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Abstract

Single amino acid repeats are prevalent in eukaryote organisms, although the role of many such sequences is still poorly
understood. We have performed a comprehensive analysis of the proteins containing homopolymeric histidine tracts in the
human genome and identified 86 human proteins that contain stretches of five or more histidines. Most of them are
endowed with DNA- and RNA-related functions, and, in addition, there is an overrepresentation of proteins expressed in the
brain and/or nervous system development. An analysis of their subcellular localization shows that 15 of the 22 nuclear
proteins identified accumulate in the nuclear subcompartment known as nuclear speckles. This localization is lost when the
histidine repeat is deleted, and significantly, closely related paralogous proteins without histidine repeats also fail to localize
to nuclear speckles. Hence, the histidine tract appears to be directly involved in targeting proteins to this compartment. The
removal of DNA-binding domains or treatment with RNA polymerase II inhibitors induces the re-localization of several
polyhistidine-containing proteins from the nucleoplasm to nuclear speckles. These findings highlight the dynamic
relationship between sites of transcription and nuclear speckles. Therefore, we define the histidine repeats as a novel
targeting signal for nuclear speckles, and we suggest that these repeats are a way of generating evolutionary diversification
in gene duplicates. These data contribute to our better understanding of the physiological role of single amino acid repeats
in proteins.
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Introduction

Single amino acid repeats (SARs), also known as homopoly-

meric tracts, are very common in eukaryotes [1] and between 18–

20% of proteins in the human genome contain such repetitive

sequences [2]. Although most of them are thought to be

functionally neutral, recent evidence suggests they may play

important functional or structural roles. Indeed, there is an

overrepresentation of SARs-containing proteins (SARPs) among

transcription factors, kinases and proteins required for develop-

ment [2–5]. The intrinsic disorder of such repeats converts them

into flexible spacer elements between individual folded domains,

allowing SARPs to associate in large, multiprotein complexes

[5,6]. In addition, it is thought that disordered regions can bind to

multiple targets with weak affinity, an ideal property for elements

involved in transcriptional and signal transduction processes [7].

Homopolymeric tracts are often encoded by trinucleotide

repeats, a class of microsatellites. Their repetitive nature facilitates

DNA replication slippage, and the expansion or contraction of the

repeats (for review, see [8]). Although genetic variability of these

repeats provides a substrate for adaptive evolution [9,10],

uncontrolled expansion of such unstable regions within coding

sequences has been associated with a number of developmental

and inherited neurodegenerative disorders [2,11], as well as with

several types of cancer [12]. For example, polyglutamine

expansions have been associated with Huntington’s disease and

certain types of spinocerebellar ataxia (for review, see [11]). In

addition, alanine repeats are related to several developmental

disorders (for review, see [13]), and aspartate hyperexpansions

with two types of dysplasia and osteoarthritis [14,15]. Some of the

mechanisms thought to underlie the pathogenic effects of

expanded tracts involve the deregulation of transcriptional activity

and the formation of toxic protein aggregates (for review, see

[11,16]). Nevertheless, the functions of many homopeptidic

segments found in proteins have not yet been elucidated.

Among homopolymeric tracts, histidine (His) repeats are

relatively rare [5]. However, their frequency increases from about

1.4% to 4.3% when we consider repeats of at least 8 instead of 5

residues, indicating that they are generally longer than other types

of SARs [4]. The physicochemical properties of His make it a

versatile amino acid that can fulfill different roles, influencing

protein conformation and enzymatic activity. For instance, His-
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repeats are found in Zn-finger domains that are implicated in

interactions between nucleic acids and proteins (for review, see

[17]), and a His-stretch has been described as a protein interacting

surface of the transcriptional regulator cyclin T1 [18,19].

Nevertheless, there is still no clear function associated to His

homopeptides. We previously described the His-repeat in the

DYRK1A protein kinase as both necessary and sufficient to target

this protein to nuclear speckles [20]. A protein segment containing

a His-tract is also involved in the accumulation of cyclin T1 in

these nuclear structures [20,21]. These results provided the first

evidence that His-repeats may act as nuclear speckle-targeting

signals, although the extent to which this was true in other proteins

remained to be determined.

Nuclear speckles (also known as the splicing factor compartment

-SFC- or as interchromatin granule clusters -IGCs-) are subnuclear

structures defined as compartments in which components of the

RNA splicing machinery are stored and assembled (for review, see

[22]). They mainly contain splicing factors (snRNPs and serine/

arginine-rich (SR) proteins), as well as transcription factors, 39-

RNA processing factors, translation factors, ribosomal proteins, a

subpopulation of the RNA polymerase II and some kinases and

phosphatases [23,24]. Like other nuclear bodies, nuclear speckles

are highly dynamic structures that change in number, shape and

size depending on the transcriptional state and the phase of the cell

cycle [22].

Here, we have performed an in-depth analysis of polyHis-

containing proteins in the human genome. A significant fraction of

the proteins identified are transcription factors and developmental

proteins with a nuclear phase. The subcellular localization of

several of these proteins shows that most of them accumulate in

nuclear speckles through their His-repeat. The presence of DNA-

binding or protein-protein interaction domains, and the transcrip-

tional state of the cell, are factors that affect the retention of

transcription factors with His-repeats in nuclear speckles, illustrat-

ing the dynamic behavior of these proteins. Together, these results

define the His-repeat as a novel and general targeting signal for

nuclear speckles.

Results

A Repeat of 6 His Residues Is Sufficient to Direct a
Heterologous Protein to the Nuclear Speckles

For a typical protein of 400 amino acids and of average

composition, a run of any individual amino acid is significant if

there are 5 or more consecutive residues [25]. Following this

premise, we established a threshold of 5 His residues to determine

the minimum number of His necessary for a His-containing

protein to accumulate in nuclear speckles. We generated plasmids

to express green fluorescent protein (GFP) fusion proteins with 5,

6, 7, 8 or 9 His, and we analyzed the subcellular localization of

these fusion proteins by direct fluorescence in transfected HeLa

cells. Nuclear speckles were identified by indirect immunofluores-

cence with an antibody against the splicing factor SC35, an

endogenous marker of the nuclear speckles compartment [26]. No

significant differences in the staining pattern were observed when

GFP and GFP-5xHis were compared (Figure S1). However, from

the 6xHis constructs onwards, a positive relationship was detected

between the accumulation in nuclear speckles and the length of the

His-tract. While GFP-6xHis only weakly concentrated in SC35-

positive speckles, this association became stronger as the number

of His residues increased, and it was clearly evident with a fusion

protein containing 9 His (Figure 1A and S1).

To confirm that the GFP-His fusions almost completely co-

localized with SC35 positive speckles, we carried out an

immunofluorescence analysis with protein markers of other

subnuclear compartments that are compatible with such staining,

including promyelocytic leukemia (PML) bodies (for review, see

[27]), Sumo-bodies (for review, see [28]) or paraspeckles [29]. No

co-localization between the GFP-9xHis fusion protein and any of

the protein markers (PML, Sumo1, PSP1) was detected (Figure

S2).

Finally, the subnuclear localization of GFP fusion proteins with

polyproline or polyglutamine tracts, which are particularly

enriched in transcription factors [4] and that have been shown

to be functional as transcriptional activators [30], was also

analyzed. These fusion proteins showed nucleoplasmic staining

and no colocalization with SC35 (Figure 1B), in agreement with

previous results with longer amino acid tracts [31]. Therefore, His

homopolymeric tracts seem to specifically accumulate in the

nuclear speckles compartment.

