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Abstract
This paper concerns free end-time optimal control problems, in which the dynamic con-
straint takes the form of a controlled differential inclusion. Such problems may fail to have
a minimizer. Relaxation is a procedure for enlarging the domain of an optimization problem
to guarantee existence of a minimizer. In the context of problems studied here, the standard
relaxation procedure involves replacing the velocity sets in the original problem by their
convex hulls. It is desirable that the original and relaxed versions of the problem have the
same infimum cost. For then we can obtain a sub-optimal state trajectory, by obtaining a
solution to the relaxed problem and approximating it. It is important, therefore, to investigate
when the infimum costs of the two problems are the same; for otherwise the above strategy
for generating sub-optimal state trajectories breaks down. We explore the relation between
the existence of an infimum gap and abnormality of necessary conditions for the free-time
problem. Such relations can translate into verifiable hypotheses excluding the existence of
an infimum gap. Links between existence of an infimum gap and normality have previously
been explored for fixed end-time problems. This paper establishes, for the first time, such
links for free end-time problems.
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1 Introduction

Consider the optimal control problem

(P)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize g(T , x(0), x(T ))

over T ≥ 0, absolutely continuous functions x(·) : [0, T ] → R
n

and measurable functions u(·) satisfying
ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [0, T ],
u(t) ∈ U(t) a.e. t ∈ [0, T ],
(T , x(0), x(T )) ∈ C,

the data for which comprise: functions g : R×R
n×R

n → R and f : [0, +∞)×R
n×R

m →
R

n, a closed set C ⊂ R × R
n × R

n and a multifunction U(·) : [0, +∞) � R
m.

A process (T , x(·), u(·)) comprises a number T ≥ 0 and a pair of functions, of which
the first x(·) : [0, T ] → R

n is an absolutely continuous function, and the second u(·) :
[0, T ] → R

m is a measurable function satisfying

ẋ(t) = f (t, x(t), u(t)) and u(t) ∈ U(t) a.e. t ∈ [0, T ].
A process (T , x(·), u(·)) is said to be admissible if (T , x(0), x(T )) ∈ C. The second compo-
nent x(·) of an (admissible) process (T , x(·), u(·)) is called an (admissible) state trajectory
and the third an (admissible) control function.

We say that a process (T̄ , x̄(·), ū(·)) is a minimizer if it achieves the minimum of
g(T , x(0), x(T )) over all admissible processes (T , x(·), u(·)). It is called a strong local
minimizer if, for some ε > 0,

g(T , x(0), x(T )) ≥ g(T̄ , x̄(0), x̄(T ))

for all processes (T , x(·), u(·)) such that |T − T̄ | + ‖xe(·) − x̄e(·)‖L∞ ≤ ε.
Here, xe(·) : [0, ∞) → R

n denotes the extension, by constant extrapolation from the
right, of the function x(·) : [0, T ] → R.

We write inf(P ), ‘the infimum cost’, for the infimum value of the cost function
g(T , x(0), x(T )) over the set of admissible processes (T , x(·), u(·)).

Hypotheses ensuring the existence of a unique state trajectory for every control function
and initial state and the continuous dependence of this state trajectory on these quantities,
the continuity of the cost function and closedness of C and the values of U(·), and the non-
emptiness and boundedness of the set of admissible processes, are not, alone, sufficient to
guarantee existence of solutions to (P). Existence of solutions is assured only if an additional
‘geometric’ hypothesis is satisfied; this typically places a convexity requirement on the
velocity sets f (t, x, U(t)) := {f (t, x, u) | u ∈ U(t)}, namely:

(C): f (t, x, U(t)) is convex for all t ∈ [0, ∞), x ∈ R
n.

Relaxation is a procedure for enlarging the domain of an optimization problem, but not
too much, to guarantee existence of minimizers. Here ‘not too much’ means, that elements
in the enlarged domain can be closely approximated by elements in the original domain.
Typically, the enlarged domain is the closure, in some sense, of the original domain. Relax-
ation opens a way, if not to solving the original problem (which might not be possible), but
to generating a sub-optimal minimizer of the original problem, i.e an element whose cost is
arbitrarily close to the infimum cost of the original problem. The idea is to solve the relaxed
problem and approximate the solution by elements in the original domain.

The concept of relaxation makes sense for any optimization problem. In the context of
optimal control, however, relaxation is usually taken to mean modifying the optimal control
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problem in such a manner that the original velocity sets are replaced by their convex hulls. It
will be clear from the preceding discussion that the relaxed problem satisfies the extra geo-
metric condition, and therefore has solutions. On the other hand, the Relaxation Theorem,
which tells us that relaxed state trajectories can be approximately arbitrarily closely by orig-
inal state trajectories, w.r.t. the supremum norm, means that relaxation via convexification
meets the other ‘not too much’ requirement of the procedure.

