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A B S T R A C T

Measurement of the angular power spectrum of the cosmic microwave background is most

often based on a spherical harmonic analysis of the observed temperature anisotropies. Even

if all-sky maps are obtained, however, it is likely that the region around the Galactic plane will

have to be removed as a result of its strong microwave emissions. The spherical harmonics are

not orthogonal on the cut sky, but an orthonormal basis set can be constructed from a linear

combination of the original functions. Previous implementations of this technique, based on

Gram–Schmidt orthogonalization, were limited to maximum Legendre multipoles of

lmax & 50, as they required all the modes have appreciable support on the cut-sky, whereas for

large lmax the fraction of modes supported is equal to the fractional area of the region retained.

This problem is solved by using a singular value decomposition to remove the poorly

supported basis functions, although the treatment of the non-cosmological monopole and

dipole modes necessarily becomes more complicated. A further difficulty is posed by

computational limitations – orthogonalization for a general cut requires Oðl6
maxÞ operations

and Oðl4maxÞ storage and so is impractical for lmax * 200 at present. These problems are

circumvented for the special case of constant (Galactic) latitude cuts, for which the storage

requirements scale as Oðl2maxÞ and the operations count scales as Oðl4maxÞ. Less clear, however,

is the stage of the data analysis at which the cut is best applied. As convolution is ill-defined

on the incomplete sphere, beam-deconvolution should not be performed after the cut and, if

all-sky component separation is as successful as simulations indicate, the Galactic plane

should probably be removed immediately prior to power spectrum estimation.
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1 I N T R O D U C T I O N

Since the first measurements of the temperature anisotropy of the

cosmic microwave background (CMB) by the Cosmic Background

Explorer (COBE ) satellite (Smoot et al. 1992), a number of

sophisticated experiments have been undertaken to measure the

fluctuations at higher resolutions and sensitivities (e.g. Scott et al.

1996; Tanaka et al. 1996; Netterfield et al. 1997; de Oliveira-Costa

et al. 1998; Coble et al. 1999; de Bernardis et al. 2000; Wilson et al.

2000; Padin et al. 2001; Lee et al. 2001; Halverson et al. 2002; and

Netterfield et al. 2002). The primary result of these experiments has

been the measurement of the angular power spectrum of the CMB to

Legendre multipoles of up to l . 1000, which places strong

constraints on a number of cosmological parameters (Lineweaver

1998; Efstathiou et al. 1999; de Bernardis et al. 2000; Netterfield

et al. 2001; Wang, Tegmark & Zaldarriaga 2001 and references

therein). In the future the Microwave Anisotropy Probe (MAP; e.g.

Jarosik et al. 1998) and the Planck satellite (e.g. Bersanelli et al.

1996) will produce maps of the microwave sky with resolutions of

between 5 and 30 arcmin at a number of frequencies. Such

extraordinary data sets, consisting of millions of independent

measurements, will clearly require novel analysis techniques.

One of the many difficulties is the treatment of the non-

cosmological contributions to the observed microwave sky. Dust,

synchrotron and free–free emission from the Galaxy (e.g. Haslam

et al. 1982; Schlegel, Finkbinder & Davies 1998); radio galaxies and

other extra-Galactic ‘point’ sources (e.g. Toffolatti et al. 1998); and

the Sunyaev–Zel’dovich (Sunyaev & Zel’dovich 1970) effect caused

by galaxy clusters (e.g. Birkinshaw 1999) all obscure the CMB at

some level [see Hu, Sugiyama & Silk (1997) or Barreiro (2000) for

more complete reviews], although these components have quite

distinct spectral properties and so can be separated using multi-

frequency observations (e.g. Bennett et al. 1992; Tegmark &

Efstathiou 1996; Hobson et al. 1998; Bouchet & Gispert 1999; Jones,

Hobson & Lasenby 1999; Baccigalupi et al. 2000). However, these

techniques are not likely to be able to extract the Galactic emissions

completely (Stolyarov et al. 2001), leaving the removal of the
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Galactic plane as the only option. The Galaxy contributes relatively

little at high latitudes (e.g. Haslam et al. 1982; Schlegel et al. 1998), so

this isan acceptable, if not optimal, solution.For instance, Górski et al.

(1994) removed the band within 208 of the Galactic plane to estimate

the power spectrum of the 2-yr COBE Differential Microwave

Radiometer sky maps, and similar cuts have been proposed by both

the MAP and Planck collaborations. An essentially equivalent

problem is posed if the sky coverage of the survey is incomplete,

although there is less choice about the geometry of the cut in this case.

A number of aspects of the analysis become more difficult on an

incomplete sphere, one of the most obvious reasons being that the

spherical harmonics are no longer an orthonormal basis set. The

most successful component separation techniques to date (e.g.

Hobson et al. 1998; Bouchet & Gispert 1999) rely on a mode-by-

mode analysis which explicitly utilizes the orthogonality of the

spherical harmonics, although it may be preferable to remove the

Galactic plane only when estimating the CMB power spectrum.

Unbiased power spectrum estimation using the spherical

harmonics is possible on the cut sky (Wandelt, Górski & Hivon

2001), but the covariance structure of the resulting psuedo-

harmonics is far from ideal, so analysis using an orthonormal basis

set is preferable. In particular the noise covariance matrix remains

diagonal in the case of spatially uniform (and uncorrelated) noise.

It is possible to construct an orthonormal basis set from linear

combinations of the spherical harmonics, and an elegant

implementation of this, based on Cholesky decomposition of the

coupling matrix of the spherical harmonics on the cut sky, was

described by Górski (1994). However the coupling matrix becomes

ill-conditioned for lmax * 50, and so this method cannot be used to

perform cut-sky orthogonalization for either the MAP experiment

(with lmax . 1500Þ or the Planck mission (with lmax . 2500Þ.

A general formalism for orthogonalization of the spherical

harmonics is presented in Section 2, although implementation to

high lmax is only possible at present in the special case of a constant

latitude cut. The relationship between the various harmonic

coefficients is discussed in Section 3, and the extension of these

results to CMB analysis techniques (specifically component

separation and power spectrum estimation) is covered in Section 4.

The results are summarized and future possibilities are discussed in

Section 5. Finally, the chosen conventions for the spherical

harmonics are defined in Appendix A; formulae for integrals of the

products of Legendre functions are given in Appendix B; and the

treatment of the non-cosmological monopole and dipole modes is

discussed in Appendix C.

2 O RT H O G O N A L I Z AT I O N O F S C A L A R B A S I S

F U N C T I O N S

The physics of the CMB is most naturally expressed in Fourier

space, and it is standard practice to represent sky maps by their

harmonic coefficients. The basis functions chosen here are the real

spherical harmonics, Yl,m(r̂) (as defined in Appendix A), which

form an orthonormal basis on the complete sphere, S. In general,

l $ 0 and 2l # m # l, although in practice a finite lmax must be

used, which implies a band limit. It is convenient to combine the

two indices, allowing the basis set to be expressed as a vector,

Yðr̂Þ ¼ ½Y1ðr̂Þ; Y2ðr̂Þ; . . .; Yimax
ðr̂Þ�T, where imax ¼ ðlmax þ1Þ2. There

are several reasonable choices for the indexing, i(l,m ), most

notably grouping coefficients in l or m, as defined in Appendix

A. Grouping in l is most natural for power spectrum estimation, but

grouping in m is more efficient computationally in cases of

azimuthal symmetry (Section 2.3).

The spherical harmonics are not orthogonal on the incomplete

sphere S0, as can be seen from the structure of their coupling matrix

(Section 2.1). A decomposition of the coupling matrix can be used

to construct an orthonormal basis set (Section 2.2), but

implementation to high resolution is currently possible only in

the special case of constant latitude cuts (Section 2.3).

2.1 The coupling matrix

The coupling matrix of a set of functions encodes their

orthogonality and normalisation properties over a given range. In

the case of the spherical harmonics on the incomplete sphere it is

given by

C ¼

ð
S0

Yðr̂ÞY Tðr̂Þ dV: ð1Þ

If S0 ¼ S then the harmonics are orthonormal and C ¼ I; otherwise

the off-diagonal elements are non-zero, indicating that the basis

functions are non-orthogonal.

An alternative formulation is to introduce a window function,

w(r̂), so that

C ¼

ð
S

w 2ðr̂ÞYðr̂ÞY Tðr̂Þ dV: ð2Þ

In some ways this approach is more flexible, as w(r̂) can either be a

smoothly-varying apodizing function (cf. Tegmark 1997) or take

the form

wS0 ðr̂Þ ¼
1; if r̂ [ S0;

0; if r̂ [ S 2 S0;

(
; ð3Þ

mimicking the effect of the sharp cut defined above. However, this

definition of the window function can lead to inconsistencies if a

band-limited analysis is carried out, as wS0(r̂) cannot be properly

represented by a finite analysis (see Section 3.2). It is for this

reason that the first formalism is used here, although most of the

subsequent results can also be derived using window functions.

