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How predictable is genome
evolution?
Similar patterns of genomic divergence have been observed in the

evolution of plant species separated by oceans.
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U
nderstanding the formation of new spe-

cies – a process called speciation – is a

central challenge in evolutionary biol-

ogy and genomics, but many questions remain

(Arnegard et al., 2014; Riesch et al., 2017). In

particular, are there certain patterns of genome

evolution that are repeated? And, if there are,

can we predict how genomes will change as new

species emerge and diverge?

To date most studies have focused on the

genomes of pairs of closely related species living

in close proximity (such as two species of white-

fish living in the same set of lakes;

Gagnaire et al., 2013), or the genomes of dif-

ferent lineages within a single species (such as

one species of stick insect living on two different

host plants; Soria-Carrasco et al., 2014), and

have predominantly investigated scenarios

where there is some degree of gene flow

between the different species or lineages

(Wolf and Ellegren, 2017). However, it is

thought that most new species emerge in geo-

graphically isolated populations and in the

absence of gene flow. Now, in eLife, a team of

researchers from the United States, China and

Canada – including Yibo Dong (North Carolina

State University) and Shichao Chen (University of

Florida and Tongji University) as joint first

authors – report how pairs of closely related

flowering plants which live thousands of miles

apart genetically diverged during evolution

(Dong et al., 2019).

Dong et al. systematically collected and

sequenced 20 pairs of closely related species,

including 16 pairs that diverged between 2 and

10 million years ago as a result of the Eastern

Asian–Eastern North American floristic disjunc-

tion (Figure 1). These pairs of species are the

ideal system in which to study allopatric specia-

tion (that is, speciation in geographically isolated

populations).

Dong et al. examined divergence in thou-

sands of genes by measuring the rate at which

nucleotide substitutions resulted in a change in

the amino acid coded for (Ka), and the rate of

nucleotide substitutions that did not result in

such a change (Ks). The ratio Ka/Ks is a common

index for identifying the selective pressure on a

gene: values significantly above one indicate

positive selection (i.e. an increase in the fre-

quency of beneficial mutations), and values sig-

nificantly below one indicate purifying selection

(i.e. the removal of deleterious mutations).

Despite investigating a diverse range of taxa,

Dong et al. found that all species pairs experi-

enced similar patterns of genomic divergence

and selection, regardless of their ecologies and

morphologies.

In fact, most of the genes measured showed

little divergence and, intriguingly, the peak
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frequencies of Ks, Ka and Ka/Ks for each pair

clustered within narrow ranges of small values.

This is indicative of a common pattern in the rel-

ative numbers of genes at different levels of

divergence during allopatric speciation, with

only a small number of loci in the genome dis-

playing high levels of divergence. Furthermore,

by categorising the Ka/Ks ratios into six groups,

Dong et al. found that in all pairs of species the

relative number of genes under different selec-

tion pressures followed the same order. That is,

moderate purifying selection was most common,

followed by strong purifying selection, relaxed

purifying selection, weak/moderate positive

selection, putatively neutral selection and,

finally, strong positive selection. Overall the pat-

terns observed by Dong et al. suggest that it

might be possible to make predictions about

genome evolution.

While the study focused on the Eastern

Asian–Eastern North American floristic disjunc-

tion, it is likely that these patterns of genome

evolution are a common feature of allopatric

speciation. Many other disjunctions exist around

the world (Figure 1), and similar analyses of

these would determine whether these findings

represent a common rule of genomic diver-

gence. Indeed, recent work by some of the pres-

ent authors and colleagues has shown that two

pairs of palm species – one pair widely sepa-

rated, the other not – have values of Ka, Ks and

Ka/Ks similar to those reported by Dong et al.

(Osborne et al., 2019). This supports the idea

that these patterns may be common to genomic

divergence in general, regardless of geography.
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Figure 1. Geographical distribution of closely related plant species. Map showing floristic disjunctions –

geographically separated regions than contain closely related plant species: 1) the Eastern Asian–Eastern North

American floristic disjunction (Blue; Dong et al., 2019); 2) the American Amphitropical floristic disjunction (Pink;

Raven, 1963); 3) the Madrean–Tethyan floristic disjunction (Black; Wen and Ickert-Bond, 2009); 4) the Australia–

South America floristic disjunction (Green; van den Ende et al., 2017); 5) the Northern–Southern Africa floristic

disjunction (Yellow; Jürgens, 1997); 6) the disjunction between Linospadix minor in North-East Queensland and L.

albertisianus in New Guinea (Brown; Osborne et al., 2019).

Image credit: Matthew Coathup.
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