There are a number of ways of convexifying the velocity sets. Following Gamkre-
lidze [3], we adopt the following formulation of the relaxed problem (R):

(R)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize g(T , x(0), x(T ))

over T ≥ 0, absolutely continuous functions x(·) : [0, T ] → R
n

and measurable functions (u0(·), . . . , un(·)), (μ0(·), . . . , μn(·)) satisfying
ẋ(t) =∑n

j=0 μj (t)f (t, x(t), uj (t)) a.e. t ∈ [0, T ],
(u0(t), . . . , un(t)) ∈ U(t) × · · · × U(t) a.e. t ∈ [0, T ],
(μ0(t), . . . , μn(t)) ∈ � a.e. t ∈ [0, T ],
(T , x(0), x(T )) ∈ C.

Here, � is the set of simplicial index values in n-dimensional space:

� :=
⎧
⎨

⎩
(μ0 ≥ 0, . . . , μn ≥ 0) |

n∑

j=0

μj = 1

⎫
⎬

⎭
.

Processes, state trajectories and strong local minimizers for (R) are referred to as
‘relaxed processes’, ‘relaxed state trajectories’ and ‘relaxed strong local minimizers’,
respectively. A (non-relaxed) process (T , x(·), u(·)) is a special case of a relaxed process
(x(·), {(μk(·), uk(·))}nk=0), in which μ0 = 1, μ1 = 0, . . . , μn = 0, and u0(·) = u1(·) =
· · · = un(·) = u(·).

Notice that the velocity sets for the relaxed problem are
⎧
⎨

⎩

n∑

j=0

μjf (t, x, uj ) |
(
u0, . . . un

)
∈ U(t) × · · · × U(t),

(
μ0, . . . , μn

)
∈ �

⎫
⎬

⎭

= co{f (t, x, U(t))} for t ∈ [0, ∞), x ∈ R
n.

So the convexity hypothesis (C) is satisfied and, under unrestrictive additional hypotheses,
the relaxed problem has a minimizer. Denote the minimum cost by min (R).

While relaxed state trajectories can be approximated arbitrarily closely in the supremum
norm by non-relaxed state trajectories, it is nonetheless possible that there is an ‘infimum
gap’, i.e.,

min(R) < inf(P ).

The pathology here is that, while according to the Relaxation Theorem, feasible relaxed
state trajectories can be approximated arbitrary closely by non-relaxed state trajectories,
doing so may be incompatible with satisfying all the constraints in the original problem. It
is important to identify situations where an infimum gap arises because, then, the earlier-
discussed justification for studying the relaxed problem is no longer valid.

The aim of this paper is to derive sufficient conditions for absence of an infimum gap,
for free end-time optimal control problems. These conditions require necessary conditions
of optimality, expressed in terms of the free end-time Pontryagin Maximum Principle, to
be satisfied in normal form, i.e. for any valid multiplier set, the cost multiplier component
must be non-zero.
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Two kinds of relationship between occurrence of an infimum gap and abnormality of
associated necessary conditions of optimality are explored. In the first we focus attention
on a strong local minimizer which cannot also be interpreted as a strong relaxed minimizer;
in the second, on a relaxed minimizer, whose cost is strictly less than the infimum cost over
admissible (non-relaxed) processes. The following terminology, relating these properties
was introduced in [5]:

Type A Relations: A strong local minimizer satisfies the Pontryagin Maximum Princi-
ple in abnormal form (i.e., with cost multiplier zero) if, when regarded as a relaxed
admissible process, it is not also a relaxed strong local minimizer.

Type B Relations: A relaxed strong local minimizer satisfies the relaxed Pontryagin Max-
imum Principle in abnormal form if its cost is strictly less than the infimum cost over all
admissible processes, whose state trajectories are close (in the L∞ sense) to that of the
relaxed strong local minimizer.

The main results of this paper can be summarized as

(A): ‘(T̄ , x̄(·), ū(·)) is a strong local minimizer (for the free end-time problem) but not
a relaxed strong local minimizer’ implies ‘(T̄ , x̄(·), ū(·)) satisfies an ‘averaged’
version of the Pontryagin Maximum Priniciple in abnormal form’, and

(B): ‘(T̄ , x̄(·), ū(·)) is a relaxed strong local minimizer with cost strictly less than that
of any admissible (non-relaxed) process, whose state trajectory is close (in the L∞
sense) to that of the relaxed strong local minimizer’ implies ‘(T̄ , x̄(·), ū(·)) satisfies
the relaxed Pontryagin Maximum Principle in abnormal form’.

(A) and (B) will be recognized as forms of Type A and Type B relations, respectively. The
relations are proved here, for the first time, for general, non-smooth free end-time optimal
control problems.