For a pixel-based analysis, the coupling matrix can be defined by

replacing the integral in equation (1) by a sum over points on the

sphere (i.e. pixel centres), r̂p, where 1 # p # Np and Np is the

number of pixels. In this case

C ¼
XNp

p¼1;r̂p[S0

Yðr̂pÞY
Tðr̂pÞVp; ð4Þ

where Vp is the area of the pth pixel and there is no pixel

smoothing (cf. Górski 1994). In the limit Np ! 1, equations (1)

and (4) become equivalent and pixelization issues become

irrelevant. If the points are uniformly distributed over the sphere

C should be close to the identity, the small discrepancies being due

to the approximation of the integral as a sum; otherwise C reflects

the spatial distribution of the points much as in the continuum case,

but there is freedom to represent apodizing filters as well as

discrete cuts.

Assuming VS0 . 0, the coupling matrix is formally symmetric,

positive definite and invertible, irrespective of which of the above

definitions is used. However, C rapidly becomes numerically

singular: e.g. if lmax ¼ 50, the condition number1 of C is , 5 £ 109

1 The condition number of a matrix is (the absolute value of) the ratio of its

greatest and smallest eigenvalues; it is large for ill-conditioned matrices,

and infinite for singular matrices.
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for a constant latitude cut of bcut ¼ ^208. This can be further

understood in terms of the eigenstructure of the coupling matrix.

2.1.1 Eigenstructure

The coupling matrix has imax ¼ ðlmax þ 1Þ2 eigenvectors, vi, and

eigenvalues, li, which satisfy

Cv i ¼ livi: ð5Þ

Premultiplying by Y T(r̂) and expanding out the implicit

summations givesð
S0

Ximax

k¼1

Ykðr̂
0ÞðviÞk

Ximax

j¼1

Yjðr̂ÞYjðr̂
0Þ dV0 ¼ liviðr̂Þ; ð6Þ

where viðr̂Þ ¼ Y Tðr̂Þv i is the ith eigenfunction of the coupling

matrix. The completeness of the spherical harmonics in the lmax !

1 limit implies that Y Tðr̂ÞYðr̂0Þ ¼ dðr̂ 2 r̂0Þ [where d(x ) is the Dirac

delta function], so that equation (6) reduces toð
S0

viðr̂
0Þdðr̂ 2 r̂0Þ dV0 ¼ liviðr̂Þ: ð7Þ

For a given i this must be true at all r̂, which implies that either:

viðr̂Þ ¼ 0 in the cut region, S–S0, in which case li ¼ 1; or viðr̂Þ ¼ 0

in S0, in which case li ¼ 0. In other words these eigenfunctions are

completely localised in either the cut sphere or the removed region.

This bimodality is only strictly true in the lmax ! 1 limit, but, as

shown in Fig. 1, is a good approximation for lmax * 500.

As the coupling matrix is symmetric, those eigenvectors with

different eigenvalues are orthogonal, and those with the same

eigenvalues can be made orthogonal by a rotation in the subspace

defined by the eigenvalue in question (e.g. Arfken 1985). Thus the

eigenfunctions with li ¼ 1 represent an orthogonal basis set on S0,

whereas those with li ¼ 0 have no support in this region and so

cannot be orthogonal (or normalized) on the cut sky. The freedom

in choice of basis does not extend to mixing the li ¼ 0 modes (i.e.

those corresponding to the null-space of C) with the li ¼ 1 modes

(i.e. those in the range of C), and so the number of supported

modes is determined by a combination of the band limit and the

cut.

The number of orthonormal basis functions (i.e. the rank of C) is

proportional to the area of the sphere retained, VS0. Hence it is

possible to define only

i0max .
VS0

VS

imax ¼
VS0

4p
imax ð8Þ

orthonormal functions on the cut sphere for a given (large) band

limit. The relative reduction in the basis set is the same as would

occur in the equivalent pixel analysis: the number of pixels retained

is also given by N 0p . VS0 /VSNp. For low lmax these arguments do

not hold, and it is possible to create a basis set with more than

VS0 /VSimax elements. Moreover, all these functions are required to

ensure that the cut-sphere basis set is complete (as well as

orthonormal) in the case of a low band limit.

2.2 Construction of an orthonormal basis

The construction of an orthonormal basis set from a set of linearly

independent functions is a well-established mathematical tech-

nique, and a number of orthogonalization methods are possible.

The most basic is Gram–Schmit orthogonalization (e.g. Arfken

1985), in which the new basis functions are built-up sequentially,

but this algorithm is numerically unstable. The modified Gram–

Schmidt algorithm (e.g. Golub & van Loan 1996) is stable, but it is

generally preferable to use matrix techniques to create all the new

basis functions simultaneously.

Starting with the spherical harmonics, Y(r̂), the task is to find a

set of functions Y0(r̂) which are orthonormal on the incomplete

sphere. In terms of a conversion matrix, B, the two sets of functions

are related by

Y0ðr̂Þ ¼ BYðr̂Þ: ð9Þ

Note that B has dimensions i0max £ imax, where imax ¼ ðlmax þ 1Þ2

and i0max # imax is determined by the band limit and the cut, as

described in Section 2.1. It is also important to note that the

indexing of the Y0i(r̂) is qualitatively different from the Yi(r̂). The

latter are really two-index objects, with their characteristic scale

given by , p/l and m relating to ‘orientation’. However the new

basis functions include contributions from spherical harmonics

with different l-values, and thus do not have a well-defined angular

scale. Hence their single index contains no physical information,

and the ordering or grouping of the new basis functions is arbitrary.

Figure 1. The distribution of eigenvalues of C, shown for symmetric

constant latitude cuts of bcut ¼ 108 in (a) and bcut ¼ 208 in (b). In both

panels the eigenvalues are sorted into decreasing order, and distributions are

shown for lmax ¼ 10 (solid line), lmax ¼ 100 (dashed line) and lmax ¼ 1000

(dotted line). The limiting cases of lmax ! 1 [in which VS0 /ð4pÞ of the

eigenvalues are unity and the remainder zero] are almost indistinguishable

from the lmax ¼ 1000 distributions.
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From equation (1), the coupling matrix of these new functions is

C0 ¼

ð
S0

Y0ðr̂ÞY 0Tðr̂Þ dV ¼ BCBT: ð10Þ

Hence any conversion matrix which satisfies2

BCBT ¼ ~I; ð11Þ

yields basis functions which are orthonormal on the cut sphere, and

the task of orthogonalization is reduced to finding a solution for B
given C. Whilst such a solution does not exist for arbitrary C, in all

cases of practical interest a suitable conversion matrix can be

constructed from the coupling matrix. One possible method is direct

calculation of the eigenstructure of C, which yields a conversion

matrix with elements given by Bi0 ;i ¼ ðvi0 Þil
21=2
i0 , where the vi0 are the

eigenvectors of C and the li0 its positive eigenvalues. However it is

advantageous to include the symmetry of the coupling matrix

explicitly, which leads to a factorization of the form

C ¼ AAT; ð12Þ

where A is an imax £ i0max matrix, the form of which is determined by

the decomposition method. Combining equations (11) and (12), the

task of orthogonalization is reduced to finding B such that

BA ¼ ~O; ð13Þ

where Õ is an i0max £ i0max orthogonal matrix (i.e. ~O ~OT ¼ ~OT ~O ¼ ~IÞ.
Whilst equations (12) and (13) are general expressions which

must be satisfied by the conversion matrix, they do not define a

definite algorithm for the orthogonalization. In practice it is

simplest to choose ~O ¼ ~I, leading to the requirement that

BA ¼ ~I: ð14Þ

However the optimal choice of decomposition method used to

generate A depends on whether the coupling matrix is

(numerically) invertible, and hence on the band limit of the

analysis.

2.2.1 Low-resolution analysis

If lmax & 50 and most of the sphere is retained (i.e.

VS0 * VS/2 ¼ 2pÞ, then the coupling matrix is numerically

invertible and can be treated as positive definite in practice.

Consequently A (defined in equation 12) is also invertible, and

B ¼ A21, so that, from equation (9), the orthonormal basis set is

given by

Y0ðr̂Þ ¼ A21Yðr̂Þ: ð15Þ

The form of A depends on the factorization method; of the wide

variety available (e.g. Golub & van Loan 1996), the two most

useful here are singular value decomposition (SVD) and Cholesky

decomposition.

The SVD of the covariance matrix is defined in terms of

equation (1) by A ¼ VW1=2 (i.e. C ¼ VWVTÞ, where V is

orthogonal and W is diagonal.3 The diagonal elements of W are the

eigenvalues of C and, as their ordering is arbitrary, W can be

defined such that Wi;i $ Wiþ1;iþ1, provided the columns of V are

permuted in the same way. The columns of V, in turn, are the

eigenvectors of C, and V is an orthogonal matrix (i.e. V21 ¼ VTÞ.

Hence the conversion matrix is given by B ¼ A21 ¼W21=2VT,

which is trivially computed once the SVD has been performed.

Note that this approach is effectively the same as the direct

calculation of the eigenstructure of C mentioned above in Section

2.2.

Whilst SVD is a powerful technique, it is computationally

expensive – a Cholesky decomposition is approximately 10 times

faster, although it can only be performed on symmetric matrices

which are numerically positive definite. The Cholesky decompo-

sition of the covariance matrix takes the form C ¼ LLT (i.e.

