

)

⊂ (−1, 0)× (−2, 1)

contains no points (u, v) ∈ Z2 with u ≡ v mod 2.

Figure 4.32: The level curves g3,6
22 (u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

For p = j112(0), we have a = 1
2
√

3

(
5√
3
− t
)
∈
[

5
6
− tπ/12

2
√

3
, 5

6
+

tπ/12

2
√

3

]
and b =

− 1
2
√

3

(
t+
√

3
)
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∈
[
−1

2
− tπ/12

2
√

3
,−1

2
+

tπ/12

2
√

3

]
. The bounding box

(
5

6
−
tπ/12

2
√

3
− γ1,

5

6
+
tπ/12

2
√

3
+ γ1

)
×
(
−1

2
−
tπ/12

2
√

3
− γ2,−

1

2
+
tπ/12

2
√

3
+ γ2

)

⊂ (0, 2)× (−2, 1)

contains the point (1,−1). The function

g3,6
112(u, v) = 3u2 − (5− t

√
3)u+ v2 +

(
1 +

t√
3

)
v + 2− 2t√

3

evaluated at this point is non-negative: g3,6
112(1,−1) = 0.

Figure 4.33: The level curves g3,6
112(u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

For p = j221(0), we have a = − 1
2
√

3

(
t+
√

3
)
∈
[
−1

2
− tπ/12

2
√

3
,−1

2
+

tπ/12

2
√

3

]
and b =

−1
2

(
t
√

3 + 3
)
∈
[
−3

2
− tπ/12

√
3

2
,−3

2
+

tπ/12
√

3

2

]
. The bounding box

(
−1

2
−
tπ/12

2
√

3
− γ1,−

1

2
+
tπ/12

2
√

3
+ γ1

)
×

(
−3

2
−
tπ/12

√
3

2
− γ2,−

3

2
+
tπ/12

√
3

2
+ γ2

)

⊂ (−1, 0)× (−3, 0)

contains no points (u, v) ∈ Z2 with u ≡ v mod 2.
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Figure 4.34: The level curves g3,6
221(u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

Finally for p = j222(0), we have a = −2
3

and b = − 2t√
3
∈
[
−2tπ/12√

3
,

2tπ/12√
3

]
. The

bounding box (
−2

3
− γ1,−

2

3
+ γ1

)
×
(
−

2tπ/12√
3
− γ2,

2tπ/12√
3

+ γ2

)
⊂ (−2, 0)× (−1, 1)

contains no points (u, v) ∈ Z2 with u ≡ v mod 2.

Figure 4.35: The level curves g3,6
222(u, v) = 0 for several θ ∈

[
− π

12
, π

12

]
.

Therefore, as g3,6
p (u, v) ≥ 0 for all p, we have that∣∣fp(x, y)

∣∣2 = |p+ xv1 + yv2|2 ≥ r2 ≥ 4
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Chapter 4. Discreteness Results

under the assumption that r ≥ 2. That is,
∣∣fp(x, y)

∣∣ ≥ 2 for all f ∈ Λ\{Id}. Hence
the conditions of Lemma 3.2.4 are satisfied, and we can conclude that the complex
hyperbolic ultra-parallel [m,m, 0; 3, 6, 2]-triangle group is discrete for

cos(α) ≤ −
√

3

2
and m ≥ log

(
7 + 4

√
3
)
.
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Chapter 5

Non-Discreteness Results

We have found conditions on m and α for the complex hyperbolic ultra-parallel
[m,m, 0;n1, n2, 2]-triangle group to be discrete. On the other hand, we can use
Shimizu’s Lemma to find sufficient conditions for m and α for the group to be
non-discrete. We first need the following definition.

Definition 5.0.1. For an element h = (hij)1≤i,j≤3 ∈ SU(2, 1) with h(∞) 6= ∞ we
can define the isometric sphere of h as the sphere with respect to the Cygan metric
with centre h−1(∞) and radius

rh =

√
2

|h22 − h23 + h32 − h33|
.

We will use the complex hyperbolic version of Shimizu’s Lemma introduced in [16].

Lemma 5.0.2. Let G be a discrete subgroup of PU(2, 1). Let g ∈ G be a Heisenberg
translation by (ξ, ν) and h ∈ G be an element that satisfies h(∞) 6=∞, then

r2
h ≤ ρ0(g(h−1(∞)), h−1(∞))ρ0(g(h(∞)), h(∞)) + 4|ξ|2 ,

where ρ0 is the Cygan metric on N and rh is the radius of the isometric sphere of
h.