When we limit attention to optimal control problems with fixed initial state x0, there is
a connection with the conditions excluding an infimum gap, considered in this paper, and
sensitivity relations in optimal control. Here, by ‘sensitivity relations’ we mean information
about generalized derivatives of the value function V (·, ·) for the relaxed problem at x0.
It can be deduced from results in [1] that, under a normality hypothesis on the data for
the relaxed problem, the convexified limiting subdifferential of V (0, ·) at x0 is bounded.
This, in turn, implies Lipschitz continuity of V (0, ·) near x0. On the other hand, continuity
of V (0, ·) near x0 implies ‘no infimum gap’, in consequence of the Relaxation Theorem
(see, e.g., [8, Theorem 2.7.2]). Combining these facts, we arrive at an independent proof
of ‘normality of the relaxed problem’ implies ‘no infimum gap’; this is a Type B property.
By contrast, our analysis covers problems for which the initial state is not fixed and also
supplements conditions for Type B properties by conditions for Type A properties.

Previous work has addressed, exclusively, fixed end-time optimal control problems.
Warga was the first to investigate the relation between the existence of an infimum gap and
validity of the Pontryagin Maximum Principle in abnormal form. Warga announced a Type
B relation for optimal control problems with smooth data in his early paper [9]. In his mono-
graph [10] he proved a Type B relation for optimal control problems with state constraints.
In a subsequent paper [11], Warga generalized his earlier Type B results to allow for nons-
mooth data, making use of local approximations based on ‘derivative containers’, developed
in [12]. Type A relations were proved, for the first time, by Palladino and Vinter in [5] and
[6], for problems in which the dynamic constraint takes the form of a differential inclusion
and a controlled differential inclusion, respectively. Related work by Ioffe is reported in [4].
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We point out that, when the time dependence of the dynamic constraint is Lipschitz
continuous and the control constraint set is independent of time, free end-time problems
can be reduced to fixed end-time problems, of standard form, by a change of independent
variable. Thus free time optimal control problems, in this special case, are covered by earlier
work. However this reduction is not possible in the setting of this paper, because we allow
a measurably time dependent dynamic constraint and a measurably time dependent control
constraint set.

The following notation will be employed: for vectors x ∈ R
n, |x| denotes the Euclidean

length. B denotes the closed unit ball in R
n. Given a set A ⊂ R

n and a point x ∈ R
n, we

denote by dA(x) the Euclidean distance of a point x ∈ R
n from A:

dA(x) := inf{|x − y| | y ∈ A}.
W 1,1([0, T ];Rn) is the space of absolutely continuous Rn-valued functions x(·) on [0, T ]
with norm |x(0)|+‖ẋ(·)‖L1 . Given a, b ∈ R, a∧b and a∨b denote min{a, b} and max{a, b},
respectively.

We write W 1,1 or W 1,1(0, T ) in place of W 1,1([0, T ];Rn), L∞ or L∞(0, T ) in place of
L∞([0, T ];Rn), etc. when the meaning is clear.

We shall use several constructs of nonsmooth analysis. Given a closed set D ⊂ R
k and a

point x̄ ∈ D, the limiting normal cone ND(x̄) of D at x̄ is defined to be

ND(x̄) :=
⎧
⎨

⎩
p | ∃ xi

D−→ x̄, pi −→ p s.t. lim sup
x

D→xi

pi · (x − xi)

|x − xi | ≤ 0 for each i ∈ N

⎫
⎬

⎭
.

Here, yi
D→ y indicates that all points in the convergent sequence {yi} lie in D.

Given a lower semicontinuous function f : Rk → R∪ {+∞} and a point x̄ ∈ dom f :=
{x ∈ R

k | f (x) < +∞}, the limiting subdifferential of f at x̄ is denoted ∂f (x̄):

∂f (x̄) :=
{

ξ | ∃ ξi → ξ and xi
dom f−→ x̄ such that

lim sup
x→xi

ξi · (x − xi) − f (x) + f (xi)

|x − xi | ≤ 0 for all i ∈ N

}

.

For details of definition and properties of these objects, we refer the reader to [2, 7, 8].

2 Conditions for Non-Existence of an InfimumGap

In this section we state two theorems relating the existence of a gap between the infimum
costs for the optimal control problem (P) and its relaxed counterpart (R), and the validity
of a Pontryagin Maximum Principle in abnormal form. The following hypotheses, in which
(T̄ , x̄(·), ū(·)) is a given process and ε̄ > 0, will be invoked.

(H1): f (·, x, u) is L-measurable for each (x, u) and f (t, ·, ·) is continuous for each t .
U(·) is a Borel measurable multifunction taking values compact sets.

(H2): There exist ε̄ > 0, k ≥ 0 and c ≥ 0 such that

|f (t, x, u) − f (t, x′, u)| ≤ k|x − x′| and |f (t, x, u)| ≤ c

for all x, x′ ∈ x̄(t) + ε̄B, u ∈ U(t), a.e. t ∈ [0, T̄ + ε̄].
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Define the Hamiltonian function

H(t, x, u, p) := p · f (t, x, u).