A ¼ LÞ, where L is lower triangular. Hence the conversion matrix

B ¼ L21 can be computed quickly from the initial factorization in

this case as well. The triangular structure of the conversion matrix

also ensures that the new basis functions are the same as those

formed by a numerically stable Gram–Schmidt orthogonalization

(Górski 1994).

Despite the fact that the SVD and the Cholesky decomposition

result in quite different sets of basis functions, there is no reason to

prefer one over the other, in general. In the case of CMB analysis,

however, the triangular structure of A and B as generated by the

Cholesky decomposition is preferable as it ensures that the non-

cosmological monopole and dipole modes are kept separate from

the l $ 2 modes, assuming l-ordering is used (Górski 1994). If the

SVD route is taken (or another indexing scheme used) the

separation of the l ¼ 0 and l ¼ 1 modes can be ensured using

the partial Householder transform described in Appendix C. None

the less, if the coupling matrix is sufficiently non-singular, a

Cholesky decomposition should be used to create the orthonormal

basis set, as a result of both its computational efficiency and the

simplicity with which the non-cosmological modes are handled.

2.2.2 High-resolution analysis

If lmax * 50, the coupling matrix is numerically singular, and thus

A (defined in equation 1) is non-invertible. Cholesky decompo-

sition of C is thus impractical and, whilst an SVD is possible, the

conversion matrix as defined in Section 2.2.1 cannot be computed,

as the smallest elements of W (i.e. the smallest eigenvalues of C)

are so close to zero. This implies that the corresponding columns of

V do not contribute to the reconstruction of C and can be ignored.

Hence it is possible to perform an approximate SVD of the

coupling matrix, defined by C . ~V ~W ~VT (i.e. A ¼ ~V ~W1=2Þ, where

W̃ is an i0max £ i0max diagonal matrix containing the largest elements

of W and Ṽ is an imax £ i0max matrix consisting of the corresponding

columns of V. The value of imax is determined by the choice of

Wmin used to truncate W, but the bimodality of the eigenvalue

distribution means that any value between ,1025 and ,0.1 is

acceptable. The resultant conversion matrix is B ¼ ~W21=2 ~VT

(satisfying BA . ~IÞ and the i0max new basis functions are given by

Y0ðr̂Þ ¼ ~W21=2 ~VTYðr̂Þ: ð16Þ

These basis functions represent an orthonormal basis set on the

incomplete sphere, but they are not formally complete to the

nominal band limit because of the slightly approximate nature of

the reduced SVD. The decomposition becomes exact in the limit

lmax ! 1 as ~W ! ~I (from the eigenvalue arguments described in

Section 2.1.1) and the reduced SVD becomes C ! ~V ~VT (i.e. A !
~V and B ! ~VTÞ in this limit. Note also that these basis functions are

2 Here Ĩ is the i0max £ i0max identity matrix, as distinct from the (potentially

larger) imax £ imax identity matrix, I.
3 If M is diagonal then the notation M^1/2 is used here to denote the matrix

defined by ðM ^1=2Þi;j ¼ di;jM
^1=2
i;i , where di,j is the Kronecker delta function.

Thus M1/2 only exists if the diagonal elements of M are non-negative and

M21/2 only exists if the diagonal elements of M are strictly positive.
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still orthogonal on the full sphere, although they are no longer

normalized to unity; this is another potential advantage of the

SVD-based method.

Several examples of orthonormal cut-sphere basis functions are

shown in Fig. 2, for both symmetric and asymmetric constant

latitude cuts. The link between these functions and the spherical

harmonics is apparent – they have the same cellular structure, but,

for the most part, are combined in such a way that their support is

localized to S0. However, the functions shown in Fig. 2(g) and (h)

are from the small subset with intermediate values of Wi,i and, as

such, have considerable support in the removed region.

In the case of CMB analysis, one shortcoming of this approach is

that the non-cosmological monopole and dipole modes are not

distinguished from the higher moments (see Section 3.2), although

this separation can be achieved post facto by using a partial

Householder transform, as described in Appendix C. In doing this,

some of the useful properties of the SVD are lost, but this operation

need only be performed as the last step in generating the

Figure 2. Orthonormal cut-sphere basis functions, Y0i(r ), as described in Section 2.2.2. In all cases lmax ¼ 100, Wmin ¼ 0:01, and a Mollweide projection is

used. The colour map varies from black (large negative values), through grey (zero), to white (large positive values), in each case being scaled to cover the

dynamic range of the relevant basis function. For those in the left column [(a), (c), (e) and (g)] the cut (shown by the dashed lines) is symmetric, with

bcut ¼ ^208; for those in the right column [(b), (d), (f) and (h)] the cut (again shown by the dashed lines) is asymmetric, the region between b1 ¼ 08 and

b2 ¼ 2458 having been removed. Within each column the indexing of the basis functions is arbitrary, but they are displayed so that their fractional support in

the removed region increases from (a) to (g) and (b) to (h), respectively.
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orthonormal basis set, by which stage all the computationally

intensive matrix operations have already been performed.

Despite the inconvenience caused by the mixing of the

monopole and dipole modes, SVD is clearly the most flexible

and general method of orthogonalization. In part, this stems from

the fact that it can be applied to the coupling matrix without any

prior knowledge of its singular properties. However, in the high-

lmax limit, the number of supported basis functions is determined

by the area of the cut and given, to a good approximation, by

equation (8). Hence faster, if less powerful, techniques can be used

to orthogonalize the spherical harmonics for lmax * 1000 as the

coupling matrix is guaranteed to have at least ðlmax þ 1Þ2VS0 /ð4pÞ

positive eigenvalues. An example of this idea would be to modify

the pivoting algorithm in the psuedo-Cholesky decomposition

described in Section 4.2.9 of Golub & van Loan (1996), so that the

decomposition halts when the predetermined number of basis

functions have been generated, as opposed to using the less robust

threshold based on the values of the diagonal elements of C.

2.3 Constant latitude cuts

In principle the method presented above is a complete solution to

the problem of constructing orthonormal bases on the cut sphere,

but the coupling matrix requires Oðl4maxÞ storage, limiting a general

implementation to lmax . 200 on most current computers.

Furthermore, the SVD of an n £ n matrix requires O(n 3)

operations, and so the orthogonalization operation count scales

as Oðl6
maxÞ. Similar difficulties are encountered in merely

evaluating C, regardless of whether numerical integration or

recursive techniques are used (e.g. Hivon et al. 2001).

Fortunately, all these difficulties are significantly reduced in the

case of a constant latitude cut (cf. Oh, Spergel & Hinshaw 1999;

Wandelt, Hivon & Górski 2001), defined by ignoring all u for

which u1 # u # u2. This could be the symmetric removal of the

Galactic plane (i.e. u1 ¼ p=2 2 bcut and u2 ¼ p=2þ bcut, where

bcut is the latitude of the cut) or the absence of data round one pole

(i.e. u1 ¼ 0 and u2 ¼ ucutÞ. The formalism derived below can also

be trivially extended to include multiple cuts, as would be required

for a CMB experiment which did not observe either ecliptic pole.

Explicitly including the constant latitude cut in equation (1), the

elements of the coupling matrix are given by

Ciðl;mÞ;iðl0 ;m0 Þ ¼

ð2p

0

smðfÞsm0 ðfÞ df

£

ðcosðu2Þ

21

ll;jmjðxÞll0 ;jm0 jðxÞ dx

�

þ

ð1

cosðu1Þ

ll;jmjðxÞll0 ;jm0 jðxÞ dx

�
; ð17Þ

where sm(f ) is defined in equation (A2), and the ll,m(x ) are

normalized associated Legendre functions, given in equation (A3).

From Appendix A, the first integral in equation (17) reduces to

2pdm,m0, and so

Ciðl;mÞ;iðl0 ;m0 Þ ¼ dm;m0 dl;l0 2 2p

ðcosðu1Þ

cosðu2Þ

ll;jmjðxÞll0 ;jmjðxÞ dx

� �
: ð18Þ

The remaining integral can be evaluated using a combination of

analytical formulæ and recursion relations, as described in

Appendix B.

The most important aspect of equation (18) is that the coupling

matrix C is extremely sparse (only one element in ,lmax is non-

zero) and, if stored using the indexing scheme defined in equation

(A12) (i.e. grouped into sub-matrices of fixed m ), is block

diagonal. C can thus be stored in the form of 2lmax þ 1 sub-

matrices, the mth of which has ðlmax þ 1 2 jmjÞ2 elements, and the

storage requirements thus scale as Oðl3
maxÞ rather than Oðl4maxÞ.

Whilst it is convenient to store all the blocks simultaneously, there

is no need to do so, which can further reduce the storage

requirements to Oðl2
maxÞ. It is also clear from equation (18) that only

the m $ 0 terms need be treated explicitly and that l and l0 are

interchangeable, decreasing the storage requirements by a further

factor of 4. Finally, in the case of a symmetric cut (i.e.

u2 ¼ p 2 u1Þ, the parity of ll,m(x ) is such that all terms for which

lþ l0 is odd vanish, resulting in an additional halving of the

memory requirements.