5.1 Construction

For an ultra-parallel triangle group Γ = 〈ι1, ι2, ι3〉 we will apply Lemma 5.0.2 to
translation elements g and the element h = ι3. The matrix of a Heisenberg transla-
tion g by (ξ, ν) is of the form

g =

 1 ξ ξ

−ξ 1− |ξ|
2−iν
2

−|ξ|
2−iν
2

ξ |ξ|2−iν
2

1 + |ξ|2−iν
2

 . (5.1)
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The element h = ι3 is given as

h = h−1 = ι3 =

−1 0 0
0 1 0
0 0 −1

 .

The radius of the isometric sphere of h is rh = 1.

To calculate h(∞) we first map ∞ from the Heisenberg space to the bound-
ary of the complex hyperbolic 2-space. That is,

∞ 7→ [0 : 1 : −1] ∈ ∂H2
C.

We apply h to this point−1 0 0
0 1 0
0 0 −1


 0

1
−1

 =

0
1
1

 = [0 : 1 : 1] ∈ ∂H2
C.

Note that h(∞) 6=∞. Mapping this point back to the Heisenberg space

[0 : 1 : 1] 7→ (0, 0) ∈ N .

Next, we want to find g(h(∞)). As g is the matrix of the Heisenberg translation
by (ξ, ν) ∈ N , g(h(∞)) is simply (ξ, ν) + (0, 0) = (ξ, ν). Finally notice that
ρ0(g(h(∞)), h(∞)) = ρ0(g(h−1(∞)), h−1(∞)), since h = h−1.

The distance ρ0((ξ1, ν1), (ξ2, ν2)) is given as

ρ0((ξ1, ν1), (ξ2, ν2)) =
∣∣∣|ξ1 − ξ2|2 − i(ν1 − ν2)− 2i Im(ξ1ξ̄2)

∣∣∣ 12 .
So the distance ρ0(g(h(∞)), h(∞)) is equal to

ρ0((ξ, ν), (0, 0)) =
∣∣∣|ξ|2 − iν ∣∣∣ 12 =

√∣∣∣|ξ|2 − iν ∣∣∣.
Substituting these values into the inequality given in Lemma 5.0.2, we obtain that
if the group is discrete then

1 ≤
√
|ξ|4 + ν2 + 4|ξ|2 .

Hence the group is not discrete if there exists a Heisenberg translation element
T(ζ,ν) ∈ Γ with √

|ξ|4 + ν2 + 4|ξ|2 < 1⇔
√
|ξ|4 + ν2 < 1− 4|ξ|2 . (5.2)

We can further simplify this inequality. For each case, we will consider the verti-
cal Heisenberg translation. That is, the generator H of the form (ξ, ν) = (0, ν).
Substituting this into (5.2), we have that the group is not discrete if

|ν| < 1. (5.3)
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5.2 The case [m,m, 0; 3, 3, 2]

Proposition 5.2.1. A complex hyperbolic ultra-parallel [m,m, 0; 3, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

12
√

3 cosh2
(
m
2

) .
Proof. We consider the translation element g = H = [T1, T2]. In this case the matrix
g is of the form (5.1) with ξ = 0 and ν = 24

√
3r2 cos2(θ). Substituting this into the

inequality (5.3), we have that the group is not discrete if

24
√

3r2 cos2(θ) < 1⇔ cos2(θ) <
1

24
√

3r2
.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we obtain

1

2

(
1− cos(α)

)
<

1

24
√

3r2
⇔ cos(α) > 1− 1

12
√

3r2
.

Therefore, we conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

12
√

3r2
= 1− 1

12
√

3 cosh2
(
m
2

) .

5.3 The case [m,m, 0; 2, 3, 2]

Proposition 5.3.1. A complex hyperbolic ultra-parallel [m,m, 0; 2, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

48
√

3 cosh2
(
m
2

) .
Proof. We consider the translation element g = H = [T1, T2]. In this case the matrix
g is of the form (5.1) with ξ = 0 and ν = 96

√
3r2 cos2(θ). Substituting this into the

inequality (5.3), we have that the group is not discrete if

96
√

3r2 cos2(θ) < 1⇔ cos2(θ) <
1

96
√

3r2
.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we obtain

1

2

(
1− cos(α)

)
<

1

96
√

3r2
⇔ cos(α) > 1− 1

48
√

3r2
.