The Distribution of His-Repeats in the Human Proteome
To extrapolate these results to real proteins, we performed a

bioinformatics screen of the Ensembl database [32] to identify all

the human proteins containing at least one His-repeat of 5 or more

residues. The lower-limit of 5 His residues was set to cover all

possible functionally significant repeats [25]. Our search identified

86 Ensembl genes (Table S1). As some of the proteins encoded by

these genes contained more than one repeat, there was a total of

99 repeats with 5 residues or more. The average size of the His-

repeats was 7.5, with the longest repeat containing 15 residues

(LOC730417). The majority of the repeats were well conserved in

the corresponding mouse orthologous proteins; 54% showed

exactly the same length and 30% differed in only one or two

repeat units. When more than one His-repeat was present in a

protein, they were generally very close to each other such that they

could be considered as ‘‘extended’’ His-repeat tracts (for instance,

H4GNSSH13 in DYRK1A). Thus, we defined ‘‘extended’’ tracts as

regions that contained at least one pure His-repeat of 5 residues or

more, that had His residues at the start and/or end of the tract,

and that contained other ‘‘interrupting’’ residues (often P, Q, G, S,

A) which covered ,50% of the tract. Such extended tracts were

Author Summary

Single amino acid repeats are common in eukaryotic
proteins. Some of them are associated with developmental
and neurodegenerative disorders in humans, suggesting
that they play important functions. However, the role of
many of these repeats is unknown. Here, we have studied
histidine repeats from a bioinformatics as well as a
functional point of view. We found that only 86 proteins
in the human genome contain stretches of five or more
histidines, and that most of these proteins have functions
related with RNA synthesis. When studying where these
proteins localize in the cell, we found that a significant
proportion accumulate in a subnuclear organelle known as
nuclear speckles, via the histidine repeat. This is a structure
where proteins related to the synthesis and processing of
RNA accumulate. In some cases, the localization is
transient and depends on the transcriptional requirements
of the cell. Our findings are important because they
identify a common cellular function for stretches of
histidine residues, and they support the notion that
histidine repeats contribute to generate evolutionary
diversification. Finally, and considering that some of the
proteins with histidine stretches are key elements in
essential developmental processes, variation in these
repeats would be expected to contribute to human
disease.

His-Repeats and Nuclear Speckles
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present in half of the proteins containing pure His-repeats (43 out

of 86). Significantly, none of the His-repeats were situated within

characterized protein domains and unlike other repeats [4], we did

not find them preferentially located at the amino-, carboxy-, or

central part of the proteins.

We compared the length distribution of His-repeats in coding

sequences to that of equivalent sequences in non-coding regions,

the latter defined as sequences containing at least five tandem

CAY (CAC or CAT: His encoding triplets). Accordingly, we

identified 7815 such repeats in non-coding genomic regions.

Interestingly, although much longer repeats existed in the non-

coding regions (the longest was 154 trinucleotides), their average

size (7.24) was smaller than in coding regions. Indeed, the

distribution of the repeat size was significantly different between

coding and non-coding sequences (p-value = 0.003, non-paramet-

ric Kolmogorov-Smirnov test). In coding sequences, there was an

under-representation of short repeats (size 5) with respect to longer

repeats (around 7) when compared to non-coding sequences

(Figure 2A and 2B, respectively). As the length distribution of non-

coding repeats is likely to reflect neutral mutational processes, this

difference points to selective retention of relatively long His-

repeats in protein sequences.

His-Repeats Are Overrepresented in Nuclear Proteins
The population of proteins containing other types of amino acid

repeats, such as polyglutamine, polyalanine, polyglycine, poly-

serine and polyproline, is enriched in transcription factors [4]. We

examined whether any such bias in Gene Ontology terms (GO;

[33]) existed in the gene dataset encoding His-repeats. Among

proteins containing His-repeats there was a strong over-represen-

tation of nuclear proteins (72% with respect to 26% in the

complete protein dataset, p-value,1025, Figure 3A). In addition,

75% of the His repeat-containing nuclear proteins were also

annotated with the GO term ‘regulation of transcription’, in

comparison with 49% of those in the complete nuclear protein

dataset. Even more striking was the strong over-representation of

developmental factors among nuclear proteins with His-repeats,

especially those involved in the development of the nervous system

(22% with respect to 3% in the complete gene dataset, p-

value,1025, Figure 3B). This finding is in agreement with

previous work [34] and it might be linked to the fact that increased

formation of homopolymeric runs in human proteins may be a

recent evolutionary event, concomitant with complex brain

development [2].

The His-Repeat Is a Novel Nuclear Speckle-Directing
Sequence

The GO terms analysis indicated that most of the polyHis-

containing proteins are nuclear proteins, and therefore they might

be targeted to nuclear speckles. Thus, we analyzed the distribution

of a group of the nuclear-annotated proteins with pure His-repeats

of different lengths (longer than 5 residues) and several proteins

with extended repeats. The subcellular localization of the His-

containing proteins was analyzed by generating GFP fusion

proteins with the open reading frames of candidate proteins in a

mammalian expression vector. The subcellular distribution of the

fusion proteins was analyzed by direct fluorescence in transient

transfected cells and nuclear speckles were identified by anti-SC35

staining. As previously described for cyclin T1 and DYRK1A [20],

other polyHis-containing proteins also showed punctate nuclear

staining that co-localized with SC35, such as the transcription

factors POU4F2 or YY1, or the protein kinase NLK (Figure 4A).

Fluorescence images revealed differences in the staining patterns

for the His-repeats-containing proteins, with some of them

showing more nucleoplasmic staining than others (Figure 4A; see

other examples in Figures 5–8). The His-repeat seemed to be

necessary for this subnuclear localization since deletion of the

polyHis segment alone from POU4F2 or DYRK1A (the extended

His-repeat) completely abrogated the accumulation of these

proteins in SC35-labelled nuclear speckles (Figure 4B). These

results indicate that the His-repeat can act as a nuclear speckle

localization signal.

Figure 2. Distribution of CAC/CAT repeat sizes in coding (A)
and non-coding (B) regions.
doi:10.1371/journal.pgen.1000397.g002

Figure 1. The ability of a His-repeat to direct a heterologous protein to the nuclear speckles depends on the number of His residues
in the tract. A) HeLa cells were transfected with expression plasmids encoding fusion proteins of GFP with 6 or 9 His residues. B) Cells were
transfected with expression plasmids encoding fusion proteins of GFP with 9 Pro or Gln residues, as indicated. At 48 h post-transfection, the
localization of the fusion proteins was analyzed by direct fluorescence (left column, green) and by indirect immunofluorescence for SC35 (middle
column, red). The merged images are also shown (left column), and the unfused GFP protein was used as a control. In all cases, co-localization with
the endogenous marker was determined by confocal imaging.
doi:10.1371/journal.pgen.1000397.g001
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Moreover, deletion of the His-repeat did not interfere with the

biochemical function of the protein, that is ‘‘kinase’’ for DYRK1A

or ‘‘transcriptional activator’’ for POU4F2 (Figure 4C and 4D,

respectively). Similar results were obtained when the His-repeat

was deleted in NLK (Figure S3). These data indicate that the

deletion has not induced a general alteration of protein structure,

and further suggest that the His-tract conveys a novel behavior to

the host protein without affecting its basic activity.

His-Repeats and Gene Duplication
Interestingly, a significant fraction (64%) of the genes encoding

proteins with His-repeats had closely-related paralogues in the

human genome. According to Ensembl annotations, 74% of them

had been presumably formed by gene duplication at the dawn of

vertebrate evolution (Table S2). However, in most cases none of

the paralogues contained a similar His-repeat in their primary

sequence. This indicates that the repeat had only later appeared in

one of the duplicate copies, probably by duplication slippage. To

approximately date their appearance, we inspected all the

orthologous and paralogous vertebrate proteins in Ensembl for

the presence of similar His-repeats. In 11 out of 39 cases, the

repeat was found in all vertebrate orthologues but in none of the

paralogues, indicating that they arose soon after the duplication

event. However, the dominant class was repeats formed at the base

of the placental mammals (14 cases). Notably, a large number of

alanine and glycine repeats are also proposed to be specific to

mammals [35–37]. Indeed, the increased repeat expansion in this

clade may be related to the increased GC content [38,39]. Finally,

the His-repeats in the BMP2K and PBXIP1 genes were restricted to

primates, suggesting they arose relatively recently.

Paralogous Proteins without His-Repeats Fail to Localize
in Nuclear Speckles

Given the significant number of polyHis-containing proteins

with paralogous proteins without His-repeats, we reasoned that if

the His-repeat were responsible for their accumulation in speckles

then the paralogous copy without the repeat should not be found

in this subnuclear compartment. To confirm this hypothesis, we

examined the FAM76A and FAM76B pair of paralogues. A

sequence alignment of these two proteins highlighted their high

degree of conservation, except in the region containing the His-

repeat (Figure 5A). As hypothesized, the paralogue without the

His-tract, FAM76A, presented a diffuse nucleoplasmic staining,

while the protein with the polyHis segment, FAM76B, accumu-

lated in nuclear speckles (Figure 5B). Similar results were obtained

for other pairs of paralogous proteins such as DYRK1A/

DYRK1B or POU4F2/POU4F3 (Figure S4). Thus, these findings

further indicate that the His-repeats in these proteins are necessary

for their localization to nuclear speckles.