The orthogonalization can be performed by decomposing each

sub-matrix separately, reducing the operation count from Oðl6
maxÞ to

Oðl4
maxÞ. The removal of the poorly-supported basis functions is

achieved in the same manner as described in Section 2.2, although

the book-keeping is more complicated. Similarly the partial

Householder transform required to separate the l ¼ 0 and l ¼ 1

modes need only be applied to the m ¼ 0 and m ¼ ^1 blocks of

the resultant conversion matrix (Appendix C). An important side-

effect of the separation in m is that the Y 0iðr̂Þ have the same

trigonometric f-dependence as the full-sky spherical harmonics

(Appendix A). This also implies that the Y 0iðr̂Þ can be treated as

two-index quantities, defined by m and a second, arbitrary index in

place of l.

The algorithms described here were implemented on the

Cambridge Centre for Mathematical Science’s COSMOS 64-pro-

cessor Silicon Graphics Origin 2000 and the evaluation and

decomposition of the coupling matrix at the highest Planck

resolution of lmax . 2500 required about an hour. The majority of

the time was spent factorizing the sub-matrices, and thus

significant accelerations are unlikely, the highly optimized LINEAR

ALGEBRA PACKAGE (LAPACK; Anderson et al. 1992) routines

having been used for all the decompositions. For a given choice of

u1 and u2, the decomposition of C need only be performed once, so

orthogonalization of the spherical harmonics on an incomplete sky

should comprise only a small fraction of the analysis required for

the forthcoming MAP and Planck missions.

3 H A R M O N I C A N A LY S I S

Methods for constructing an orthonormal basis set on the

incomplete sphere from the spherical harmonics were discussed

in Section 2, but in most cases of data analysis it is the harmonic

coefficients, representing functions on the sphere, that are of

interest. There are at least three useful harmonic expansions of a

general function on the sphere, and the relationships between these

coefficients, which are summarized in Table 1, are derived here.

A band-limited function, a(r̂), can be completely specified by a

finite number of harmonic coefficients as (cf. Appendix A)

aðr̂Þ ¼ YTðr̂Þa; ð19Þ

where it is assumed that lmax is greater than or equal to the band

limit of a(r̂) and the harmonic coefficients are defined by

a ¼

ð
S

Yðr̂Þaðr̂Þ dV: ð20Þ

The invertibility of these transformations is due to the
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orthonormality of the spherical harmonics on S and the fact that

they represent a complete basis set given the band limit.

If a(r̂) is only known over some fraction of the sphere S0 # S,

then a cannot be determined as above, as the integral in equation

(20) is incomplete. In this case, the psuedo-harmonics

~a ¼

ð
S0

Yðr̂Þaðr̂Þ dV ð21Þ

fully specify a(r̂) in S0 due to the band limit. From equation (19)

they are related to the full harmonic coefficients by

~a ¼ Ca; ð22Þ

where C is the coupling matrix, defined in equation (1).

The psuedo-harmonics are useful quantities, but it is preferable

to work with basis functions that are orthonormal on S0. Denoted

Y0(r̂) in Section 2, their harmonic coefficients are given by

a0 ¼

ð
S0

Y 0ðr̂Þaðr̂Þ dV: ð23Þ

The relationship between Y(r̂) and Y0(r̂) given in equation (9) flows

through to the harmonic coefficients, and applying equations (9),

(12) and (19) to equation (23) gives

a0 ¼ B

ð
S0

Yðr̂Þ½Y Tðr̂Þa�dV

¼ BCa

¼ ATa: ð24Þ

The form of the above transformation depends on the

decomposition used to generate A (cf. Section 2.2), but, for

CMB analysis, it is desirable to separate the non-cosmological

modes. This amounts to demanding that the only four of the a0i have

any contribution from the l ¼ 0 and l ¼ 1 spherical harmonic

coefficients. The upper triangular structure of AT ¼ LT as

generated by a Cholesky decomposition inherently satisfies this

requirement, but in general the conversion matrix needs to be

transformed explicitly. One option is to use successive partial

Householder transforms, as described in detail in Appendix C. As

can be seen from Fig. 3, the index-ordering and decomposition

method combine to give a wide variety of conversion matrices;

which of these is most suitable depends on the application.

It is also possible to convert between the psuedo-harmonics and

the cut-sky harmonics, as they both contain information about a(r̂)

in S0 alone. Combining equations (12), (21) and (23) implies that

~a ¼ Aa0 and a0 ¼ B~a. However it is not always possible to

determine a from either a0 or ã. In the low-lmax limit these

inversions are defined (Section 3.1), but for appreciable band limits

only a projection onto the cut sphere is possible (Section 3.2).

3.1 Low-resolution analysis

If the coupling matrix is numerically non-singular (i.e. lmax & 50Þ

then equation (24) can be inverted to give

a ¼ ðATÞ21a0 ¼ BTa0; ð25Þ

and equation (21) implies that

a ¼ C21 ~a: ð26Þ

These are specific examples of the fact that a band-limited function

is completely defined if it is known over any finite portion of the

sphere, and a cut-sky analysis serves no purpose – any apparently

localized contaminants infect the entire sky. However, any

measurement of a field on the sphere is subject to noise which is

not band-limited, in which case the application of a cut has the

effect of greatly amplifying the noise in the removed region (see

Section 4.4), justifying the use of a cut-sky analysis in the low-

resolution limit.

3.2 High-resolution analysis

If lmax * 50 and the coupling matrix is numerically singular, it is

impossible to reconstruct (even) a band-limited function that is

known only on S0. The loss of information about modes constrained

to the cut makes it clear that the analysis has the desired effect of

removing contaminated (or otherwise problematic) regions, but the

most appropriate transformation from the cut-sphere basis to

conventional harmonics is less obvious.

A least-squares-like approach leads to a definition of the

reconstructed full-sky coefficients as

â . BTa0 ¼ ðABÞTa: ð27Þ

Similarly, equation (22) implies that

â . BTB~a ¼ ðABÞTa; ð28Þ

where (AB)T is a projection operator4 onto the range of C, which in

real space is S0. If lmax ! 1, it is possible to write âðr̂Þ ¼ wS0 ðr̂Þaðr̂Þ,

where wS0(r̂) is the sharp window function defined in equation (3).

Table 1. The conversions between the various harmonic coefficients defined in
Section 3: a are the standard coefficients of the spherical harmonics (equation 20); ã
are the psuedo-harmonic coefficients (equation 21); a0 are the cut-sphere harmonic
coefficients (equation 23); and â are the reconstructed spherical harmonic
coefficients. The two basis functions are the spherical harmonics, Y(r̂) (defined in
Appendix A), and the orthogonalized harmonics, Y0(r̂) (defined in Section 2). If the
coupling matrix of the spherical harmonics, C, is invertible, then the expressions for
â following the ! can be used as exact inversions; otherwise the ‘estimators’ are
approximate projections onto the cut region. A can be any matrix such that
AAT ¼ C, and B can be any matrix such that BA ¼ ~I.

a ¼
Ð

S
Yðr̂ÞaðrÞ dV â ¼ BTB~a ! C21 ~a â ¼ BTa0 ! ðATÞ21a0

~a ¼
Ð

S0
YðrÞaðr̂Þ dV ~a ¼ Ca ~a ¼ Aa0

a0 ¼
Ð

S0
Y 0ðrÞaðr̂Þ dV a0 ¼ ATa a0 ¼ B~a

4 The definition of B given in Section 2.2 implies that ½ðABÞT�2 ¼ ðABÞT

and it is hence a projection operator if lmax ! 1.
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It is at this point that the subtle distinctions between the use of a

discrete cut and a window function become apparent. These results

only hold for band-limited functions, but, as defined above, â(r̂) is

not band-limited, and so cannot be analysed self-consistently.

Whether a discrete cut or an apodizing function is to be preferred

depends on the situation in which the incomplete sky analysis is

required.

4 C M B DATA A N A LY S I S

In order to determine the properties of the CMB from noisy

observations of the microwave sky (Section 4.1) a number of

non-trivial analysis steps are required, including: map-making

(Section 4.2); component separation (Section 4.3) and power

spectrum estimation (Section 4.4). Several algorithms have been

suggested for all these steps, and these are discussed briefly

below, but the main focus is on when and how to apply a sky

cut. Further, whilst it is possible to analyse the data in either real

or Fourier space, the latter approach is emphasized here as it is

more directly related to the formalism described in Sections 2

and 3, as well as being the focus of a related series of papers

(van Leeuwen et al. 2001; Challinor et al. 2001; Stolyarov et al.

2001). Note that the term ‘map’ is used here to denote any

representation of a field on the sky and can imply either a set of

real-space pixel values or a vector of spherical harmonic

coefficients.

