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Abstract Existing analytical models dealing with buck-

ling and postbuckling phenomena of delaminated com-

posites comprise one limitation: the restriction to sta-

tionary delaminations. In the current work, an analyt-

ical framework is presented which allows to model the

postbuckling response of composites without such lim-

itation. Therefore, the well-known problem of a com-

posite strut with a through-the-width delamination is

studied. The system is fully described by a set of I

generalized coordinates. The postbuckling response for

a stationary delamination is modelled using the con-

ventional total potential energy approach. The post-

buckling response for a non-stationary delamination,

i.e. once delamination growth occurs, is modelled using

an extended total potential energy functional in which

the delamination length is expressed by the generalized
coordinates and the load parameters. By solving the un-

derlying variational principle the postbuckling response

is obtained. Implementing the Rayleigh-Ritz method

yields a set of non-linear algebraic equations which is

solved numerically. Postbuckling responses for a cross-

ply laminate are provided until the strut fails. Depend-

ing on delamination depth and length additional load

bearing capacities of such composite struts are doc-

umented before failure due to unstable delamination

growth occurs.
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1 Introduction

Since the early 1980s, with the work of Chai et al. [2],

the problem of delamination buckling in composites has

received much attention. The issue of possible delami-

nation growth is also already mentioned in [2]. Studying

the behaviour of the energy release rate provided infor-

mation about whether delamination growth would oc-

cur during the postbuckling response and whether such

growth would be stable or unstable. As done in the lit-

erature (e.g., see [1,2]), delamination growth is termed

stable if under constant loading the growth stops, oth-

erwise it is termed unstable. A quasi-brittle fracture

process, i.e. a Griffith-type crack problem, is com-

monly assumed (e.g. see [1,15]) dealing with delamina-

tions in composites. Hence, stable delamination growth

does not lead to failure of the structure, whereas unsta-

ble growth does.

Within the current work, the terminology stationary

and non-stationary delamination describes whether the

size of a delamination increases (non-stationary) dur-

ing consecutive loading steps (quasi-static process) or

remains constant (stationary). Non-stationary delam-

inations may be characterized by stable or unstable

growth. In contrast to unstable growth, stable growth

may be described by a quasi-static formulation as the

delamination growth would stop under a constantly kept

state of loading.

Taking a closer look at analytical models documented

within the literature, studies endeavoured to derive de-

tailed information about buckling loads [5,17], post-

buckling responses for stationary delaminations [8,16]
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and information about the energy release rate [2,15].

Extensions to different delamination types, such as em-

bedded rectangular [20] and elliptical [1,9] delamina-

tions, are also documented. However, to the authors’

knowledge, the deformation behaviour once delamina-

tion growth occurs is solely investigated by finite ele-

ment models (e.g., see [7,11]).

In the current work, the postbuckling response of a

composite strut with a through-the-width delamination

is determined with the aid of an analytical model. This

is done up to the state of loading where failure occurs in

form of unstable delamination growth. First, the prob-

lem is solved for a stationary delamination with the

conventional total potential energy formulation. Sub-

sequently, the state where growth would occur is de-

termined. Thereafter, an extended total potential en-

ergy formulation implementing the condition of stable

growth is used to determine the ensuing postbuckling

response and delamination growth by just a set of gen-

eralized coordinates and the load parameter(s). Results

obtained are compared to findings from a finite ele-

ment (FE) simulation using the commercial software

code Abaqus [4].

2 Analytical framework

2.1 The geometrical model

For the model of the composite strut shown in Fig. 1,

a description for an isotropic strut documented in [6] is

taken as a benchmark model. Thus, the (post-)buckling

behaviour of the composite strut is treated as a one-

dimensional problem. A central pre-existing delamina-

tion is assigned to the strut which allows to subdivide

the structure into four parts.

Fig. 1 One-dimensional model of the composite strut.

Parts 3 and 4 are the undelaminated regions and

parts 1 and 2 describe the upper und lower sublami-

nate respectively. Subsequently, owing to the symme-

try of the problem, the contributions from part 4 will

be incorporated in part 3. The strut has a total length

of Ltot, an initial delamination length of L and a thick-

ness of t. The delamination is assigned in between two

layers of the multi-layered strut and its depth (a t) is

described by the parameter a.

The system is fully described by four generalized

coordinates (GCs) q1...q4 (cf. Fig. 1). The amplitudes

of the upper and lower sublaminate are given by q1 and

q2 respectively. The rotation at the interface between

undelaminated and delaminated parts is described by

q3. A fourth generalized coordinate (q4) which is not

shown in Fig. 1 is assigned to the model representing

the total end-shortening of the delaminated region [6].