The Subcellular Localization of PolyHis-Containing
Proteins Depends on other Domains Present in the
Proteins

The initial analysis of the nuclear localization of polyHis-

containing candidates revealed that some proteins did not

apparently localize to nuclear speckles. These proteins contained

other protein domains such as DNA binding domains or protein-

protein interacting regions. For instance, the transcription factors

MEOX2 and OTX1 harbor a homeobox DNA-binding domain

in their C- and N-terminal regions, respectively (Figure 6A and

Figure 3. Gene Ontology distribution of polyHis-containing proteins. A) Distribution of genes annotated as ‘nucleus’, ‘cytoplasm’ (excluding
‘nucleus’) and ‘membrane (excluding ‘nucleus’ and ‘cytoplasm’). B) Distribution of the main functional groups in nuclear His-repeat containing
proteins and a comparison with the same groups in the complete gene dataset (see Materials and Methods for more details).
doi:10.1371/journal.pgen.1000397.g003

His-Repeats and Nuclear Speckles
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Figure 4. The His-repeat is a novel nuclear speckle targeting signal. A) HeLa cells were transfected with the expression plasmids for the
fusion proteins GFP-DYRK1A, GFP-POU4F2, GFP-YY1 and GFP-NLK. Cells were immunostained for SC35 to visualize the nuclear speckles (middle
column, red) and GFP fusion proteins were visualized directly by fluorescence microscopy (left column, green). Merged images are shown (right
column). B) HeLa cells were transfected with the expression plasmids for HA-DYRK1ADHis and Flag-POU4F2DHis, and the cells were immunostained
for DYRK1A or POU4F2 (left column) and for SC35 to detect nuclear speckles (middle column). C) Soluble extracts from cells expressing HA-DYRK1A or
HA-DYRK1ADHis were subjected to immunoprecipitation with anti-HA and then in vitro kinase activity on the DYRKtide peptide was assayed. Samples

His-Repeats and Nuclear Speckles
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Figure S5). In the case of the Sumo E3 ligase CBX4, its C-terminal

region includes domains that interact with the polycomb protein

CtBP2 and the transcriptional repressor RING1 (Figure 6B).

These domains mediate the localization of CBX4 to subnuclear

foci, that are compatible with polycomb bodies [40]. Therefore,

we hypothesized that the accumulation of proteins to nuclear

speckles may be influenced by other interactions. To confirm this

hypothesis, we deleted the DNA binding domain in MEOX2 and

assessed its nuclear distribution. Accordingly, while the wild type

protein presented the dispersed distribution typical of most

Figure 5. The presence of a His-repeat dictates the different subcellular localization of paralogous proteins. A) Alignment of the
primary sequences of the paralogues, FAM76B (NP_653265; hypothetical protein LOC143684) and FAM76A (NP_689873; hypothetical protein
LOC199870), obtained with the multiple sequence alignment program ‘‘Blast 2 Sequences’’ (http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi).
His residues in FAM76B are highlighted in red. B) HeLa cells were transfected with an expression plasmid encoding FAM76B (upper panel) or FAM76A
(lower panel) fused to GFP at their N-terminal. The subcellular localization of the fusion proteins was analyzed by direct fluorescence and their
accumulation in nuclear speckles was followed by immunostaining for SC35. C) Using the lines on the merged image, fluorescence intensity profiles
were obtained for GFP (green) and SC35 (red).
doi:10.1371/journal.pgen.1000397.g005

were analyzed in Western blots probed with anti-HA. D) Cells were co-transfected with pGL2-3xBrn3a and pCMV-bgal together with pFlag-POU4F2
wild type (wt) or pFlag-POU4F2DHis (DHis). Transcriptional activity is presented as the ratio of luciferase and b-galactosidase; values are the
means6S.D. of triplicate determinations for each condition in one representative experiment of three performed. The panel shows a Western blot of
transfected extracts probed with an anti-Flag antibody.
doi:10.1371/journal.pgen.1000397.g004
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transcription factors (Figure 6A), compatible with active transcrip-

tion sites [41], the mutant protein in which the homeobox was

eliminated (MEOX2DHB) fully co-localized with SC35

(Figure 6A). Similar results were obtained with the OTX1

transcription factor (Figure S5). In the case of CBX4, we assessed

whether deleting the C-terminal fragment spanning the CtBP2

and RING1-interacting domains (CBX4DPB) similarly affected its

distribution. While the wild type CBX4 protein was present in

nuclear foci that were not positive for SC35, the mutant

CBX4DPB co-localized with SC35 in the nucleus (Figure 6B).

These results confirmed that the accumulation of some of the

polyHis-containing proteins in nuclear speckles was influenced by

their binding to other nuclear components, such as DNA or

diverse subnuclear structures. Moreover, they suggest that

competition between distinct protein regions dictates the steady

state subnuclear localization of the protein.

Transit through Nuclear Speckles Is a Dynamic Property
of PolyHis-Containing Proteins

In mammalian cells, the structure and function of nuclear

speckles is sensitive to the transcriptional state of the cell (for

review, see [22]). When cells are treated with RNA polymerase

II transcription inhibitors, there is a decrease in the splicing

activity and a redistribution of the components of speckles,

which are recruited to larger and rounder nuclear speckles [42].

Most of the His-containing proteins were transcription factors

and since our results showed that DNA binding activity

influenced their accumulation in speckles, we wondered

whether their failure to localize to this subnuclear compartment

might be reverted by inhibiting RNA polymerase II activity.

Two proteins, FOXG1B and HOXA1, that did not produce

speckled staining at the steady state, co-localized with SC35 in

fewer but larger speckles after a-amanitin treatment (Figure 7A

and 7B). Interestingly, the diffuse nucleoplasmic distribution of

several other transcription factors became punctate in cells

treated with a-amanitin, and it overlapped with SC35 staining

(Table 1 and Figure S6A). These dynamic changes in

distribution could be observed by in vivo imaging (Videos S1

and S2). For HOXA1, we noticed that the staining not only

overlapped with SC35 foci but it also adopted a ‘‘capped

structure’’, as described for the recently reported S1-1 nuclear

domains [43]. We therefore analyzed co-localization with an

anti-S1-1 antibody as a marker of this nuclear domain, and we

found that the HOXA1 signal co-localized with both the SC35

and the S1-1 staining (Figure S6B). Since nuclear speckles and

S1-1 domains have been suggested to be functionally connected

[43], it is possible that HOXA1 could traffic between these two

subnuclear domains.

The dependence on the polyHis segment for this dynamic

behavior was analyzed using a HOXA1 mutant protein in which

the His-repeat was eliminated. Accordingly, there was no change

in the subcellular distribution of this mutant protein when cells

were exposed to a-amanitin (Figure 7C). HOXA1-dependent

reporter assays confirmed that deletion of the His-repeat did not

abolish the transcriptional activity of this transcription factor

(Figure 7D), suggesting that the mutation affected specifically the

subnuclear localization of the protein.

We also analyzed the effect of RNA polymerase II inhibition on

three polyHis-containing proteins considered to be cytosolic: the

negative regulator of the Wnt-canonical pathway NKD2; the

mitotic kinase PLK2; and the PRICKLE family member

PRICKLE3 (also known as LMO6). Both NKD2 and PLK2

remained in the cytoplasm under basal conditions and upon

exposure to a-amanitin (not shown). However, exposure to this

inhibitor produced the translocation of a proportion of PRICK-

LE3 to the nucleus, where it co-localized with SC35 (Figure 8A).

Incubation with leptomycin B, an inhibitor of CRM1-dependent

nuclear export, caused the relocalization of PRICKLE3 to the

nucleus (Figure 8B), indicating that it is a shuttling protein and

further suggesting that its targeting to nuclear speckles may be

linked to the yet unknown role of PRICKLE3 within the nucleus.

Leptomycin B treatment induced accumulation of PRICKLE 3 in

PML bodies (Figure S7).

The results of the analysis of the subcellular localization of

several polyHis-containing nuclear proteins are summarized in

Table 1 and notably, 15 out of 22 of these proteins displayed

nuclear staining compatible with their accumulation in nuclear

speckles. Thus, proteins with His-repeats seem to localize

dynamically in the splicing factor compartment.