Figure 3. Several examples of the conversion matrices, AT, that relate the orthonormal cut sphere harmonic coefficients, a0, to the conventional spherical

harmonic coefficients, a, according to equation (24). In all cases a symmetric, constant latitude of bcut ¼ ^208 has been applied and lmax ¼ 10. The row index,

i0, corresponds to the cut-sky harmonic coefficients and the column index, i(l,m ), corresponds to the original spherical harmonic coefficients. The colour map

shows the absolute value of the elements of AT varying from zero (white) to their maximum value (black), which is normalised separately in each case. The

spherical harmonic coefficients are indexed using l-ordering in the left column [(a), (d) and (g)]; m-ordering has been used in order to utilize the decoupling of

different m-modes resulting from the azimuthal symmetry by using block-by-block storage in the central column [(b), (e) and (h)]; and m-ordering is used, but

the structure of the coupling matrix is not utilized, in the right column [(c) and (f)]. In the case of l-ordering, the non-cosmological modes are the four left-most

columns of the conversion matrix; in the case of m-ordering the non-cosmological modes are the left-most columns of the three central blocks. The conversion

matrices shown in the top row [(a), (b) and (c)] result from a Cholesky decomposition; those in the middle row [(d), (e) and (f)] are produced by an SVD (in

which all modes with Wi;i # 0:1 have been removed); finally, in the bottom row [(g) and (h)], the partial Householder transform described in Appendix C is

applied to the conversion matrices shown in the above panels [(d) and (e), respectively].
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4.1 Observations

Observations of the CMB can be made using a number of quite

distinct techniques. Data have been obtained from the ground, high

altitude balloons, and satellites, but the more important distinction

is the type of telescope. The experiments listed in Section 1

include: straightforward single-dish telescopes, such as BOOM-

ERanG (e.g. Netterfield et al. 2001) and Planck (e.g. Bersanelli

et al. 1996); differencing experiments, such as COBE (e.g. Smoot

et al. 1992) and MAP (e.g. Jarosik et al. 1998); and interferometers,

such as the Cambridge Anisotropy Telescope (CAT; Scott et al.

1996), the Cosmic Backround Imager (CBI; Padin et al. 2001) and

the Degree Angular Scale Interferometer (DASI; Halverson et al.

2001). The interferometry surveys inevitably cover only a small

fraction of the sky, and so a flat-sky Fourier analysis becomes

possible. However the both the differencing and single-dish

surveys can, in principle, cover most of the celestial sphere, and

should yield maps of the microwave sky that are limited only by

(the combined effects of) instrument noise and the finite telescope

beam.

4.1.1 Noise

The typical receivers used in the above experiments have two main

noise contributions: random white noise; and a correlated low-

frequency (i.e. ‘1/f ’Þ component. The latter is potentially

troublesome, leading to ‘stripey’ maps with correlated errors,

and is the main reason for the popularity of differencing

experiments which remove low frequency noise at the moment

of observation. However, data from single-dish surveys can be ‘de-

striped’ if the scan strategy includes sufficiently many multiply

observed points (e.g. Tegmark 1997; Delabrouille 1998; Maino

et al. 1999) or the time–time noise covariance matrix can be fully

included in the map-making process (Wright, Hinshaw & Bennett

1996; Natoli et al. 2001; Challinor et al. 2001). Hence correlated

errors are ignored in the simple analysis presented here.

This leaves only the white component, which can be analysed

most simply in the case of a single beam experiment. Following

Knox (1995), a receiver is characterized by its sensitivity, s

(generally chosen to have units of temperature time1/2). Assuming

the noise is Gaussian it has expectation values knl ¼ 0 and kn 2l ¼
s 2t over an integration time t. The manner in which this noise

projects on to a sky map depends on the map-making algorithm,

the scan strategy, and the beam.

4.1.2 Beam convolution

All telescopes necessarily have a finite point spread function or

beam, which, for a given detector, can be characterized by b(r̂), the

fraction of photons from direction r̂ that are registered, given a

nominal orientation towards the north pole (i.e. u ¼ 0Þ. The

harmonic expansion of the beam in this orientation is denoted

b ¼ biðl;mÞ, with the band limit being related to the nominal

resolution of the detector. For a given type of telescope the

resolution improves with frequency as a result of diffraction

effects; this places limitations on the component-separation

algorithms that are used on the incomplete sky (Section 4.3).

Most experiments have beams that are manifestly asymmetric, a

fact which must be accounted for explicitly by the data analysis

algorithms, but the cut-sky issues of interest here can be explored

more clearly if the beam is approximated by its azimuthally

averaged counterpart (e.g. Challinor et al. 2001). Defined by

�bðuÞ ¼
1

2p

ð2p

0

bðu;fÞ df; ð29Þ

its harmonic coefficients are simply

�bl;m ¼ dm;0bl;0 ¼ dm;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þp

p ð1

21

�b½arccosðxÞ�PlðxÞ dx; ð30Þ

where Pl(x ) is a Legendre polynomial (Appendix A). The use of

b̄(r̂) allows the definition of a beam-smoothed sky, s̄(r̂), given in

terms of the true sky, s(r̂), by

�sðr̂Þ ¼

ð
S

�b½arccosðr̂·r̂0Þ�sðr̂0Þ dV0: ð31Þ

This convolution is much simpler in harmonic space, and applying

equation (A7) to equation (31) yields

�s ¼ �Bs; ð32Þ

where B̄ (as distinct from the conversion matrix, B) is a diagonal

‘convolution matrix’ with

�Bi;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2lðiÞ þ 1

r
�blðiÞ;0 ¼ 2p

ð1

21

�b½arccosðxÞ�PlðiÞðxÞ dx; ð33Þ

l(i ) being defined in Appendix A. The simple form of equation (32)

is often utilized explicitly in CMB analysis algorithms (e.g. Knox

1995; Hobson et al. 1998; Oh et al. 1999; Stolyarov 2001), but in

all cases full sky coverage is – sometimes implicitly – assumed.

Turning to convolution on the incomplete sphere, S0, application

of equation (24) to equation (32) yields

�s0 ¼ AT �Bs; ð34Þ

where A is defined implicitly in equation (12). In the low-

resolution limit, equation (25) then gives the cut-sky analogue of

equation (32) as

�s0 ¼ �B0s0; ð35Þ

with the new convolution matrix defined by �B0 ¼ AT �BBT.

For higher band limits, no such relation exists, the loss of modes

in the cut region rendering the convolution ill-defined. This is

simply understood in real space, as the value of s̄(r̂) near the edge

of S0 is given by an integral that extends several beamwidths into

the removed region. Thus it is impossible to relate s̄(r̂) to s(r̂) with

r̂ [ S0. These arguments are true independent of the representation

chosen, but in harmonic space they mean that it is impossible to

relate s̄0 to s0.

Whilst equation (35) is formally incorrect in high-lmax cases, it is

potentially useful as a practical approximation. It is equivalent to

assuming that the signal is given by Y0(r̂)s0, which implies that

sðr̂Þ . 0 in S 2 S0. This is particularly inaccurate if the removed

region contains anomalously strong sources, such as the Galactic

plane. None the less, equation (35) gives s0(r̂) correctly for all r̂

more than a few beamwidths away from the edge of the cut region.

However, even if this is an acceptable approximation, there is the

further inconvenience that the effective cut-sky beam, B̄0, is not

diagonal, introducing couplings between all the modes.

In short, it is preferable to avoid performing any sort of

convolution (or deconvolution) on the cut sky, although it is clear

that this situation is encountered in any survey with incomplete sky

coverage. The one, albeit trivial, exception to this rule is if the

beam is a delta function, or at least the closest approximation to a
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delta function possible given the band limit under consideration. In

this case, �B ¼ I, and hence, from equation (14), �B0 ¼ ~I as well.

equation (35) then implies that s̄0 ð¼ s0Þ is the true, unconvolved

sky map, estimation of which is addressed next.

4.2 Map making

Some of the most important products of the next generation of

CMB survey will be high-resolution maps of the sky at each of

several frequencies. Such maps can be created in a number of

ways, but care must be taken to account for a huge variety of

systematics whilst retaining as much information as possible. Both

real space (e.g. Wright, Hinshaw & Bennett 1996; Bond, Jaffe &

Knox 1998; Natoli et al. 2001) and Fourier space (van Leeuwen

et al. 2001; Challinor et al. 2001) algorithms have been proposed as

being suited to particular aspects of the map-making problem. The

resultant uncertainties in the pixel values or harmonic coefficients

depend on both the data itself (i.e. the scan strategy, noise

properties, etc.) and the map-making algorithms used, and can vary

quite markedly from experiment to experiment.

Here only the idealized case of uniform sky coverage is

considered as the discussion which follows is not significantly

changed by this useful simplification. Under this assumption the

optimal estimator for the unsmoothed sky, ŝ ð¼ sþ nÞ, would be

unbiased (i.e. kŝl ¼ sÞ and have covariance given by

N ¼ knnTl ¼ kðŝ 2 sÞðŝ 2 sÞTl ¼ s 2 �B22; ð36Þ

where (cf. Knox 1995)

s 2 ¼ 4ps 2/ðNdtobsÞ; ð37Þ

tobs is the total observation time of the survey and Nd is the number

of detectors at the frequency in question (all of which are assumed

to have the same beam). An important issue at this point is the band

limit chosen. Clearly only a finite analysis is possible in practice,

and B̄ becomes increasingly singular as lmax ! 1; these two points

are related in so far as the sky can never be reconstructed with

infinite resolution. The choice of lmax is somewhat arbitrary,

although any value a factor of a few greater than the effective

beamwidth will ensure that B̄21 exists whilst discarding only

multipoles that are noise-dominated. The fact that, unlike the

useful signal, the noise is not subject to any band limit is critical to

the understanding of the low-lmax cut-sky power spectrum

estimation discussed in Section 4.4.