Given an essentially bounded function h(·) : [0, ∞) → R and a point t > 0, the essential
value of h(·) at t is the set

ess
s→t

h(s) :=
[

lim
δ↓0

(

ess inf
s∈[t−δ,t+δ]h(s)

)

, lim
δ↓0

(

ess sup
s∈[t−δ,t+δ]

h(s)

)]

.

See [8, Chapter 8], where the main properties of the essential value are stated and proved.

Theorem 1 Let (T̄ , x̄(·), ū(·)) be a strong local minimizer for problem (P) such that T̄ > 0.
Assume that hypotheses (H1) and (H2) are satisfied and that g(·, ·, ·) is Lipschitz continuous
on a neighborhood of (T̄ , x̄(0), x̄(T̄ )).

(a) Then there exist an arc p(·) ∈ W 1,1([0, T̄ ];Rn), and λ ≥ 0 such that

(i) (p(·), λ) �= (0, 0),
(ii) −ṗ(t) ∈ co ∂xH(t, x̄(t), p(t), ū(t)) a.e. t ∈ [0, T̄ ],
(iii) (h, p(0),−p(T̄ )) ∈ λ∂g(T̄ , x̄(0), x̄(T̄ )) + NC(T̄ , x̄(0), x̄(T )),
(iv) H(t, x̄(t), p(t), ū(t)) ≥ H(t, x̄(t), p(t), u), for all u ∈ U(t), a.e. t ∈ [0, T̄ ],
(v) h ∈ esss→T̄

(
supu∈U(s) H(s, x̄(T̄ ), u, p(T̄ ))

)
,

in which ∂xH(t, x, p, u) denotes the limiting subdifferential of H(t, ·, p, u).
(b) Suppose that, for every ε > 0, there exists an admissible relaxed process

(T , x(·), {(μk(·), uk(·))}nk=0) such that

g(T̄ , x̄(0), x̄(T̄ )) > g(T , x(0), x(T ))

and |T − T̄ | + ‖xe(·) − x̄e(·)‖L∞ ≤ ε, (i.e., (T̄ , x̄(·), ū(·)) is not also a local relaxed
minimizer).

Then conditions (i)–(v) above are satisfied for some choice of multipliers (p(·) :
[0, T̄ ] → R

n, λ) such that λ = 0 and in which (ii) is replaced by

(ii)′ −ṗ(t) ∈ co
⋃

u∈U(t) ∂xH(t, x̄(t), p(t), u) a.e. t ∈ [0, T ].

Comments

(1) Part (a) is a known version of the free end-time Pontryagin Maximum Principle for
problems with measurably time dependent data (see, e.g. [8, Chapter 8]).

(2) Observe that the contrapositive statement of part (b) is a sufficient condition for the
absence of an infimum gap (in a local sense): if (T̄ , x̄(·), ū(·)) is a strong local min-
imizer such that, given any multipliers p(·) ∈ W 1,1, and λ ≥ 0 satisfying conditions
(i), (ii)′, (iii)–(iv), we have λ �= 0, then (T̄ , x̄(·), ū(·)) is also a strong local relaxed
minimizer. This is a Type A relation.

(3) Part (b) can be regarded as a pathway to providing sufficient conditions, of a verifiable
nature, for the absence of an infimum gap. The idea is to give verifiable sufficient con-
ditions for normality, which translate, via part (b), into verifiable sufficient conditions
for absence of an infimum gap.

(4) It is not known whether, in part (b), the ‘averaged’ costate inclusion (ii)′, in part (b),
can be replaced by the stronger pointwise condition (ii).
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Theorem 2 Let (T̄ , x̄(·), {(μ̄k(·), ūk(·))}nk=0) be a relaxed admissible process related to
problem (R) such that T̄ > 0. Assume that hypotheses (H1) and (H2) are satisfied.

(a) Assume that g(·, ·, ·) is Lipschitz continuous on a neighborhood of (T̄ , x̄(0), x̄(T̄ )).
Now suppose that (x̄(·), {(μ̄k(·), ūk(·))}nk=0) is a strong local relaxed minimizer. Then
there exist an arc p(.) ∈ W 1,1([0, T̄ ];Rn), h ∈ R and λ ≥ 0 such that

(i) (p(·), λ) �= (0, 0),
(ii) −ṗ(t) ∈∑n

k=0 μ̄k(t)co{∂xH(t, x̄(t), p(t), ūk(t))} a.e. t ∈ [0, T̄ ],
(iii) (h, p(0),−p(T̄ )) ∈ λ∂g(T̄ , x̄(0), x̄(T̄ )) + NC(T̄ , x̄(0), x̄(T̄ )),
(iv) for k = 0, . . . , n

H(t, x̄(t), p(t), ūk(t)) ≥ H(t, x̄(t), p(t), u), for all u ∈ U(t), a.e. t ∈ [0, T̄ ],
(v) h ∈ esss→T̄

(
supu∈U(s) H(s, x̄(T̄ ), u, p(T̄ ))

)
.