Therefore, we conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

48
√

3r2
= 1− 1

48
√

3 cosh2
(
m
2

) .
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5.4 The case [m,m, 0; 2, 4, 2]

Proposition 5.4.1. A complex hyperbolic ultra-parallel [m,m, 0; 2, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

32 · cosh2
(
m
2

)
Proof. We consider the translation element g = H = [T1, T2]. In this case the matrix
g is of the form (5.1) with ξ = 0 and ν = 64r2 cos2(θ). Substituting this into the
inequality (5.3), we have that the group is not discrete if

64r2 cos2(θ) < 1⇔ cos2(θ) <
1

64r2
.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we obtain

1

2

(
1− cos(α)

)
<

1

64r2
⇔ cos(α) > 1− 1

32r2
.

Therefore, we conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

32r2
= 1− 1

32 · cosh2
(
m
2

) .

5.5 The case [m,m, 0; 4, 4, 2]

Proposition 5.5.1. A complex hyperbolic ultra-parallel [m,m, 0; 4, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

8 · cosh2
(
m
2

) .
Proof. We consider the translation element g = H = ι1212. In this case the matrix
g is of the form (5.1) with ξ = 0 and ν = 16r2 cos2(θ). Substituting this into the
inequality (5.3), we have that the group is not discrete if

16r2 cos2(θ) < 1⇔ cos2(θ) <
1

16r2
.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we obtain

1

2

(
1− cos(α)

)
<

1

16r2
⇔ cos(α) > 1− 1

8r2
.

Therefore, we conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

8r2
= 1− 1

8 · cosh2
(
m
2

) .
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5.6 The case [m,m, 0; 2, 6, 2]

Proposition 5.6.1. A complex hyperbolic ultra-parallel [m,m, 0; 2, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

8
√

3 cosh2
(
m
2

) .
Proof. We consider the translation element g = H = ι121212. In this case the matrix
g is of the form (5.1) with ξ = 0 and ν = 16

√
3r2 cos2(θ). Substituting this into the

inequality (5.3), we have that the group is not discrete if

16
√

3r2 cos2(θ) < 1⇔ cos2(θ) <
1

16
√

3r2
.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we obtain

1

2

(
1− cos(α)

)
<

1

16
√

3r2
⇔ cos(α) > 1− 1

8
√

3r2
.

Therefore, we conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

8
√

3r2
= 1− 1

8
√

3 cosh2
(
m
2

) .

5.7 The case [m,m, 0; 3, 6, 2]

Proposition 5.7.1. A complex hyperbolic ultra-parallel [m,m, 0; 3, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

4
√

3 cosh2
(
m
2

) .
Proof. We consider the translation element g = H = ι1212. In this case the matrix
g is of the form (5.1) with ξ = 0 and ν = 8

√
3r2 cos2(θ). Substituting this into the

inequality (5.3), we have that the group is not discrete if

8
√

3r2 cos2(θ) < 1⇔ cos2(θ) <
1

8
√

3r2
.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we obtain

1

2

(
1− cos(α)

)
<

1

8
√

3r2
⇔ cos(α) > 1− 1

4
√

3r2
.

Therefore, we conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

4
√

3r2
= 1− 1

4
√

3 cosh2
(
m
2

) .
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5.8 Further Non-Discreteness Results

We are able to further these non-discreteness results by considering the following
results of Parker [15] (section 3.1):

Theorem 5.8.1. Let Γ be a discrete subgroup of PU(n, 1) containing a vertical
translation g by t > 0. Let h be any element of Γ not fixing q∞, a distinguished
point at infinity, and let rh be the radius of its isometric sphere. Then either

t/r2
h ≥ 2 or t/r2

h = 2 cos(π/q) for some integer q ≥ 3.

For each ultra-parallel [m,m, 0;n1, n2, 2]-triangle group we will apply Theorem 5.8.1
to the vertical Heisenberg translation element H. Recall from the previous construc-
tion that for each case, if we again let h = ι3, then this does not fix q∞ and the
radius of the isometric sphere of h is rh = 1. Therefore, if the group is discrete then

t ≥ 2 or t = 2 cos(π/q) for some integer q ≥ 3.