Note also that, as a result of the assumption of uniform sky

coverage, the covariance matrix is diagonal. Transforming this

estimator into real space yields maps with covariance given by

knðr̂1Þnðr̂2Þl ¼ s 2Y Tðr̂1Þ �B
22Yðr̂2Þ: ð38Þ

As the noise term in the data is not beam-convolved the removal of

the beam results in spatial correlations of the noise (as encoded in

B̄), as well as correlations due to the finite resolution analysis (the

sums over spherical harmonics), which are essentially equivalent to

pixel smoothing. In the more realistic case of non-uniform sky

coverage, the covariance matrix is non-diagonal in both bases, a

point discussed further by Oh et al. (1999).

The above estimator for the true sky is closely linked to the more

commonly used estimator for the smoothed sky, ŝ̄. Being related by

ŝ̄ ¼ B̄21ŝ, it is clear they contain the same information (under the

assumption of a symmetric beam). The covariance structure of ŝ̄ is

simpler as the correlations discussed above are not introduced, but

ŝ is a more natural data object in the context of this discussion as it

is the true sky that is of interest. In particular, unsmoothed maps

allow more flexibility in applying a sky cut, as the problems with

convolution on the incomplete sphere described in Section 4.1.2 do

not arise. In practice the best compromise may be to reconstruct the

sky convolved with the azimuthally averaged beam, thus creating

maps with the simplest covariance structure possible without

information loss. This can be done in either real space (e.g. Bond

et al. 1998) or harmonic space (Challinor et al. 2001), although the

real-space pointing matrix is more complicated if beam asymmetry

information is included.

In summary, if a survey covers the entire celestial sphere it is

preferable to use full-sky frequency maps. However it is possible

that small parts of the sky will be missed due to either the scan

strategy (cf. Maino et al. 1999) or hardware problems during the

survey itself. If this is the case the best unsmoothed map that could

be constructed would be larger than the actual observed region, but

the errors around the boundary of this area would be very high. An

inferential approach is possible, but significant difficulties are

encountered, especially in Fourier space (Challinor et al. 2001).

Fortunately, it is probable that both MAP and Planck will produce

full sky maps at several frequencies, which can then be used to

construct maps of the various astrophysical components.

4.3 Component separation

The microwave sky consists of several distinct astrophysical

components, as listed in Section 1. Fortunately they have sufficiently

distinct spectra that they can be separated using multi-frequency

data. Given that MAP and Planck will produce maps in five and 10

bands, respectively, it should be possible to produce maps of the

various components (particularly the CMB) that are relatively free of

contamination. As with map making, a number of algorithms have

been put forward for this stage of the data processing, although the

main focus has been on Fourier space methods (e.g. Tegmark &

Efstathiou 1996; Hobson et al. 1998; Bouchet & Gispert 1999;

Prunet et al. 2001; Stolyarov et al. 2001). Aside from the expected

statistical isotropy of the CMB signal, one of the reasons for this

emphasis has been the simplicity of beam convolution in harmonic

space (Section 4.1.2). This is critical if smoothed frequency maps are

used as the effective smoothing scale will vary with frequency if the

telescope is (close to) diffraction limited. However if unsmoothed

maps are used real space component separation methods (e.g.

Baccigalupi et al. 2000) must also come into consideration, the

optimal choice of basis being less clear.

One common aspect of all the separation techniques cited above

is that much of the (prior) information about both signal and noise

correlations is disregarded in order to render the problem

computationally feasible. In real space the correlations between

nearby pixels are ignored, and in Fourier space it is the mode–

mode couplings that are neglected. Surprisingly, these approxi-

mations appear to be unimportant in practice – even the Galactic

components have been recovered with striking accuracy. The most

relevant result to this discussion is the all-sky component

separation to lmax . 2500 presented by Stolyarov et al. (2001),

as it provides clear evidence that whatever correlations are present

in the full-sky harmonic basis are unimportant – there are some

errors close to the Galactic centre, but they are localized, and there

is no sign of this affecting the reconstruction globally.

If the Galactic plane is removed prior to component separation

this one troublesome region is no longer present in the analysis, but

new problems arise. First, smoothed maps (with frequency-

dependent beamwidths) cannot be used as input data without
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inducing errors around the edges of S0 because of the ill-defined

nature of convolution on the cut sky (Section 4.1.2). Even if such

errors are deemed acceptable (e.g. Prunet et al. 2001) or beam-

deconvolved maps are used, the transformation described in

equation (24) completely changes the correlation structure of the

harmonics. In particular, the signal–signal correlation matrices are

non-diagonal for all components, including random fields such as

the CMB (see Section 4.4). Whereas the couplings between the

spherical harmonic coefficients can apparently be disregarded, this

has not been demonstrated for these induced correlations in the

orthonormal basis. Prunet et al. (2001) performed cut-sky

component separation which included them in full, but were thus

limited to lmax . 500, the computational task being made

considerably larger.

In real space the application of a cut is trivial, provided that

beam-deconvolved maps are used, as it simply requires that pixels

in the removed region be ignored. Thus the Baccigalupi et al.

(2000) method should be well suited to a cut-sky analysis.

Given that realistic component separation simulations have only

recently become available, it is likely that important developments

in this field will be made in the near future. For the moment,

however, it appears that separation can usefully be performed on

either the full or cut sky without introducing catastrophic errors.

Provided the models of microwave emissions from the Galactic

plane used in the above simulations are sufficiently realistic, it may

thus be preferable to generate the full-sky maps of the various

astrophysical components, retaining the option of masking

unwanted regions at a later stage.

4.4 Power spectrum estimation

If the fluctuations in the early Universe were the result of inflation

(e.g. Linde 1990) then the CMB is expected to be a Gaussian

random field, the statistical properties of which can be specified

completely by its angular power spectrum, Cl. Even if this is not the

case, the power spectrum should encode much of the cosmological

information present. It is thus unsurprising that, as with map

making and component separation (Sections 4.2 and 4.3,

respectively), many different methods of power spectrum

estimation have been developed (e.g. Tegmark 1997; Górski

1994; Bond et al. 1998; Oh et al. 1999; Szapudi et al. 2001;

Wandelt et al. 2001; Hivon et al. 2001). Further, sky cuts have been

incorporated into many of these algorithms as it seems certain that

the strength of the Galactic microwave emissions will prevent the

CMB from ever being accurately measured in this region. As a

result of the proliferation of papers on this subject, this discussion

of power spectrum estimation is limited to a description of a

maximum likelihood formalism using the orthonormal basis

functions described in Section 2, with reference to how their

behaviour differs in the low- and high-resolution regimes.

4.4.1 Maximum likelihood formalism

The most powerful method of power spectrum estimation is

maximum likelihood (e.g. Press et al. 1992), although this has only

been implemented to MAP resolution to date (Oh et al. 1999). By

invoking Gaussian statistics for both the CMB and the noise, it is

possible to write down the exact likelihood for the observed map

(e.g. Górski 1994; Borrill 1999). On the full sky the effective data

vector is ŝ ¼ sþ n (i.e. the estimator for the true sky, of the form

discussed in Section 4.2 and not the quantity being estimated here)

with the non-cosmological l ¼ 0 and l ¼ 1 modes removed. The

full likelihood is given by

dp

dŝ
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞimax24 detðSþ NÞ

p exp 2
1

2
ŝTðSþ NÞ21ŝ

� �
; ð39Þ

where S and N are the signal and noise covariance matrices,

respectively. The assumption of Gaussianity implies that

Si;i0 ¼ di;i0ClðiÞ, where Cl is the CMB power spectrum and l(i ) is

defined in Appendix A. The form of N is determined by a

combination of the survey method and the data processing up to

this point, but is unlikely to have the simple form of equation (36)

as a result of the imperfect component separation. The maximum

likelihood calculation consists of finding an estimator for the

underlying power spectrum, Ĉl, such that equation (39) is

maximized, and there are a number of algorithms for finding this

quantity (e.g. Bond et al. 1998; Oh et al. 1999).

The maximum likelihood formalism on the cut sky takes the

same form as on the full sky, but with the data vector ŝ0 ¼ ATŝ and

the covariance matrices suitably transformed to give (cf. Górski

1994)

dp

dŝ0
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞi

0
max24detðS0 þ N0Þ

p
£ exp 2

1

2
ŝ
0TðS0 þ N0Þ21ŝ0

� �
; ð40Þ

with the four modes containing information on the monopole and

dipole (Section 2.2) again excluded. The signal covariance matrix

is subject to a simple similarity transform, S0 ¼ ATSA, but the

same is not true for the noise covariance matrix as the noise field is

not band-limited (a fact critical to the use of a cut-sky analysis at

low resolution, as discussed below). The coupling of the cut-sky

modes makes the maximization of equation (40) non-trivial (cf. Oh

et al. 1999), even if Sþ N is diagonal on the full sky. None the less,

it is useful to work under this idealized assumption in order to see

how the application of the cut ensures that the maximum likelihood

solution is independent of the Galactic signal; the manner in which

this is achieved is quite different in the low- and high-resolution

cases.