(b) Assume also that the following condition is satisfied:

(S) g(·, ·, ·) is continuous on a neighborhood of (T̄ , x̄(0), x̄(T̄ )), and numbers ε > 0
and δ > 0 can be chosen such that

g(T , x(0), x(T )) ≥ g(T̄ , x̄(0), x̄(T̄ )) + δ

for all admissible processes (T , x(·), u(·)) such that |T − T̄ | + ‖xe(·) −
x̄e(·)‖L∞ ≤ ε.

Then relations (i)–(v) above are satisfied for some set of multipliers p(·) ∈
W 1,1([0, T̄ ];Rn) and λ ≥ 0, such that λ = 0.

Comments

(1) Part (a) of Theorem 2 merely reproduces a known version of the free-time Pontryagin
Maximum Principle for the relaxed problem [8], for problems with measurably time
dependent data. Interest resides then in Part (b), which asserts properties of feasible
relaxed controls, with cost strictly less than that of neighboring (non-relaxed) feasible
trajectories.

(2) Directing attention to the case when (x̄(·), {(μ̄k(·), ūk(·))}nk=0) is a strong local
relaxed minimizer, we deduce from the contrapositive statement of Theorem 2
part (b) another sufficient condition for the non-existence of an infimum gap: if
(x̄(·), {(μ̄k(·), ūk(·))}nk=0) is a relaxed strong local minimizer and, given any multi-
pliers p(·) ∈ W 1,1 and λ ≥ 0 satisfying conditions (i)–(v), we have λ �= 0, then
the cost of (T̄ , x̄(·), {(μ̄k(·), ūk(·))}nk=0) is the infimum cost of admissible processes
(T , x(·), u(·)) satisfying |T − T̄ | + ‖x(·) − x̄(·)‖L∞ ≤ ε, for some ε > 0. This is a
Type B relation.

3 Proofs of Theorems 1 and 2

We first prove Theorem 2, as the proof of Theorem 1 uses that of Theorem 2.
We need only prove part (b), since a proof of part (a) is available in [8]. Let the relaxed

process (T̄ , x̄(·), {(μ̄k(·), ūk(·))}nk=0) and ε > 0 be as in the theorem statement. Define the
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function ξ̄ (·) : [0, T̄ ] → R
n to be

ξ̄ (t) =
∫ t

0

n∑

j=0

μ̄j (s)ej ds,

where e0 = (0, . . . , 0), e1 = (1, 0, . . . , 0), . . ., en = (0, . . . , 0, 1) are the canonical basis
vectors in R

n. We observe that (x̄(·), ξ̄ (·)) is a solution of the differential inclusion
(ẋ(t), ξ̇ (t)) ∈ coF(t, x(t)) a.e. t ∈ [0, T̄ ],

in which

F(t, x) :=
n⋃

k=0

{(
f
(
t, x, ūk(t)

)
, ek
)}

.

Take ρ′
i ↓ 0. Invoking the Relaxation Theorem (see, e.g. [8, Theorem 2.7.2]), we can find,

for each i, an element (T̄ , xi(·), ξi(·)) such that ξi(0) = 0,

(ẋi (t), ξ̇i (t)) ∈ F(t, xi(t)) a.e. t ∈ [0, T̄ ]
and

‖(xi(·), ξi(·)) − (x̄(·), ξ̄ (·))‖L∞(0,T̄ ) ≤ ρ′
i . (1)

Consider now the set S of elements (T , (x(·), ξ(·)), (u(·), ω(·))) comprising absolutely
continuous functions x(·) and ξ(·) and measurable functions u(·) and ω(·) with domain
[0, T ]:
S := {(T , (x(·), ξ(·)), (u(·), ω(·))) | T ∈ [0, T̄ + ε̄], (ẋ(t), ξ̇ (t)) = (f (t, x(t), u(t)), ω(t))

(u(t), ω(t)) ∈ U(t) × V a.e., ξ(0) = 0, ‖xe(·) − x̄e(·)‖L∞(0,T̄ +ε̄) ≤ ε},
where V := ⋃n

k=0{ek}. Here, as usual, xe(·) denotes ‘extension by constant extrapolation
from the right’, etc.

By reducing ε > 0, if necessary, we can arrange that (S, dS(·, ·)) is a complete metric
space, with metric

dS((T , (x(·), ξ(·)), (u(·), ω(·))), (T ′, (x′(·), ξ ′(·)), (u′(·), ω′(·))))
:= |T − T ′| + |x(0) − x′(0)| + meas{t ∈ [0, (T ∧ T ′)] : (u(t), ω(t)) �= (u′(t), ω′(t))}.