Hence the group is not discrete if

t < 2 and t 6= 2 cos(π/q) for some integer q ≥ 3. (5.4)

5.8.1 The case [m,m, 0; 3, 3, 2]

Proposition 5.8.2. A complex hyperbolic ultra-parallel [m,m, 0; 3, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

6
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

6
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

Proof. The vertical Heisenberg translation element H is given as (0, 24
√

3r2 cos2(θ)).
Substituting this into (5.4) with t = 24

√
3r2 cos2(θ) we have that the group is not

discrete if

24
√

3r2 cos2(θ) < 2 and 24
√

3r2 cos2(θ) 6= 2 cos(π/q)

⇔ cos2(θ) <
1

12
√

3r2
and cos2(θ) 6= cos(π/q)

12
√

3r2

for some integer q ≥ 3.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we are able to rewrite the

first inequality as

1

2

(
1− cos(α)

)
<

1

12
√

3r2
⇔ cos(α) > 1− 1

6
√

3r2
.
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We can rewrite the second inequality as

1

2

(
1− cos(α)

)
6= cos(π/q)

12
√

3r2
⇔ cos(α) 6= 1− cos(π/q)

6
√

3r2
.

Therefore, we can conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

6
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

6
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

5.8.2 The case [m,m, 0; 2, 3, 2]

Proposition 5.8.3. A complex hyperbolic ultra-parallel [m,m, 0; 2, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

24
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

24
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

Proof. The vertical Heisenberg translation element H is given as (0, 96
√

3r2 cos2(θ)).
Substituting this into (5.4) with t = 96

√
3r2 cos2(θ) we have that the group is not

discrete if

96
√

3r2 cos2(θ) < 2 and 96
√

3r2 cos2(θ) 6= 2 cos(π/q)

⇔ cos2(θ) <
1

48
√

3r2
and cos2(θ) 6= cos(π/q)

48
√

3r2

for some integer q ≥ 3.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we are able to rewrite the

first inequality as

1

2

(
1− cos(α)

)
<

1

48
√

3r2
⇔ cos(α) > 1− 1

24
√

3r2
.

We can rewrite the second inequality as

1

2

(
1− cos(α)

)
6= cos(π/q)

48
√

3r2
⇔ cos(α) 6= 1− cos(π/q)

24
√

3r2
.

Therefore, we can conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

24
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

24
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.
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5.8.3 The case [m,m, 0; 2, 4, 2]

Proposition 5.8.4. A complex hyperbolic ultra-parallel [m,m, 0; 2, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

16 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

16 cosh2
(
m
2

)
for some integer q ≥ 3.

Proof. The vertical Heisenberg translation element H is given as (0, 64r2 cos2(θ)).
Substituting this into (5.4) with t = 64r2 cos2(θ) we have that the group is not
discrete if

64r2 cos2(θ) < 2 and 64r2 cos2(θ) 6= 2 cos(π/q)

⇔ cos2(θ) <
1

32r2
and cos2(θ) 6= cos(π/q)

32r2

for some integer q ≥ 3.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we are able to rewrite the

first inequality as

1

2

(
1− cos(α)

)
<

1

32r2
⇔ cos(α) > 1− 1

16r2
.

We can rewrite the second inequality as

1

2

(
1− cos(α)

)
6= cos(π/q)

32r2
⇔ cos(α) 6= 1− cos(π/q)

16r2
.

Therefore, we can conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

16 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

16 cosh2
(
m
2

)
for some integer q ≥ 3.

5.8.4 The case [m,m, 0; 4, 4, 2]

Proposition 5.8.5. A complex hyperbolic ultra-parallel [m,m, 0; 4, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

4 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

4 cosh2
(
m
2

)
for some integer q ≥ 3.
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5.8. Further Non-Discreteness Results

Proof. The vertical Heisenberg translation element H is given as (0, 16r2 cos2(θ)).
Substituting this into (5.4) with t = 16r2 cos2(θ) we have that the group is not
discrete if

16r2 cos2(θ) < 2 and 16r2 cos2(θ) 6= 2 cos(π/q)

⇔ cos2(θ) <
1

8r2
and cos2(θ) 6= cos(π/q)

8r2

for some integer q ≥ 3.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we are able to rewrite the

first inequality as

1

2

(
1− cos(α)

)
<

1

8r2
⇔ cos(α) > 1− 1

4r2
.