4.4.2 Low-resolution analysis

The effect of a sky cut on power spectrum estimation is not entirely

obvious in the low-lmax case in which the coupling matrix (Section

2.1) is invertible. The effective band limit, produced by the

combined effects of the beam and noise (Section 4.2), means the

signal over the whole sky (including e.g. the Galactic plane) is

encoded in the cut-sky coefficients. Thus the application of a cut

would be redundant were it not for the presence of non-band-

limited noise which cannot be characterized properly a finite

harmonic analysis.

Applying the incomplete spherical transform defined in equation

(23) to a purely white noise field n(r̂) [i.e. knðr̂Þl ¼ 0 and

knðr̂1Þnðr̂2Þl ¼ dðr̂1 2 r̂2Þs
2; cf. equation (36)] gives cut-sky

harmonic coefficients with kn0l ¼ 0 and

N0 ¼ kn0n0Tl ¼ s 2~I: ð41Þ

Projecting back into real space gives a field n0(r̂) which satisfies

kn0ðr̂Þl ¼ 0 and

kn0ðr̂1Þn
0ðr̂2Þl ¼ s 2Y Tðr̂1ÞC

21Yðr̂2Þ: ð42Þ

On the full sky the same procedure (i.e. a finite spherical harmonic
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analysis followed by a transformation back into real space) would

yield a noise field with covariance structure given by

kn̂ðr̂1Þn̂ðr̂2Þl ¼ s 2Y Tðr̂1ÞYðr̂2Þ

¼
s 2

4p

Xlmax

l¼0

ð2lþ 1ÞPlðr̂1·r̂2Þ; ð43Þ

where Pl(x ) is a Legendre polynomial (Appendix A). Taking the

limit r̂2 ! r̂1, this implies that kn̂ 2ðr̂Þl ¼ imaxs
2/ð4pÞ, which

represents smoothing relative to the original noise field caused by

the use of a finite analysis.

Whilst this smoothing occurs in both the cut- and full-sky

formalisms, the presence of C21 in the former case (equation 42)

implies a spatial dependence. As can be seen from Fig. 4, the noise in

the cut region is greatly increased, which is a natural way of formally

encoding the qualitative fact that, for whatever reason, the data in the

cut is contaminated by more than just the white noise field. Thus,

despite the invertibility of the coupling matrix (and the band-limited

cut-sky analysis), the application of a cut has the desired effect of

greatly reducing the impact of any spurious signal, such as the Galaxy.

However Fig. 4 also implies that a similar effect could be achieved

without performing a cut (and hence leaving the signal unchanged),

instead adding a high level of artificial noise in the offending

region(s). Finally, it is important to note that the dual assumptions

used in the derivation of equation (42) – uniform noise and no beam –

are unrealistic, but the manner in which a low-resolution cut-sky

analysis works is the same in less idealised scenarios.

4.4.3 High-resolution analysis

The high-resolution case is more straightforward, as the application

of the cut results in a data vector, ŝ 0, which contains little infor-

mation about the removed region. This is quite distinct from the low-

resolution case discussed above, in that here it is the predominantly

the signal that is changed, rather than the noise. That said, the noise

close to the boundary of the cut is increased in the same manner as

explained above. This has the same effect as the apodizing function

formalism described by Tegmark (1997), down-weighting points

around which there is not full correlation information.

Another difference between the low- and high-resolution

analyses is that ŝ0 is smaller than ŝ, from Section 2.1.1. Although

this does not result in any significant computational saving, it

serves to emphasise the information loss associated with removing

part of the sky, and is an independent derivation of the fact that the

uncertainties in the estimated power spectrum increase as 4p=VS0

(cf. Hobson & Magueijo 1996; Tegmark 1997).

5 C O N C L U S I O N S

The upcoming microwave surveys will require a cut-sky analysis to

prevent the strong Galactic emissions from contaminating the CMB

signal. The spherical harmonics are non-orthogonal on the cut

sphere, but an orthonormal basis set can be constructed from them

using SVD-based techniques (Section 2). The application of the

resultant conversion matrix to the conventional multipoles results in

cut-sphere harmonics that contain only the desired information. In

the low-resolution case the influence of the Galaxy is reduced by

increasing the effective noise in the cut; in the high-resolution limit

the orthonormal basis functions can model the infinitely sharp cut

sufficiently well that they have no support in the removed region. It

is also important to note that the cut should probably only be applied

after beam-deconvolution has been attempted, as convolution is ill-

defined on the incomplete sphere.

The algorithms described here were implemented to Legendre

multipoles of lmax . 2500 for a constant latitude cut, in which case

the coupling matrix of the spherical harmonics is block-diagonal. At

present, computational limitations make a general orthogonalization

impractical for lmax * 200, although there are some possibilities to

extend this. For instance, only ,1 per cent of the coupling matrix

contains significant information if the cut is well-chosen (e.g.

rectangular in u and f ) and so sparse matrix techniques should thus

allow orthogonalization to lmax . 1000 in this case.

Another requirement is orthogonalization of tensor basis

functions on the incomplete sphere, as both the MAP and Planck

satellites will measure polarization. The resultant formalism is

more complicated, but the same general principles hold; this issue

is explored further by Lewis, Challinor & Turok (2001).
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function of latitude, b, after application of the cut-sky orthogonalization

described in Section 3.1. Constant latitude cuts of bcut ¼ 108 (a) and bcut ¼

208 (b) were applied (as indicated by the dashed vertical lines) and results

are shown for lmax ¼ 20 and lmax ¼ 40, as labelled. (The oscillations near

the peak of the latter curve are indicative of the limited accuracy of the

decomposition of the ill-conditioned couling matrix.)
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Górski K. M., 1994, ApJ, 430, L85
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A P P E N D I X A : S P H E R I C A L H A R M O N I C S

The spherical harmonics form a complete set of orthonormal basis

functions over the entire sphere. They are most commonly defined

as complex functions (e.g. Landau & Lifshitz 1976; Brink &

Satchler 1993), but it is more convenient to use real harmonics in

this application. Adapting the notation of Górski (1994), the real

spherical harmonics are given by

Yl;mðr̂Þ ¼ Yl;mðu;fÞ ¼ ll;jmj½cosðuÞ�smðfÞ; ðA1Þ

where l $ 0 and jmj # l and

smðfÞ ¼

ffiffiffi
2
p

sinðjmjfÞ; if m , 0;

1; if m ¼ 0;ffiffiffi
2
p

cosðjmjfÞ; if m . 0;

8>><>>: ðA2Þ

implying that
Ð 2p

0
smðfÞsm0 ðfÞ df ¼ 2pdm;m0 . For 0 # m # l and

21 # x # 1 the normalized associated Legendre functions are

defined by

ll;mðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p

ðl 2 mÞ!

ðlþ mÞ!

s
Pl;mðxÞ: ðA3Þ

Hence
Ð 1

21
ll;mðxÞll0;mðxÞ dx ¼ dl;l0 /ð2pÞ. Under the same conditions

the (unnormalized) associated Legendre functions are given by5

Pl;mðxÞ ¼ ð21Þmð1 2 x 2Þm/2 dm

dx m
PlðxÞ; ðA4Þ

5 This definition, with the (21)m term, correpsonds to that given by

Abramowitz & Stegun (1971) and Gradshteyn & Ryzhik (2000) but differs

from that used by Arfken (1985) and Brink & Satchler (1993).
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with the Legendre polynomials given by

PlðxÞ ¼
ð21Þl

2ll

dl

dx l
ð1 2 x 2Þl: ðA5Þ

A real field on the sphere, a(r̂), can be expanded in terms of

spherical harmonic coefficients, given by

al;m ¼

ð
S

Yl;mðr̂Þaðr̂Þ dV: ðA6Þ

This can be inverted to give

aðr̂Þ ¼
Xlmax

l¼0

Xl

m¼2l

al;mYl;mðr̂Þ; ðA7Þ

provided that lmax ! 1, due to the orthonormality of the spherical

harmonics on the full sphere:ð
S

Yl;mðr̂ÞYl0 ;m0 ðr̂Þ dV ¼ dl;l0dm;m0 : ðA8Þ

If a finite lmax is used this inversion is no longer possible for general

a(r̂), although it does still hold for band-limited functions.6

Whilst the two indices l and m have quite distinct interpretations,

it is convenient to combine them into a single index, i, which

allows the definition of vectors Yðr̂Þ ¼ Yiðl;mÞðr̂Þ and a ¼ aiðl;mÞ.