Define the function J (·) : S → R

J(T , (x(·), ξ(·)), (u(·), ω(·))) := dC(T , x(0), x(T )).

J (·) is continuous on (S, dS(·, ·)). For each i, (T̄ , xi(·), ξi(·)) can be interpreted as the
state trajectory component of a process (T̄ , (xi(·), ξi(·)), (ui(·), ωi(·))) for the dynamical
system:

{
(ẋ(t), ξ̇ (t)) = (f (t, x(t), u(t)), ω(t)) a.e. t ∈ [0, T̄ ],
(u(t), ω(t)) ∈ U(t) × V a.e. t ∈ [0, T̄ ],

in which, for each index value i and a.e. t ∈ [0, T̄ ],
(ui(t), ωi(t)) =

(
ūj (i,t)(t), ej (i,t)

)
.

Here, j (i, t) is the unique index value j such that d
dt

ξi(t) = ej . Notice that

(ui(t), ωi(t)) ∈
n⋃

j=0

{(ūj (t), ej )} a.e. (2)
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For some constant K independent of i,

0 ≤ dC(T̄ , xi(0), xi(T̄ )) ≤ Kρ′
i .

Let ρi := Kρ′
i . Noting that J (·) ≥ 0, we deduce that, for each i, (T̄ , (xi(·), ξi(·)), (ui(·),

βi(·))) is a ρi-minimizer for the optimization problem:
{
Minimize J (T , (x(·), ξ(·)), (u(·), ω(·)))
over (T , (x(·), ξ(·)), (u(·), ω(·))) ∈ S .

By Ekeland’s Theorem, there exists, for i sufficiently large, a minimizer (Ti, (yi(·), ηi(·)),
(vi(·), βi(·))) ∈ S for the perturbed optimization problem:
{
Minimize dC(T , x(0), x(T ))+ρ

1/2
i

(
|x(0)−yi(0)|+(Ti −T ) ∨ 0+∫ T

0 mi(t, (u(t), ω(t))dt
)

over (T , (x(·), ξ(·)), (u(·), ω(·))) ∈ S .
Furthermore,

|xi(0) − yi(0)| + (Ti − T̄ ) ∨ 0 +
∫ T̄

0
mi(t, (u(t), ω(t))dt ≤ ρ

1/2
i . (3)

Here mi(·, ·, ·) : [0, T̄ + ε̄] × R
m × R

n → R is the function

mi(t, u, ω) :=
{
1 if (u, ω) �= (vi(t), βi(t)) or t ∈ (Ti, T ],
0 otherwise.

Under the stated hypotheses, (1) and (3) imply

‖(ye
i (·), ηe

i (·)) − (x̄e(·), ξ̄ e(·))‖L∞(0,T̄ +ε̄) → 0 as i → ∞. (4)

Recall, once again, that ye
i : [0, T̄ + ε̄] → R

n is the extension of yi : [0, Ti] → R
n by

constant extrapolation to the right. Also, along some subsequence (we do not relabel),

(ẏe
i (·), η̇e

i (·)) → ( ˙̄xe(·), ˙̄ξe(·)) weakly in L1(0, T̄ + ε̄). (5)

(Ti, (yi(·), ηi(·)), (vi(·), βi(·))) can be interpreted as a strong local minimizer for the
optimal control problem:

(Qi)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Minimize dC(T , x(0), x(T ))

+ρ
1/2
i

(
|x(0) − yi(0)| + (Ti − T ) ∨ 0 + ∫ T

0 mi(t, (u(t), ω(t)))dt
)

over (T , x(·), ξ(·), u(·), w(·)) satisfying
(ẋ(t), ξ̇ (t)) = (f (t, x(t), u(t)), ω(t)) a.e. t ∈ [0, T ],
(u(t), ω(t)) ∈ U(t) × V a.e. t ∈ [0, T ],
ξ(0) = 0.

In view (4), (5) and (S),

dC(T , yi(0), yi(T )) > 0 for i sufficiently large. (6)

Now apply the free end-time Pontryagin Maximum Principle [8, Chapter 8] to a reformu-
lation of (Qi) in which the integral cost term has been eliminated by state augmentation.
Since right endpoints of state trajectories in (Qi) are unconstrained, we are justified in set-
ting the cost multiplier to 1. We conclude: for each i there exist an arc pi(·) ∈ W 1,1(0, Ti),
hi ∈ R, and λi ≥ 0 such that

(i) −ṗi (t) ∈ co{∂xH(t, yi(t), (pi(t), vi(t))} a.e. t ∈ [0, Ti],
(ii) (hi, pi(0),−pi(Ti)) ∈ ∂dC(Ti, yi(0), yi(Ti)) + ρ

1/2
i B,

(iii) pi(t) · ẏi (t) ≥ maxu∈U(t) pi(t) · f (t, yi(t), u) − ρ
1/2
i a.e. t ∈ [0, Ti],
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(iv) hi ∈ esss→Ti

(
supu∈U(s) H(s, yi(Ti), u, pi(Ti))

)+ ρ
1/2
i B.