We can rewrite the second inequality as

1

2

(
1− cos(α)

)
6= cos(π/q)

8r2
⇔ cos(α) 6= 1− cos(π/q)

4r2
.

Therefore, we can conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

4 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

4 cosh2
(
m
2

)
for some integer q ≥ 3.

5.8.5 The case [m,m, 0; 2, 6, 2]

Proposition 5.8.6. A complex hyperbolic ultra-parallel [m,m, 0; 2, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

4
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

4
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

Proof. The vertical Heisenberg translation element H is given as (0, 16
√

3r2 cos2(θ)).
Substituting this into (5.4) with t = 16

√
3r2 cos2(θ) we have that the group is not

discrete if

16
√

3r2 cos2(θ) < 2 and 16
√

3r2 cos2(θ) 6= 2 cos(π/q)

⇔ cos2(θ) <
1

8
√

3r2
and cos2(θ) 6= cos(π/q)

8
√

3r2
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for some integer q ≥ 3.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we are able to rewrite the

first inequality as

1

2

(
1− cos(α)

)
<

1

8
√

3r2
⇔ cos(α) > 1− 1

4
√

3r2
.

We can rewrite the second inequality as

1

2

(
1− cos(α)

)
6= cos(π/q)

8
√

3r2
⇔ cos(α) 6= 1− cos(π/q)

4
√

3r2
.

Therefore, we can conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

4
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

4
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

5.8.6 The case [m,m, 0; 3, 6, 2]

Proposition 5.8.7. A complex hyperbolic ultra-parallel [m,m, 0; 3, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

2
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

2
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

Proof. The vertical Heisenberg translation element H is given as (0, 8
√

3r2 cos2(θ)).
Substituting this into (5.4) with t = 8

√
3r2 cos2(θ) we have that the group is not

discrete if

8
√

3r2 cos2(θ) < 2 and 8
√

3r2 cos2(θ) 6= 2 cos(π/q)

⇔ cos2(θ) <
1

4
√

3r2
and cos2(θ) 6= cos(π/q)

4
√

3r2

for some integer q ≥ 3.

Using cos2(θ) = 1
2

(
cos(2θ) + 1

)
= 1

2

(
1− cos(α)

)
we are able to rewrite the

first inequality as

1

2

(
1− cos(α)

)
<

1

4
√

3r2
⇔ cos(α) > 1− 1

2
√

3r2
.
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5.8. Further Non-Discreteness Results

We can rewrite the second inequality as

1

2

(
1− cos(α)

)
6= cos(π/q)

4
√

3r2
⇔ cos(α) 6= 1− cos(π/q)

2
√

3r2
.

Therefore, we can conclude that the group Γ is not discrete provided that

cos(α) > 1− 1

2
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

2
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.
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Chapter 6

Brief Summary

In this thesis we studied complex hyperbolic ultra-parallel triangle groups of type
[m,m, 0;n1, n2, 2]. That is, groups of isometries of the complex hyperbolic plane
generated by complex reflections ι1, ι2 and ι3 of orders n1, n2 and 2 respectively in
the complex geodesics with pairwise distances m,m and 0.

We first used the work of Hersonsky and Paulin [9] and Parker [17] to clas-
sify what possible orders we can have for the complex reflections ι1 and ι2 for the
complex hyperbolic ultra-parallel triangle group to be discrete:

Theorem. (3.3.2). A complex hyperbolic ultra-parallel [m1,m2, 0;n1, n2, 2]-triangle
group can only be discrete if the unordered pair of orders of the complex reflections
ι1 and ι2 is one of

{2, 2}, {2, 3}, {2, 4}, {2, 6}, {3, 3}, {3, 6} and {4, 4}.

Next we introduced a compression property and set out sufficient discreteness con-
ditions for the angular invariant α and the distance m for all possible orders of the
complex reflections ι1 and ι2:

Proposition. (4.1.2) & (4.2.2). A complex hyperbolic ultra-parallel [m,m, 0;n, 3, 2]-
triangle group with n ∈ {2, 3} is discrete if the following conditions on the angular
invariant α and on m are satisfied:

cos(α) ≤ −1

2
and m ≥ log(3).