Two obvious indexing schemes present themselves: grouping in l

and m. The first, as introduced by Górski (1994), is natural for

power spectrum estimation and very simple:

iðl;mÞ ¼ l 2 þ lþ mþ 1: ðA9Þ

The two ‘inverses’ of this relationship are

l ¼ int½ði 2 1Þ1=2� ðA10Þ

and

m ¼ i 2 ðl 2 þ lþ 1Þ: ðA11Þ

The second choice of ordering is useful in cases of azimuthal

symmetry in which the orthogonality expressed in equation (A2) is

maintained, and grouping in m is achieved by defining

iðl;mÞ ¼

lþ mþ 1

þðlmax þ mÞðlmax þ mþ 1Þ=2; if m # 0;

l 2 lmax þ ðlmax þ 1Þ2

2ðlmax 2 mÞðlmax 2 mþ 1Þ=2; if m . 0:

8>>>>><>>>>>:
ðA12Þ

The ‘inverses’ in this case are given by

m ¼

int 2lmax þ
1
2

�
if i # ðlmax þ 1Þ

£ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8iþ 1
p

2 3Þ
�
; £ðlmax þ 2Þ=2;

int 2lmax 2 1
2

�
if i . ðlmax þ 1Þ

£{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8½ðlmax þ 1Þ2 2 iþ 1� þ 1

p
2 3}

i
; £ðlmax þ 2Þ=2

8>>>>>>><>>>>>>>:
ðA13Þ

and

l ¼

i 2 ½mþ 1

þðlmax þ mÞðlmax þ mþ 1Þ=2�; if m # 0;

i 2 ½2lmax þ ðlmax þ 1Þ2

2ðlmax 2 mÞðlmax 2 mþ 1Þ=2�; if m . 0:

8>>>>><>>>>>:
ðA14Þ

Other indexing schemes have been used in the more specific case

of simulated Planck data-sets in which the sky coverage is periodic

in azimuth (van Leeuwen, private communication), but are beyond

the scope of this paper.

A P P E N D I X B : I N T E G R AT I O N O F P R O D U C T S

O F A S S O C I AT E D L E G E N D R E F U N C T I O N S

In Section 2.3 integrals of the form

Il;l0 ;mðx1; x2Þ ¼

ðx2

x1

ll;mðxÞll0 ;mðxÞ dx ðB1Þ

arose; here the ll,m(x ) are the normalised associated Ledengre

functions, defined in equation (A3), and m is assumed to be

non-negative. These integrals can be evaluated quickly and

accurately using a combination of closed formulæ and recursion

relations.

The associated Legendre functions, Pl,m(x ) (defined in equation

A4), are solutions of the ordinary differential equation (e.g. Arfken

1985)

d

dx
ð1 2 x 2Þ

dPl;m

dx

� �
þ lðlþ 1Þ2

m 2

1 2 x 2

� �
Pl;mðxÞ ¼ 0: ðB2Þ

Multiplying this equation by Pl0,m(x ) and integrating (from x1 to x2)

by parts twice yields

ðl 2 l0Þðlþ l0 þ 1Þ

ðx2

x1

Pl;mðxÞPl0;xðxÞ dx

¼ ð1 2 x 2ÞPl;mðxÞ
dPl0 ;m

dx
2 ð1 2 x 2ÞPl0;mðxÞ

dPl;m

dx

� �����x¼x2

x¼x1

: ðB3Þ

This is a reflection of the standard result that integrals of

solutions of a self-adjoint differential equation (as equation B2

is) can be expressed as boundary terms (e.g. Arfken 1985). The

derivatives in equation (B2) can be removed by using the

standard recursion relationship (e.g. Gradshteyn & Ryzhik

2000)

ð1 2 x 2Þ
dPl;m

dx
¼ ðlþ mÞPl21;mðxÞ2 lxPl;mðxÞ ðB4Þ

to yield, for l – l0,ðx2

x1

Pl;mðxÞPl0 ;xðxÞ dx ¼
1

ðl 2 l0Þðlþ l0 þ 1Þ

£ ½ðl0 þ mÞPl;mðxÞPl021;mðxÞ

þ ðl 2 l0ÞxPl;mðxÞPl0 ;mðxÞ

2 ðlþ mÞPl21;mðxÞPl0 ;mðxÞ�j
x¼x2

x¼x1
: ðB5Þ

Note that the first term must be omitted if l0 ¼ m and that the third

term must be omitted if l ¼ m; these Legendre functions are

implicitly zero from equation (A4). Finally, this can be normalized

6 A band-limited function can, by (somewhat circular) definition, be

constructed from a finite sum over spherical harmonics.
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according to equation (A3), giving

Il;l0 ;mðx1; x2Þ ¼
1

ðl 2 l0Þðlþ l0 þ 1Þ

£
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An alternative derivation of this result was presented by Wandelt

et al. (2001); it is also in principle equivalent to equation (13) in

section 5.9 of Varshalovich, Moskalev & Khersonskii (1988), but

their application of equation (B4) is in error.

For the case l ¼ l0, a recursion relation is required, starting with

l ¼ m. Combining equations (A3) and (A4),

lm;mðxÞ ¼ ð21Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1

4p

r
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where n!! ¼ 1 £ 3 £ · · · £ ðn 2 2Þ £ n for odd n. Integrating by

parts and using equation (B7) again gives

Im;m;mðx1; x2Þ ¼

x22x1
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Moving to l ¼ mþ 1, the standard relationship (e.g. Gradshteyn &

Ryzhik 2000) that

lmþ1;mðxÞ ¼ ð2mþ 3Þxlm;mðxÞ ðB9Þ

combines with equation (B7) to give

Imþ1;mþ1;mðx1; x2Þ ¼ Im;m;mðx1; x2Þ
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where the first term is given in equation (B8).

The last step is to derive a recursion relation relating Il,l,m(x1,x2)

to Il21,l21,m(x1,x2) and Il22,l22,m(x1,x2). Equation (C22) of Wandelt

et al. (2001) gives a four-term recursion to obtain Il,l0 ,m(x1,x2); it can

be applied successively (once swapping l and l0) to obtain
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In summary, equation (B6) can be used to evaluate all Il,l0,m(x1,x2)

for which l – l0, and equations (B8), (B10) and (B11) combine to

give all Il,l,m(x1,x2) recursively.

A P P E N D I X C : T R E AT M E N T O F N O N -

C O S M O L O G I C A L M O D E S

All the cosmological information encoded in the CMB is expected

to be contained in the l $ 2 modes; the l ¼ 0 mode in an isotropic

universe can be normalised arbitrarily and the l ¼ 1 modes can be

set to zero by adopting an appropriate reference frame. None the

less, observations of the microwave sky will yield non-zero

monopole and dipole values for a number of reasons (e.g. the

observer’s motion; Galactic emission; extragalactic point sources).

Hence these low-order modes must be included in the analysis of

CMB data, but should be kept separate from the cosmological

modes, as is naturally the case if spherical harmonic coefficients

are used to describe the data. It is also important to note that the

properties of the basis functions themselves are unimportant – the

essential requirement is that only four of the cut-sky harmonic

coefficients contain information on the unwanted modes.

The method of orthogonalization summarized in equations (11),

(12) and (14) does not explicitly impose any particular structure on

the conversion matrix, A (which relates harmonic coefficients on

the incomplete sphere to those on the full sphere by a0 ¼ ATa;

equation 24). The non-cosmological modes are kept separate from

the cosmological modes if the first four columns of AT have only

zeros from the fifth row on, assuming the full-sky harmonic

coefficients are indexed using l-ordering (Appendix A). This is

achieved naturally if AT is constructed to be upper triangular, as in

the case of the Cholesky decomposition described in Section 2.2.1.

The other decomposition methods discussed in Section 2.2 do not

share this property, and so the resultant conversion matrices must

be adjusted explicitly.

One way of achieving this is to use a partial Householder

transform (e.g. Press et al. 1992). The last i0max 2 i elements of the

ith column of a general i0max £ imax matrix can be set to zero by the

transformation M0 ¼ P iM, with the orthogonal Householder matrix

defined by

Pi ¼ ~I 2 2
m im

T
i

mT
i mi

; ðC1Þ

where mi is given by

ðmiÞj ¼

0; if j , i;

Mj;i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi0max

k¼i M2
k;i

q
; if j ¼ i;

Mj;i; if j . i;

8>>><>>>: ðC2Þ

and i # minði0max; imaxÞ is assumed. Provided that the Householder

matrix applied to B is that generated from AT, the transformations

A0T ¼ PiA
T and B0 ¼ P iB leave equations (12) and (14)

unaffected as Pi is orthogonal by construction. Applying P1, P2,

P3 and then P4 to the successively updated AT ensures that the

l ¼ 0 and l ¼ 1 modes influence only the first four cut-sky

harmonic coefficients, as required. This procedure could be

continued, moving AT successively closer to upper triangular

form, although this cannot be achieved in full as AT has more

columns than rows.

Special mention must be made of the constant latitude cut case,

the symmetry of which can only be utilized if the spherical

harmonics are indexed using m-ordering (Appendix A). In this case

only the m ¼ 0 and m ¼ ^1 blocks have any contribution from the
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monopole or dipole, and each can be treated separately. Further, the

ordering within these blocks is such that the non-cosmological

modes are in the first rows, and so the above algorithm can be

applied to each of three blocks as is. The only slight inconvenience

is that it is no longer the first four cut-sky modes that contain the

non-cosmological information, and the relevant modes must be

flagged explicitly.
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