(Notice that the costate arc associated with the state component ηi(·) is the zero function,
and so does not appear in the above conditions.)

Since ‘ξ ∈ ∂dC(z) and z /∈ C implies |ξ | = 1’, we deduce from (6) that

|(hi, pi(0),−pi(Ti))| ∈
[
1 − ρ

1/2
i , 1 + ρ

1/2
i

]
. (7)

Now the (extended) functions pe
i (·) ∈ W 1,1(0, T̄ + ε̄) are uniformly bounded and have

uniformly integrably bounded derivatives. It follows that, along some subsequence (we
do not relabel), pe

i (·) → pe(·) strongly in L∞(0, T̄ + ε̄) and ṗe
i (·) → ṗe(·) weakly in

L1(0, T̄ + ε̄) for some pe(·) ∈ W 1,1. We can also arrange that hi → h, for some h ∈ R.
For any selector u(t) ∈ U(t) we have, from (iii),

∫

[0,Ti ]
pi(t)ẏi (t)dt ≥

∫

[0,Ti ]
pi(t) · f (t, yi(t), u(t))dt − (Kρi)

1/2.

In the limit ∫

[0,T̄ ]
p(t) ˙̄x(t)dt ≥

∫

[0,T̄ ]
p(t) · f (t, x̄(t), u(t))dt .

Since this relation is valid for arbitrary selectors u(·) we can conclude that
p(t) · ˙̄x(t) = max

u∈U(t)
p(t) · f (t, x̄(t), u) a.e. t ∈ [0, T̄ ]. (8)

Condition (ii) yields, in the limit as i → ∞,

(h, p(0),−p(T̄ )) ∈ ∂dC(T̄ , x̄(0), x̄(T̄ )) ⊂ NC(T̄ , x̄(0), x̄(T )). (9)

From (7), |(h, p(0),−p(T̄ ))| = 1. Since ‘p(·) = 0’ implies h = 0, we conclude that

p(·) �= 0. (10)

From the stability properties of essential values (see [8, Chapter 8]),

h ∈ ess
s→T̄

(
sup{H(s, x̄(T̄ ), u, p(T̄ )) : u ∈ U(t)}) . (11)

Now define

Ai := {t ∈ [0, T̄ + ε̄] : (vi(t), βi(t)) �= (ui(t), ωi(t)) or t > Ti}.
By (2),

(vi(t), βi(t)) ∈
n⋃

j=0

{(
ūj (t), ej

)}
a.e. t ∈ [0, T̄ + ε̄] \ {Ai}.

It follows from condition (i) that, for a.e. t ∈ [0, T̄ + ε̄] \ Ai ,

(−ṗi (t), η̇i (t)) ∈
n⋃

j=0

(
co ∂xH(t, yi(t), pi(t), ū

j (t)) × {(f (t, yi(t), ū
j (t)), ej )}

)
.

But (along some subsequence) (pe
i (·), ye

i (·), ηe
i (·)) → (pe(·), x̄e(·), ξ̄ e(·)) uniformly,

(ṗe
i (·), ẏe

i (·), η̇e
i (·)) → (ṗe(·), ˙̄xe(·), ˙̄ξe(·)) weakly in L1(0, T̄ + ε̄). A convergence analysis

similar to in ([8, Chapter 9]) yields, in the limit as i → ∞,

(
−ṗ(t), ˙̄ξ(t)

)
∈ co

⎛

⎝
n⋃

j=0

(
co ∂xH(t, x̄(t), p(t), ūj (t)) × {(f (t, x̄(t), ūj (t)), ej )}

)
⎞

⎠
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for a.e. t ∈ [0, T̄ ]. By the Carathéodory Representation Theorem (see [10]), there exist
measurable functions μj (·), j = 0, 1, . . . n such that {μj (t)} ∈  a.e. and

(−ṗ(t), ˙̄x(t), ˙̄ξ(t))∈
n∑

j=0

μj (t)co
(
∂xH(t, x̄(t), r(t), ūj (t))×{(f (t, x̄(t), ūj (t)), ej )}

)
a.e.

But then

˙̄ξ(t) =
n∑

j=0

μj (t)ej =
n∑

j=0

μ̄j (t)ej a.e.

Since the vectors e0, . . . , en are in ‘general position’, it follows that μj (t) = μ̄j (t) a.e.,
j = 0, . . . , n. But then

(
−ṗ(t), ˙̄x(t), ˙̄ξ(t)

)
∈

n∑

j=0

μ̄j (t)co
(
∂xH(t, x̄(t), p(t), ūj (t)) ×

{(
f (t, x̄(t), ūj (t)), ej

)})
a.e.