Discussion

SARs are frequently found in eukaryotic proteomes [2,44]. It

has been suggested that their physicochemical properties, such as

flexibility or low-affinity interactions, confer certain advantages

over other types of amino acidic regions [5]. However, the role of

many SARs is unknown and therefore, efforts have been made to

perform global surveys of this type of sequence in order to identify

common functional features [2,4,5]. We have performed an

exhaustive analysis of the proteins containing His-tracts in the

human genome, confirming that His-repeats are uncommon

within proteomes. Moreover, they tend to be well conserved

between human and mouse, with about 85% of them showing at

most one repeat unit size difference. The low rates of

heterozygosity observed in (CAC)n microsatellites in coding

regions also suggest that the evolution of these His-repeat has

been limited [45]. Although His-tracts of moderate length are

likely to have been positively selected in human proteins, as shown

by the comparison to CAC/CAT repeats in non-coding regions,

there may be a limit to the repeat size. In fact, we noted the

absence of pure tracts with more than 15 His-residues, whereas

much longer tracts may exist for other SARs. For example, alanine

repeats of 25 residues are present in several developmental

proteins [13], and non-pathogenic glutamine tracts may reach

about 60 repeat units [11]. Size restriction might be linked to the

possible pathogenic effects of His-tracts longer than 15 residues.

The presence of multiple SARs is not uncommon in human

proteins [2,4] and polyHis-containing proteins are no exception

since a large fraction of them contained alanine, glycine, serine,

proline or glutamine SARs. Besides, half of the proteins with His-

repeats contained extended tracts interrupted by other amino

Figure 6. The accumulation in nuclear speckles of some polyHis-containing proteins depends on the presence of other interacting
domains. A) HeLa cells were transfected with the expression plasmids for wild type GFP-MEOX2 or the mutant GFP-MEOX2DHB as indicated (see
scheme; His: His-repeat; NLS: nuclear localization signal; HoBox: homeobox domain). B) HeLa cells were transfected with the expression plasmids for
GFP-CBX4 wild type or GFP-CBX4DPB as indicated (see scheme: CHROMO, chromatin organization modifier domain; His, His-repeat; NLS, nuclear
localization signal; CtBP2, CtBP binding domain; and RING1, RING1-interacting domain). In A) and B), the subcellular localization of the GFP-fusion
proteins was analyzed by direct fluorescence (left column, green) and their accumulation in nuclear speckles by immunofluorescence for SC35
(middle column, red).
doi:10.1371/journal.pgen.1000397.g006
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acids. Interestingly, the most common interrupting amino acids

were those that typically form homopeptidic stretches in

transcription factors, such as proline, glutamine or glycine.

Enrichment of this type of amino acids has also been observed

in polyglutamine containing proteins [46]. Stretching this idea

further, repeats may often grow within repeats, as illustrated by the

appearance of SSS, PPP or GGG repeats within extended His-

repeats (Table 1). Moreover, the disrupting residues may act as

brakes for the expansion of the pure repeats, and restrict the size of

the His-repeat, which in turn might reduce the likelihood of

protein aggregation and associated pathogenic effects.

The His-Repeat Is a Novel Nuclear Speckle-Localization
Signal

The mammalian nucleus is a highly complex organelle that is

both physically and functionally compartmentalized (for review,

see [22,47]). The subnuclear structures are associated with specific

biological activities related to the synthesis, processing and

modification of RNA, and they can be distinguished by

morphological criteria and the presence of specific protein

markers. One such compartment is that of the nuclear speckles.

The mechanisms responsible for the formation and regulation of

these structures are not yet known and as for many other nuclear

bodies, it has been proposed that they are highly dynamic self-

organizing entities [48]. A rapid exchange of protein components

between subnuclear compartments has been reported, which can

be explained by a reaction-diffusion model [49]. However, the

kinetics associated to a particular protein can be affected by its

binding to other molecules, either proteins or nucleic acids, which

in turn can aid its recruitment to a specific compartment.

Accordingly, a few protein domains have been described that

direct proteins to nuclear speckles, such as the arginine/serine-rich

(RS)-domain in SR proteins [50] or the RNA recognition motif

[51]. Other regions in specific proteins have also been reported to

act as speckle-localizing sequences, like the threonine-proline

repeats in SF3B1/SF3b155 [52] and the ‘‘Forkhead Associated’’

domain in PPP1R8/NIPP1 [53].

We previously showed that the His-tract in the DYRK1A

protein kinase and the regulator of transcription cyclin T1 [20,21]

is responsible for the accumulation of these proteins in nuclear

speckles. Given that the functions of many of the polyHis-

containing proteins were related to DNA and RNA metabolism, it

was plausible that this role as a subnuclear targeting signal could

be more general in other proteins. Indeed, a significant proportion

of the polyHis-containing proteins analyzed have the ability to

accumulate in nuclear speckles either at the steady-state or upon

transcription inhibition. This targeting may respond to the nature

of nuclear speckles as sites of storage, recycling and degradation of

factors involved in DNA and RNA metabolism [22,54]. The

uneven distribution found among different speckle-positive His-

repeats-containing proteins is also observed among splicing factors

that accumulate in speckles for instance [22,26], and could reflect

differential binding affinities for distinct targets within the nucleus.

Importantly, accumulation in nuclear speckles is dependent on the

presence of the His-tract, as confirmed by both deletion analysis in

some candidate proteins and by the behavior of paralogous

proteins lacking the His-repeat. Apart from the previously

mentioned DYRK1A and cyclin T1 [20,21], only HOXA9 had

already been reported to accumulate in nuclear speckles of

unknown nature [55].

Given that our analysis was performed by transient transfection

of plasmids expressing the candidate proteins fused to GFP, we

tried to rule out non-physiological effects due to overexpression.

This is particularly relevant since expanded homopolymeric tracts,

including polyHis expansions, have been associated with protein

aggregation [16,31,56]. As a cellular defense mechanism against

protein misfolding and aggregation, protein aggregates are

thought to be sequestered in inclusions that also contain molecular

chaperones and components of the ubiquitin proteasome system

[57]. We did not detect any co-localization of candidate proteins

with an anti-ubiquitin antibody (Figure S8), suggesting that the

speckled staining was not produced by the formation of

intranuclear protein aggregates. In addition, no cytosolic granules

were detected (Figure S1 and S2), in contrast with results

published with longer His tracts (26 His residues; [31]). We also

analyzed the behavior of a stably expressed polyHis-containing

protein (DYRK1A) fused to GFP during the cell cycle. Nuclear

speckles disassemble when cells enter mitosis and the proteins

associated with them become diffusely distributed throughout the

cytoplasm [58]. As shown in Figure S9, the fusion protein totally

recapitulated these changes during the cell cycle indicating that

poly-His expression does not interfere with the intrinsic dynamics

of the compartment. As additional support for the specificity of the

subcellular localization, we did not detect an accumulation of the

GFP-9xHis chimera in other subnuclear compartments and there

was no colocalization with different marker proteins or any specific

accumulation in the cytoplasm of the transfected cells, suggesting

that the fusion protein is not recruited to a specific cytosolic

organelle.

It seems most likely that the His-repeat acts as a nuclear speckle-

targeting signal by serving as an interaction surface for resident

molecules in the speckle. The features of His make it a versatile

amino acid, strongly represented in enzymatic and binding

activities. Histidine’s imidazole side-chain allows it to shift from

a neutral to positive charge in a pH-dependent fashion, a property

that may have an impact on the binding capabilities of a His-

stretch. Moreover, the presence of His in a b-strand provides a

charge gradient that could mediate protein-protein or protein-

DNA via electrostatic interactions. His is also known as an

excellent ligand to coordinate metal ions [17], which can also

participate in organizing interacting domains. All these mecha-

nisms may contribute to finely regulate the binding properties of

His-repeats. Examples of His-stretches as protein-protein interact-

ing domains can be found in cyclin T1 when interacting with RNA

polymerase II and granulin [18,19], and DYRK1A interacting

with Sprouty2 [59].