Proposition. (4.3.2) & (4.4.2). A complex hyperbolic ultra-parallel [m,m, 0;n, 4, 2]-
triangle group with n ∈ {2, 4} is discrete if the following conditions on the angular
invariant α and on m are satisfied:

cos(α) ≤ −
√

3

2
and m ≥ log

(
3 + 2

√
2
)
.
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Proposition. (4.5.2) & (4.6.4). A complex hyperbolic ultra-parallel [m,m, 0;n, 6, 2]-
triangle group with n ∈ {2, 3} is discrete if the following conditions on the angular
invariant α and on m are satisfied:

cos(α) ≤ −
√

3

2
and m ≥ log

(
7 + 4

√
3
)
.

These conditions were chosen to ensure that the projections of the images of the
unit spinal sphere were disjoint. One way to improve these results would be to
work with the images of the unit spinal sphere themselves rather than with their
projections.

In contrast to these discreteness results we then found non-discreteness con-
ditions for the angular invariant α and the distance m. We used the complex
hyperbolic version of Shimizu’s Lemma introduced in [16] to find such conditions:

Proposition. (5.2.1). A complex hyperbolic ultra-parallel [m,m, 0; 3, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

12
√

3 cosh2
(
m
2

) .
Proposition. (5.3.1). A complex hyperbolic ultra-parallel [m,m, 0; 2, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

48
√

3 cosh2
(
m
2

) .
Proposition. (5.4.1). A complex hyperbolic ultra-parallel [m,m, 0; 2, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

32 · cosh2
(
m
2

) .
Proposition. (5.5.1). A complex hyperbolic ultra-parallel [m,m, 0; 4, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

8 · cosh2
(
m
2

) .
Proposition. (5.6.1). A complex hyperbolic ultra-parallel [m,m, 0; 2, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

8
√

3 cosh2
(
m
2

) .
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Proposition. (5.7.1). A complex hyperbolic ultra-parallel [m,m, 0; 3, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

4
√

3 cosh2
(
m
2

) .
We then furthered these non-discreteness results by considering the results of Parker
[15] to obtain further conditions on the angular invariant α and the distance m:

Proposition. (5.8.2). A complex hyperbolic ultra-parallel [m,m, 0; 3, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

6
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

6
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

Proposition. (5.8.3). A complex hyperbolic ultra-parallel [m,m, 0; 2, 3, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

24
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

24
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

Proposition. (5.8.4). A complex hyperbolic ultra-parallel [m,m, 0; 2, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

16 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

16 cosh2
(
m
2

)
for some integer q ≥ 3.

Proposition. (5.8.5). A complex hyperbolic ultra-parallel [m,m, 0; 4, 4, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

4 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

4 cosh2
(
m
2

)
for some integer q ≥ 3.

Proposition. (5.8.6). A complex hyperbolic ultra-parallel [m,m, 0; 2, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

4
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

4
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.
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Proposition. (5.8.7). A complex hyperbolic ultra-parallel [m,m, 0; 3, 6, 2]-triangle
group with angular invariant α is non-discrete if

cos(α) > 1− 1

2
√

3 cosh2
(
m
2

) and cos(α) 6= 1− cos(π/q)

2
√

3 cosh2
(
m
2

)
for some integer q ≥ 3.

Notice that for the angular invariant α and m there is a gap between the discreteness
and non-discreteness results for each case. One of the main ways to improve these
results would be to attempt to close this gap. A first approach would be to consider
these results in the context of the conjecture put forward by Schwartz in his ICM
talk [23]:

Conjecture 6.0.1. A complex hyperbolic triangle group is discrete if the elements
ωA = ι1ι3ι2ι3 and ωB = ι1ι2ι3 are not elliptic.

These conjectural results are illustrated in the figure below for the [m,m, 0; 3, 3, 2]-
case.

α

m

0

2π

0

4π
3

2π
3

log(3)

Figure 6.1: Gap between discreteness (light grey), non-discreteness (dark grey) and
conjectural discreteness (grey) results.

To further this work, one particularly interesting concept would be to consider in-
creasing the order of the complex reflection ι3. As we have established all possible
orders of the complex reflections ι1 and ι2 for the case [m,m, 0;n1, n2, 2], one could
increase the order of the complex reflection ι3 and consider the more general case
[m,m, 0;n1, n2, n3]. The possible orders for {ι1, ι2} would remain the same as in
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Theorem 3.3.2, however, initial considerations suggest that increasing the order of
ι3 would have an impact on the conditions for the angular invariant α. Another
direction to take would be to consider the case [m1,m2, 0;n1, n2, 2] with m1 6= m2.
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