This relation implies that:

− ṗ(t) ∈
n∑

j=0

μ̄j (t)co ∂xH(t, x̄(t), p(t), ūj (t)) a.e. (12)

(We observe that if, in the preceding analysis, we had not augmented the state trajectories
x(·) with the arcs ξ(·), we would have obtained a weaker form of the costate differential
inclusion (12), in which the μ̄j (·)’s was replaced by some other, possibly different, weight
functions μj (·)’s. The reason for augmenting the state trajectories x(·) was precisely to
avoid this eventuality.)

Reviewing (8), (9), (10), (11) and (12), we see that all the assertions of Theorem 2 have
been proved.

3.1 Proof of Theorem 1

Part (b) merely states a known version of the free end-time Pontryagin Maximum Principle
for the relaxed problem (R). (See [8, Chapter 8]). We need to attend, then, only to part (b).
Take a sequence εi ↓ 0. Under the assumed conditions, there exists a sequence of admissible
relaxed trajectories (Ti, xi(·), {μk

i (·), uk
i (·)}nk=0) such that

g(Ti, xi(0), xi(Ti)) < g(T̄ , x̄(0), x̄(T̄ ))

and
|Ti − T̄ | + ‖xe

i (·) − x̄e(·)‖L∞(0,T̄ +ε̄) ≤ εi .

The preceding relation implies that xe
i (·) → x̄e(·) uniformly. Now apply Theorem 2, with

reference to the process (Ti, xi(·), {μk
i (·), uk

i (·)}nk=0). Notice that, since λ = 0 in the the-
orem statement, the nontriviality condition on the co-state multiplier becomes p(·) �= 0,
which can be strengthened to ‖p(·)‖L∞ = 1, by scaling. We deduce, then, existence of
pi(·) ∈ W 1,1([0, Ti];Rn), and hi ∈ R such that:

(i)′ ‖pi(·)‖L∞ = 1,
(ii)′ −ṗi (t) ∈∑n

k=0 λk
i co ∂xH(t, xi(t), u

k
i (t), pi(t)) a.e. t ∈ [0, Ti],

(iii)′ (hi, pi(0), −pi(Ti)) ∈ NC(Ti, xi(0), xi(Ti)),
(iv)′ ∀k = 0, . . . , n,

pi(t) · f (t, xi(t), u
k
i (t)) = maxu∈U(t) pi(t) · f (t, xi(t), u) a.e. t ∈ [0, Ti],

(v)′ hi ∈ esss→Ti

(
supu∈U(t) H(s, xi(Ti), u, pi(Ti))

)
.
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From (ii)′ it follows that

−ṗi (t) ∈
⋃

u∈U(t)

co ∂xH(t, xi(t), u, pi(t)) a.e. t ∈ [0, Ti].

The sequences {xe
i (·)} and {pe

i (·)} are uniformly bounded. Furthermore {ẋe
i (·)} and {ṗe

i (·)}
are equi-integrable. From the Compactness of Trajectories Theorem [8, Theorem 2.5.3],
it follows that xe

i (·) → x̄e(·) uniformly and ẋe
i (·) ⇁ ˙̄xe(·) weakly in L1(0, T̄ + ε̄), as

well as pe
i (·) → pe(·) uniformly and ṗe

i (·) ⇁ ṗe(·) weakly in L1(0, T̄ + ε̄). A standard
convergence analysis (see, e.g. [8, Chapter 9]) permits us to pass to the limit in (i)′–(v)′, and
thereby show:

(i) p(·) �= 0,
(ii) −ṗ(t) ∈ co

⋃
u∈U(t) ∂xH(t, x̄(t), p(t)) a.e. t ∈ [0, T̄ ],

(iii) (h, p(0), −p(T̄ ) ∈ NC(T̄ , x̄(0), x̄(T̄ )),
(iv) p(t) · f (t, x̄(t), ū(t)) = maxu∈U(t) p(t) · f (t, x̄(t), u) a.e. t ∈ [0, T̄ ],
(v) h ∈ esss→T̄

(
supu∈U(t) H(s, x̄(T̄ ), u, p(T̄ ))

)
.

These are the desired necessary conditions, in which the cost multiplier is zero. The proof
is complete.
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9. Warga, J.: Normal control problems have no minimizing strictly original solutions. Bull. Am. Math. Soc.

77, 625–628 (1971)
10. Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York (1972)
11. Warga, J.: Controllability, extremality, and abnormality in nonsmooth optimal control. J. Optim. Theory

Appl. 41, 239–260 (1983)
12. Warga, J.: Optimization and controllability without differentiability assumptions. SIAM J. Control

Optim. 21, 837–855 (1983)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Free End-Time Optimal Control Problems
	Abstract
	Introduction
	Conditions for Non-Existence of an Infimum Gap
	Comments
	Comments
	Proofs of Theorems 1 and 2
	Proof of Theorem 1

	References