Figure 7. The transcriptional state of the cell determines whether some polyHis transcription factors accumulate in nuclear
speckles. A, B) HeLa cells were transfected with the expression plasmids encoding the GFP-FOXG1B (A) and GFP-HOXA1 (B) fusion proteins. At 36 h
post-transfection, cells were treated with a-amanitin for 5 h to inhibit transcription and then processed for SC35 immunofluorescence. Fluorescence
intensity profiles are shown for GFP (green) and SC35 (red), obtained from the lines on the merged images. C) The panels show the results for the
same type of experiment performed on mutant HOXA1DHis in which the His-tract has been eliminated (see scheme: His, His-repeat; NLS, nuclear
localization signal; HoBox, homeobox). D) Cells were co-transfected with pE1bG4-luc and pCMV-RNL together with pG4-DBD (-), pG4-HOXA1 wild
type (wt) or pG4-HOXA1DHis (DHis), and luciferase activity was measured in triplicate plates. Values were corrected for transfection efficiency as
measured by Renilla activity. Data is presented as the induction of luciferase activity above the G4-DBD transfection and the values are the
means6S.D. of triplicate determinations for each condition in a representative experiment of a minimum of two performed. The panel shows a
Western blot analysis of transfected extracts with an anti-Gal4-DBD antibody.
doi:10.1371/journal.pgen.1000397.g007
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Table 1. Summary of the results obtained in the analysis of the subcellular localization of polyHis-containing proteins.

Name His tract Protein domains Function

Cyclin T1 513-HPSNHHHHHNHHSHKHSH-530 cdk binding domain Transcription regulator

POU4F2 172-HHHHHHHHHHHHQPH-186 POU domain (254–328) Transcription factor

Homeobox (346–405) Differentiation and survival of retinal
ganglion cells

YY1 65-HGHAGHHHHHHHHHHH-80 Zinc finger (296–320; 325–347;353–
377;383–407)

Transcription factor

Regulation of development and
differentiation

DYRK1A 590-HHHHGNSSHHHHHHHHHHHHH-610 Kinase domain (159–479) Ser/Thr protein kinase

Regulator of cell proliferation and
differentiation

NLK 14-HHHHHHHHLPHLPPPHLHHHHHPQHHLH-42 Kinase domain (126–415) Ser/Thr protein kinase

Regulator of Wnt-signaling pathways

FAM76B 167-HHPKHHHHHHHHHHRHSSSHH-187 Not found Unknown

GSH2 124-HAH HHHHPPQHHHHHH-139 Homeobox (203–261) Transcription factor

Telencephalic development

HOXA1 65-HHHHHHHHHH-74 Homeobox (229–291) Transcription factor

Hindbrain segmentation

HOXA9 84-HHHHHH-89 Homeobox (207–267) Transcription factor

Positional identity on the anterior/
posterior axis

MEOX2* 64-HHRGHHHHHHHHHHHH-79 Homeobox (186–248) Transcription factor

Somite development

OTX1* 275-HHHHHPHAHHPLSQSSGHHHHHHHHHH-301 Homeobox (36–96) Transcription factor

Otx-box (247–274) Brain development

HAND1 8-HHHHHHHPHPAH-20 Helix-loop-helix (103–151) Transcription factor

Cardiac morphogenesis

CBX4* 380-HHPHPHPHHHHHHHHHHHH-398 Chromodomain (16–69) Chromatin modification

CtBP2-interacting domain (470–475) SUMO E3-ligase

RING2-interacting domain (540–558)

FOXG1B 33-HHASHGHHNSHHPQHHHHHHHHHHH-57 Fork-head domain (179–269) Transcription factor

PLU-1-interacting domain (375–411) Regulator of telencephalon
morphogenesis

FAST2-intracting domain (314–372)

PRICKLE3 513-HHHHNHHHHHNRH-525 PET domain (73–178) Unknown

LIM domain (186–243)

DLX2 309-HHHHHHH-315 Homeobox (157–210) Transcription factor

Forebrain differentiation

POU4F1 100-HHHHHHHHH-108 POU domain (279–291) Transcription factor

Homeobox (306–319) Differentiation and survival of sensory
neurons

Homeobox (389–412)

ZIC3 87-HHHHHHHHHHH-97 Zinc finger (300–322; 328–352; 358–382;
388–410)

Transcription factor

Determination of left-right asymmetry

ONECUT1 124-HHHHHHHHHHHPHH-138 CUT domain (283–369) Transcription factor

Homeobox (385–477) Pancreas specification

CREB-interacting domain (327–331)

MAFA 184-HHHGAHHAAHHHHAAHHHHHHHHHSHGGAGHGGGAGHH-219 Maf-N (111–145) Transcription factor

Basic leucine zipper (253–316) Regulator of insulin gene expression

MAFB 131-HHHHHHHHPHPHHAYPGAGVAHDELGPHAHPHHHHHH-167 Maf_N (80–114) Transcription factor
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The ability of His-tracts to target proteins to the nuclear

speckles compartment seems to be specific to His since other

homopolymeric amino acid tracts do not display such activity

according to our results (9xGln and 9xPro as GFP fusions; 13xAla

in NLKDHis, 16xGly and 7xSer in POU4F2DHis) and those

published for longer amino acid tracts [31]. Speckle-positive His-

repeats vary from simple amino acid runs (for instance, H10 in

HOXA1) to complex repeats (HPSNH5NH2SHKHSH in cyclin

T1), suggesting that the number of His residues is not decisive for

its functional role but rather, the spacing between residues may be

important. We failed to find a specific code underlying targeting to

nuclear speckles, except that a minimum of 6 His residues is

required for this effect, which indicates a high degree of flexibility

in this functional signal. Considering that His-repeats are widely

used as tags for affinity-purification and immunodetection of

expressed proteins, we would like to stress the fact that more than

6 His residues may alter the original localization of a tagged

protein.

His-Repeats as a Way of Generating Evolutionary
Diversification in Gene Duplicates

Only 22% of SARPs have paralogous proteins [60], whereas a

large fraction of the genes encoding proteins with His-repeats have

closely-related paralogues. We found that many of them were

derived from gene duplications at the base of vertebrate evolution,

when two rounds of whole-genome duplication took place [61].

Interestingly, most of the paralogues lacked the His-repeat,

suggesting that this repeat had been gained after the duplication

of the gene. Further analysis of the distribution of these repeats

revealed that they were gained during two periods of vertebrate

evolution: soon after gene duplication or before placental mammal

radiation.

The comparison of the subcellular distribution of three pairs of

paralogous proteins, FAM76B/FAM76A, DYRK1A/DYRK1B

and POU4F2/POU4F3, confirmed that only those members

containing His-repeats localized to nuclear speckles. Notably, in

approximately 30% of the duplicate gene pairs derived from the S.

cerevisiae whole-genome duplication event, the two protein

members of the pair localize to distinct subcellular compartments

[62]. This and other evidence led to the proposal that protein

subcellular relocalization might be an important evolutionary

mechanism for the functional diversification of duplicate genes

[63]. Therefore, the appearance of a new repeat, or variations in

the length and composition of an existing one, may have been an

important mechanism for functional diversification. The acquisi-

tion of a new His-repeat might have contributed to the

reorganization of protein-protein interaction networks and more

specifically, to nuclear speckle targeting as a novel cell property

Name His tract Protein domains Function

Basic leucine zipper (209–303) Regulator of lineage-specific
haematopoiesis

MEC2P 366-HHHHHHH-372 Methyl-CpG-binding domain (94–168) Transcription repressor

First group (in bold) = proteins that accumulate in nuclear speckles under basal conditions; second group = proteins that accumulate in nuclear speckles after a-amanitin
treatment.
*deletion of DNA-binding/protein-protein interaction motifs was also tested; third group (in italics) = proteins that do not localize in speckles.
doi:10.1371/journal.pgen.1000397.t001

Table 1. Cont.

Figure 8. The His-tract participates in the dynamic properties of polyHis-containing proteins. A) HeLa cells were transfected with the
expression plasmids encoding GFP-PRICKLE3. Cells were treated with a-amanitin for 5 h to inhibit transcription and then processed for SC35
immunofluorescence. B) HeLa cells expressing the GFP-PRICKLE3 fusion protein were mock-treated or exposed to leptomycin B for 5 h, 24 h after
transfection. The subcellular localization of the fusion protein was analyzed by direct fluorescence. Note that PRICKLE3 is detected in the cytosol in
untreated cells but it accumulates in the nucleus, nucleoplasm and nuclear speckles in response to the inhibitor of nuclear export.
doi:10.1371/journal.pgen.1000397.g008
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associated to the paralogous protein. This might be relatively rapid

on an evolutionary time scale because of the high mutation rates

associated with microsatellites [64]. In fact, the expansion and

contraction of repeats within transcription factors has been linked

to major morphological changes in vertebrates [65,66]. Given that

a high proportion of the polyHis-containing proteins have roles in

developmental processes, mutations involving His-repeats may

have played a significant part in diversification and adaptation.

Subnuclear Localization of PolyHis-Containing Proteins Is
a Highly Dynamic Process

Several of the His-containing proteins that did not accumulate

in nuclear speckles were transcription factors. The fact that these

proteins contain domains that may control their specific

localization within the nucleus, such as DNA binding regions or

protein-protein interaction domains, led us to think that

competition between His-repeats and other protein regions might

regulate their intranuclear distribution. Our results show a direct

correlation between loss of DNA binding activity and accumula-

tion in nuclear speckles. Similar behavior was recently described

for the transcription factor GATA-4, although the subnuclear

compartment to which it localized was not identified [67].

Although we cannot ignore that the elimination of the DNA

binding domains may result in a conformational change that

exposes the His-repeat, we favor a loss of retention in the

chromosomal compartment as being responsible for the enrich-

ment in nuclear speckles. This assumption is supported by the

results with inhibitors of RNA polymerase II-dependent transcrip-

tion, since treatment with a-amanitin caused re-localization to

nuclear speckles of many of the proteins with a dispersed nuclear

distribution under basal conditions. In this regard, we noted that

the subgroup of proteins unable to accumulate in nuclear speckles

was enriched in proteins with more than one DNA binding

domain, a feature that may confer a more immobile character to

these proteins. Thus, we propose that the intranuclear localization

of some transcription factors with His-repeats is the net result of

competition for binding to different recruiting sites within the

nucleus, such as DNA, nuclear speckles or other nuclear bodies.

Moreover, this dynamic behavior might also explain why among

the proteins listed in Table 1, only OTX1 appeared in a proteomic

analysis of enriched preparations of interchromatin granule

clusters [24]. Such a proteomic analysis would not consider

proteins present in low amounts and/or proteins that are

transiently found in such structures.

It is widely accepted that RNA processing occurs co-

transcriptionally and thus, there is a co-localization of factors

related to RNA biogenesis, such as transcription and splicing

factors [68]. When needed, transcription factors are recruited to

specific promoters in active transcription sites whereas splicing

factors are assembled into the spliceosome. During transcription-

ally inactive periods, the splicing factors re-locate to the speckle

domains, and some transcription factors might also behave

similarly. Transit through the speckles may provide the opportu-

nity for transcription factors to encounter RNA processing factors

and/or other transcription factors, and to assemble into complexes

acting on the same gene. This re-localization may also involve the

targeting of transcription factors no longer able to bind DNA to

other compartments for degradation or other processing activities

[54,69]. In addition, compartmentalization of transcription-related

proteins within distinct nuclear bodies may be an important

mechanism to regulate gene expression. For instance, the

inactivation of the transcription factor HAND1 by nucleoli

retention has been implicated in trophoblast stem cell proliferation

and renewal [70], and estrogen receptor-enhanced transcription

requires interchromosomal interactions at nuclear speckles [71].

The presence of a common sequence to direct a subset of proteins

to nuclear speckles, such as the His-repeats, may confer functional

advantages. First, it may represent a way to concentrate

functionally related proteins, perhaps facilitating their physical

interaction. Second, it may reflect a common mechanism to

regulate these proteins. Indeed, given that most of the polyHis-

containing proteins are involved in developmental processes, His-

repeats may be a means of keeping transcription factors away from

promoters when they are not required.

Uncontrolled expansion of SARs is associated with develop-

mental and neurodegenerative human diseases (for review, see

[2,11,13]), although no pathological His expansions/deletions

have yet been reported. However, variants in the length of the His-

repeats in the HOXA1 protein have been described in the

Japanese population [56], and the expression of these variants

compromised HOXA1 function in neuronal differentiation [72].

Furthermore, a polyHis polymorphism in ZIC2 is apparently

associated with neural tube defects [73]. Intriguingly, no

homozygous cases of expansions have been found in either of

these genes. On the basis of these data, and considering that some

polyHis-containing proteins are fundamental for essential devel-

opmental processes, variation in His-repeats would be expected to

contribute to human disease.

Materials and Methods

Genome-Wide Computational Search for His-Repeats
An in-house Perl computer program was used to identify all

human proteins containing a tandem His-repeat of 5 residues or

more from Ensembl (version 48, http://www.ensembl.org/, [32]).

When more than one protein per gene existed, we selected the

longest of these. One to one orthologous proteins from mouse, as

well as human paralogous genes, were identified using Ensembl

Biomart annotations. The paralogous gene analysis was restricted

to those genes derived from duplication events at the Euteleostome

or more recent levels, since these homologues were sufficiently

similar to produce reliable alignments. The procedure used to map

equivalent repeats in two homologous sequences has already been

described [82]. Briefly, for each repeat found in a sequence, we

determined whether an equivalent repeat existed in the ortholo-

gous sequence by looking for His-repeats that overlapped with the

reference repeat in the pairwise protein sequence alignment

available from Ensembl. Non-coding tandem CAY (CAC/CAT)

repeats were recovered from the non-protein coding parts of the

genome (goldenpath 200603).

Gene Ontology-Based Analysis of Protein Function
We obtained all available Gene Ontology annotations (GO,

http://www.geneontology.org/, [33]) for human genes from

Ensembl (18,086 genes). The number of genes annotated with

the terms ‘nucleus’, ‘cytoplasm’ (excluding those also annotated as

‘nucleus’) and ‘membrane’ (excluding those also annotated as

‘nucleus’ and/or ‘cytoplasm’) in the cellular compartment

classification were counted. In the complete dataset, 4634 genes

were annotated as ‘nucleus’, 191 as ‘cytoplasm’ and 4257 as

‘membrane’. Out of 82 polyHis-containing proteins with GO

annotations, 59 were annotated as ‘nucleus’, 2 as ‘cytoplasm’ and 7

as ‘membrane’. Several terms related to transcriptional regulation

and to developmental processes were particularly abundant

among the proteins with His-repeats. To avoid redundancy in

the functional analysis, three groups of nuclear proteins were

selected: 1) genes with GO annotations related to nervous system

development (‘nervous system development’, ‘central nervous
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system development’, ‘brain development’, ‘hindbrain develop-

ment’, ‘forebrain development’, ‘midbrain development’ and

‘dendrite development’); 2) genes with GO annotations related

to other developmental processes (terms containing ‘development’

not included in the previous class); and 3) genes with the GO

annotation ‘regulation of transcription’ (and not included in the

two previous classes). In the complete dataset, 142 genes were

included in the first class, 585 in the second class and 1829 in the

third. Among polyHis-containing genes, 13 genes were included in

the first class, 12 in the second class and 19 in the third class.

Statistical Analysis
To detect any statistical differences in the distribution of the

repeat sizes we used the non-parametric Kolmogorov-Smirnov

test. To detect over-represented GO terms we used the binomial

probability. Statistical analyses were performed with the R

statistical package (http://www.r-project.org/).

Plasmids
The expression plasmids encoding GFP-tagged human

DYRK1A (754 amino acid isoform; pGFP-DYRK1A) has been

described [20]. The plasmid expressing GFP fused to the

DYRK1A fragment 378–616 (H+) was obtained by in-frame

subcloning of the appropriate PCR fragment into pEGFP-C1

(Clontech). Expression plasmids for DYRK1B (pGFP-DYRK1B,

[74], SC35 (pYFP-SC35, [75], POU4F1 (pTS-Brn3a, [76], cyclin

T1 (pMyc-Cyclin T1, [19], NKD2 (pGFP-NKD2, [77], and

CBX4 (pGFP-CBX4) were kindly provided by W. Becker (Aachen

University, Germany), D. Spector (Cold Spring Harbor Labora-

tory, Cold Spring Harbor, USA), E. Turner (Department of

Psychiatry, University of California, USA), M. Peterlin (Howard

Hughes Medical Institute, University of California, USA), C. Li

(Department of Medicine, Vanderbilt University Medical Center,

USA), and S. Aznar-Benitah (Centre for Genomic Regulation-

CRG, Spain), respectively.

To generate the plasmids expressing the different GFP fusion

proteins, the corresponding open reading frames were PCR

amplified with specific primers using IMAGE Consortium cDNA

clones as templates (http://image.llnl.gov/, [78]). The identifica-

tion number of the IMAGE clones and the sequence of the

primers used are listed in Table S3. All the IMAGE clones were

purchased from the RZPD German Resource Center for Genome

Research. Details of the generation of all constructs used in this

study are provided in the Supporting Materials and Methods (Text

S1). Plasmid pG4-HOXA1 was constructed by fusing the

nucleotide sequence corresponding to the HOXA1 open reading

frame in-frame with the yeast Gal4 DNA binding domain (DBD)

in pG4-DBD [79]. To obtain plasmids expressing 5xHis, 6xHis,

7xHis, 8xHis and 9xHis or 9xPro and 9xGln protein segments

fused to GFP, double stranded oligonucleotides (Table S4) were

annealed and ligated into the BglII and EcoRI sites of the pEGFP-

C1 expression vector. Deletion of His-repeats was performed by

site-directed mutagenesis (Stratagene) on pHA-DYRK1A, pFlag-

POU4F2, pGFP-NLK, pGFP-HOXA1 and pG4-HOXA1. All

plasmids generated by PCR, as well as all the in-frame fusions,

were verified by DNA sequencing.

Cell Culture and Transfection
The U2-OS, HeLa, CV-1 and HEK-293 cell lines were

maintained at 37uC in Dulbecco’s Modified Eagle’s Medium

supplemented with 10% fetal calf serum (FCS) and antibiotics.

Transient transfections were performed using the calcium

phosphate precipitation method and the cells were processed

24–48 h after transfection. For the generation of stable cell lines,

transfected U2-OS cells were selected by incubation with G418

(500 mg/ml; Gibco-Invitrogen) for 10 days and the clones derived

from a single cell were isolated. Cell lines were maintained in

G418 (250 mg/ml). Treatment of HeLa cells with RNA polymer-

ase II inhibitor, a-amanitin (50 mg/ml; Sigma) and with the

CRM1-dependent export inhibitor leptomycin B (10 ng/ml;

Sigma) was carried out for 5 h at 37uC.

Immunofluorescence
HeLa cells (76105) growing on coverslips in six-well dishes

were transfected with the different expression constructs and

48 h after transfection, the coverslips were washed in cold

phosphate buffered saline (PBS), fixed in 4% paraformaldehyde

in PBS for 15 min, and permeabilized in 0.1% Triton X-100 in

PBS for 10 min. For ubiquitin detection, the cells were fixed in

methanol for 2 min at 220uC, and they were then blocked with

PBS-10% FCS for 30 min and incubated with primary

antibodies for 1 h at room temperature. After washing

extensively with PBS-1% FCS, the coverslips were incubated

with the secondary antibodies for 45 min at room temperature,

washed repeatedly with PBS-1% FCS, and mounted onto slides

using Vectashield Mounting Medium (Vector Laboratories) plus

0.2 mg/ml 49,6-diamidino-2-phenylindole (DAPI) or TO-PRO-3

(Molecular Probes). Images were acquired with an inverted Leica

SP2 Confocal Microscope and GFP was excited with the 488 nm

line of the Argon laser while IgG Alexa 647 was excited with a

633 nm HeNe laser. The following antibodies were used as

primary antibodies: monoclonal anti-SC35 antibody (BD

Pharmigen, 1:100), monoclonal anti-ubiquitin antibody (P4D1,

Santa Cruz Biotechnology, 1:50), rabbit polyclonal anti-

DYRK1A antiserum ([80] 1:250), rabbit polyclonal anti-PML

antiserum (Santa Cruz Biotechnology, 1:100), mouse monoclo-

nal anti-SUMO1 antibody (Santa Cruz Biotechnology, 1:100),

rabbit anti-PSP1 antiserum (Dundee Cell Products, 1:500),

rabbit polyclonal anti-S1-1 antiserum (a kind gift of Dr. A.

Inoue, [Osaka City University Graduate School of Medicine,

Osaka, Japan]; [43]) and goat polyclonal anti-POU4F2 antise-

rum (Santa Cruz Biotechnology, 1:1000). The secondary

antibodies used were an Alexa 647-conjugated goat anti-mouse

(Molecular Probes, 1:400), an Alexa 555-conjugated donkey anti-

mouse (Invitrogene, 1:400), an Alexa 488-conjugated donkey

anti-goat (Molecular Probes, 1:400), an Alexa 555-conjugated

goat anti-rabbit (Molecular Probes, 1:400) and fluorescein

isothiocyanate conjugated goat anti-rabbit (Southern Biotech-

nology, 1:400).

In Vitro Kinase Assays
Transfected HEK-293 cells (26106) were lysed in Hepes lysis

buffer (50 mM Hepes pH 7.4, 150 mM NaCl, 1% NP-40, 2 mM

EDTA, 2 mM NaVO4, 30 mM NaPPi, 25 mM NaF) supple-

mented with a cocktail of protease inhibitors (Roche). Soluble

extracts were immunoprecipitated either with anti-HA (Abnova)

or anti-GFP (Molecular Probes) antibodies. Immunocomplexes

were washed twice with kinase buffer (50 mM Hepes pH 7.4,

5 mM MgCl2, 5 mM MnCl2, 0.5 mM DTT) and incubated in

30 ml of kinase buffer with 10 mM ATP and [g32P]-ATP

(6.561023 mCi/pmol) for 20 min at 30uC. For DYRK1A, kinase

activity was followed by phosphate incorporation on the synthetic

peptide DYRKtide (200 mM) in a liquid scintillation B-counter

(Beckman Coulter) as described previously [80]. For NLK, the

reaction was stopped by adding 26 loading sample buffer and the

samples were resolved by SDS-PAGE. 32P incorporation was

detected by autoradiography of the dried gels.
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Reporter Assays
For the POU4F2-dependent reporter assay, CV-1 cells (16105)

were seeded in 35-mm dishes. The cells were transfected with a

luciferase reporter plasmid driven by the minimal prolactin

promoter plus 3 repeats of the POU4 family recognition site

(pGL2-3xBrn3a, kindly provided by E. Turner; [81]) together with

pFlag-POU4F2 or pFlag-POU4F2DHis and a b-galactosidase

expressing plasmid as an internal control. For HOXA1-dependent

reporter assays, cells were transfected with the pG5E1B-luc

reporter (luciferase is driven by five repeats of the synthetic

Gal4-binding sites introduced upstream of the minimal adenovirus

E1b promoter; [79]) together with pG4-HOXA1 or pG4DBD-

HOXA1DHis encoding chimeras of HOXA1 proteins fused at

their N termini to the Gal4 DBD. A Renilla luciferase plasmid

(pCMV-RNL, Promega) was used as an internal control. Cells

were lysed 48 h post-transfection and the activity of both luciferase

enzymes was measured with the Dual-Luciferase Reporter Assay

kit (Promega). Each transfection was carried out in triplicate.

Supporting Information

Figure S1 The ability of a His-tract to direct a heterologous

protein to the nuclear speckles depends on the number of

consecutive His residues. A) HeLa cells were transfected with

expression plasmids encoding GFP fusion proteins with different

numbers of His residues: 5xHis, 6xHis, 7xHis, 8xHis or 9xHis

repeats. The localization of the fusion proteins was analyzed by

direct fluorescence (left column, green) and by immunofluores-

cence for SC35 (middle column, red). Merged images are also

shown (left column). The unfused GFP protein was used as a

control and co-localization with the endogenous marker was

determined by confocal imaging. B) Using the lines on the merged

image for GFP-9xHis, fluorescence intensity profiles were obtained

for GFP (green) and SC35 (red).

Found at: doi:10.1371/journal.pgen.1000397.s001 (1.26 MB PDF)

Figure S2 His homopolymeric tracts specifically target proteins

to the nuclear speckle compartment but not to other nuclear

bodies. HeLa cells were transfected with an expression plasmid

encoding a GFP fusion protein of with 9xHis residues. The

localization of the fusion protein was analyzed by direct

fluorescence (left column, green) and by indirect immunofluores-

cence for markers of different nuclear bodies as indicated (middle

column, red). Merged images are also shown (left column). Co-

localization with the endogenous markers was determined by

confocal imaging.

Found at: doi:10.1371/journal.pgen.1000397.s002 (1.72 MB PDF)

Figure S3 Deletion of the His-tract in NLK interferes with NLK

subnuclear localization but not with its kinase activity. A) HeLa

cells were transfected with the expression plasmids for the fusion

proteins GFP-NLK or GFP-NLKDHis. Cells were immunostained

for SC35 to visualize the nuclear speckles (middle column, red)

and GFP fusion proteins were visualized directly by fluorescence

microscopy (left column, green). Merged images are shown (right

column). Note the lack of accumulation in nuclear speckles of the

NLK mutant protein. B) Soluble extracts from cells expressing

unfused GFP, GFP-NLK or GFP-NLKDHis were immunopre-

cipitated with anti-GFP and assayed in an in vitro kinase assay.

The samples were analyzed in Western blots with anti-GFP and

autophosphorylation was assessed by autoradiography of the dried

gels. The position of marker proteins (in kDa) is indicated. The

NLKDHis mutant version showed no differences in autopho-

sphorylation activity when compared with the wild type protein.

Found at: doi:10.1371/journal.pgen.1000397.s003 (0.79 MB PDF)

Figure S4 The localization of other pairs of paralogous proteins

confirms that the His repeat is necessary for accumulation in

nuclear speckles. HeLa cells were transfected with plasmids

expressing the GFP fusions of the DYRK family of protein

kinases, DYRK1A and DYRK1B (A), and of the POU family of

transcription factors, POU4F2 and POU4F3 (B). A schematic

representation of each pair of paralogues is presented. (A) NLS:

nuclear localization signal; Kinase: kinase domain; PEST: PEST

sequences; His: histidine repeat; Ser: serine-rich region. (B) Gly/

Ser: segment rich in glycine and serine; UHD: upstream homology

domain in POU family members; POUsd: POU specific domain;

POUhd: POU homeodomain. The localization of the fusion

proteins was assessed by direct fluorescence (left panels) and their

accumulation in speckles by co-localization with SC35 (right

panels).

Found at: doi:10.1371/journal.pgen.1000397.s004 (1.15 MB PDF)

Figure S5 The accumulation of some transcription factors with

polyHis stretches in nuclear speckles depends on their interaction

with DNA. HeLa cells were transfected with the expression

plasmids for wild type GFP-OTX1 or GFP-OTX1DHB as

indicated (see scheme: His: His repeat; NLS: nuclear localization

signal; HoBox: homeobox domain; OtxB: Otx box). The

subcellular localization of both proteins was analyzed by direct

fluorescence (left column, green) and their accumulation in nuclear

speckles by immunofluorescence for SC35 (middle column, red).

Found at: doi:10.1371/journal.pgen.1000397.s005 (0.76 MB PDF)

Figure S6 Inhibiting transcription with a-amanitin forces some

His-containing transcription factors to be retained in nuclear

speckles. A) HeLa cells were transfected with the expression

plasmid encoding the transcription factor HOXA9. At 48 h post-

transfection, the cells were treated with a-amanitin to inhibit

transcription and immunostained for SC35 to assess the

accumulation of both proteins in the SFC compartment (right

panels). Nuclear speckles appear larger and rounder as a

consequence of the treatment with the inhibitor. Note that co-

localization with nuclear speckles was only observed in cells

treated with a-amanitin. B) HeLa cells were transfected with

pGFP-HOXA1, and double stained for S1-1 (blue) and SC35

(red). Arrows indicate some of the overlapping structures with S1-1

staining and asterisks those with SC35 staining. Images were

acquired by confocal microscopy.

Found at: doi:10.1371/journal.pgen.1000397.s006 (1.12 MB PDF)

Figure S7 Inhibiting export with leptomycin B forces PRICK-

LE3 to be retained in PML bodies. HeLa cells were transfected

with the expression plasmid encoding PRICKLE3. At 48 h post-

transfection, cells were treated with leptomycin B for the times

indicated to inhibit nuclear export, and immunostained for PML

to assess accumulation in PML bodies (right panels). PML bodies

appear larger and rounder as a consequence of the treatment with

the inhibitor. Note that PRICKLE3 translocates to the nucleus

and co-localizes with PML bodies in cells treated with leptomycin

B. This behavior in response to leptomycin treatment has been

also described for other proteins accumulating in the nuclear

speckles compartment, such as the spliceosome component U1A

or the transcription factor ZBP1.

Found at: doi:10.1371/journal.pgen.1000397.s007 (0.87 MB PDF)

Figure S8 The dot-like staining of polyHis-containing proteins

does not overlap with ubiquitin-enriched nuclear aggregates.

HeLa cells were transfected with the expression plasmid for the

fusion protein GFP-DYRK1A, and cells were immunostained for

ubiquitin and then analyzed by direct fluorescence (left panel,

green) and by immunofluorescence (middle panel, red). A merged
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image is also shown (right panel). Note that no co-localization of

the DYRK1A nuclear speckles with ubiquitin was detected.

Found at: doi:10.1371/journal.pgen.1000397.s008 (0.30 MB PDF)

Figure S9 A protein with polyHis-stretches mimics the behavior

of a component of endogenous nuclear speckles during the cell

cycle. An U2-OS stable cell line expressing GFP fused to a

fragment of the DYRK1A protein kinase (amino acids 378–616)

that contains the polyHis segment was generated and the co-

localization of the GFP signal with SC35 was confirmed (data not

shown). Cells grown on coverslips were analyzed by direct

fluorescence (central panel) and DNA was stained with TO-

PRO-3 to distinguish interphase from mitotic nuclei (left panel).

Note that GFP-DYRK1A(378–616) is expressed in discrete foci

compatible with nuclear speckles in interphase nuclei, whereas

during mitosis (prophase, upper panel; anaphase, lower panel)

diffuse staining throughout the cytoplasm is observed as a

consequence of nuclear speckle disassembly. This behavior mirrors

that of endogenous SC35, whose speckled distribution is lost

during prophase.

Found at: doi:10.1371/journal.pgen.1000397.s009 (0.96 MB PDF)

Table S1 Results of the bioinformatics screen used to identify

human proteins containing at least one His-repeat of 5 or more

residues.

Found at: doi:10.1371/journal.pgen.1000397.s010 (0.04 MB

XLS)

Table S2 Results of the analysis to identify the paralogues of the

genes encoding proteins with His-repeats in the human genome.

Found at: doi:10.1371/journal.pgen.1000397.s011 (0.04 MB

XLS)

Table S3 Information on IMAGE clones and the oligonucleo-

tides used to generate all the expression vectors.

Found at: doi:10.1371/journal.pgen.1000397.s012 (0.06 MB PDF)

Table S4 Oligonucleotides used to obtain the plasmids express-

ing His-tracts fused to GFP.

Found at: doi:10.1371/journal.pgen.1000397.s013 (0.05 MB PDF)

Text S1 Supporting Materials and Methods.

Found at: doi:10.1371/journal.pgen.1000397.s014 (0.07 MB PDF)

Video S1 In vivo imaging of GFP-HOXA1. For live cell

observations, HeLa cells (76105) growing on 35-mm MatTek

plates (MatTek Corporation) were transfected with the expression

plasmids for the GFP-HOXA1 (1 mg) and YFP-SC35 (250 ng)

fusion proteins, and 16 h after transfection the cells were

transferred to an environmental control box (EMBLEM Technol-

ogy Transfer) mounted onto the stage of an inverted Leica TCS

SP5 confocal microscope. GFP was excited with the 488 nm line

and YFP with the 514 line of the Argon laser. The cells were

treated with a-amanitin (50 mg/ml) for 5 h at 37uC, and time-

lapse images were acquired at 636 every 5 min and processed

with the LAS (Leica Application Suite) AF software. Images for

GFP-HOXA1 are shown in the Supporting Video S1. The

progressive enlargement of YFP-SC35 signals serves as a control of

the treatment (Supporting Video S2).

Found at: doi:10.1371/journal.pgen.1000397.s015 (0.97 MB

MOV)

Video S2 In vivo imaging of YFP-SC35.

Found at: doi:10.1371/journal.pgen.1000397.s016 (0.20 MB

MOV)
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