2.2 The energy formulation

2.2.1 Stationary delamination

The buckling and postbuckling behaviour for a station-

ary delamination is modelled with the aid of the total

potential energy (Π). Assuming a quasi-static deforma-

tion process and using a set of I generalized coordinates

to describe the displacement field, the total potential

energy [18] reads

Π(qi) = W (qi)− PE(qi) i = 1, 2, ..., I, (1)

where W is the strain energy and P is a conservative

load with its conjugate displacement E (end-shortening

of the strut). If the system is in an equilibrium state,

the first variation of the total potential energy vanishes

[18], i.e. δΠ = 0, yielding the deformation path P (qi).

The strain energy is derived using the Classical

Laminate Theory [10] in which the in-plane stiffness

Aij relates to the in-plane strains {ε0},

{
ε0

} k©
=


εxx
εyy
2εxy


k©

(2)

and the bending stiffness Dij to the curvatures {κ0},

{
κ0

} k©
=


κxx
κyy
κxy


k©

=


−∂

2w
∂x2

−∂
2w
∂y2

−2 ∂2w
∂x∂y .


k©

. (3)

The respective parts of the strut (cf. Fig. 1) are indi-

cated in Eqs. (2) and (3) by the circled index k. Cou-

pling effects due to asymmetric layups caused by the

delamination are also considered in the model by incor-

porating the coupling stiffness matrix, Bij .

In the current work, just ε k©
xx and κ k©

xx are consid-

ered in the analytical model (one-dimensional formu-

lation). However, entries in the stiffness matrices (Dij ,
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Aij) responsible for bending-twisting, bending-bending,

as well as stretching-shearing and stretching-stretching

are considered and incorporated by calculating effec-

tive parameters for in-plane (Aeff), coupling (Beff) and

bending (Deff) stiffness. This is done assuming that

the forces nyy and nxy, as well as the moments myy

and mxy are zero which allows to determine the result-

ing strains (εyy, εxy) and curvatures (κyy, κxy). Such

strains and curvatures are subsequently replaced in the

relevant expressions for nxx and mxx. Moreover, it is

assumed that the undelaminated strut has a symmetric

layup and that the in-plane displacement of part 3 is

negligible [6].

In order to derive the in-plane strains of the delam-

inated parts ε k©
xx, a non-linear kinematic approach [6],

which is not dissimilar to the well-known von Kármán

approach [10], is implemented, such that further in-

plane stretching is considered in the postbuckling regime

[19]. Thus, the respective in-plane displacements u k©

consist of the total end-shortening of the delaminated

region q4, the purely geometric displacement due to

buckling [19] and the displacement due to the rotation

at the interface, i.e.

u 1© =q4 −
1

2

∫ L

0

(
∂w1

∂x1

)2

dx1 − (1− a)tq3,

u 2© =q4 −
1

2

∫ L

0

(
∂w2

∂x2

)2

dx2 + atq3.

(4)

Dividing Eq. (4) by the delamination length L yields

the in-plane strains of the delaminated parts ε k©
xx.

The strain energy W is equal to the sum of stretch-

ing (Wu) and bending energy (Wκ) of the respective
parts and reads

W = W k©
u +W k©

κ =

1

2
b

(
2D

3©
eff

∫ SL

0

(
κ 3©
xx

)2

dx3+

∫ L

0

(
D

1©
eff

(
κ 1©
xx

)2

+A
1©

eff

(
ε 1©
xx

)2

+

2B
1©

effκ
1©
xxε

1©
xx

)
dx1 +

∫ L

0

(
D

2©
eff

(
κ 2©
xx

)2

+

A
2©

eff

(
ε 2©
xx

)2

+ 2B
2©

effκ
2©
xxε

2©
xx

)
dx2

)
.

(5)

As can be seen in Eq. (5), owing to the assumptions

made no coupling effects are considered for part 3 (all

entries of B
3©
ij are zero) and its stretching energy con-

tribution is omitted.

As the in-plane displacement of the undelaminated

region is omitted the end-shortening of the strut E can

be written as

E = q4 +

∫ SL

0

(
∂w3

∂x3

)2

dx3, (6)

in which the second term describes the end-shortening

associated to the buckling (geometric) displacement of

parts 3 and 4 (cf. Fig. 1).

Hence, all terms of the total potential energy (Eq. (1))

are determined. In order to derive the total potential en-

ergy as a function of I generalized coordinates (GCs), a

Rayleigh-Ritz formulation is employed approximat-

ing the buckling displacements (for all parts) while en-

forcing the geometric boundary and the continuity con-

ditions. Using trigonometric functions for the respective

buckling displacement of each part and adding a poly-

nomial function which satisfies the boundary conditions

(equal displacement and slope at the interface) for the

delaminated parts yields

wi = qi sin2

(
πxi
L

)
+ C0x

3
i + C1x

2
i + C2xi + C3

with i = 1, 2 and

C0 =
q3

2L3

(
Ltot

π
tan

(
πSL

Ltot

)
−

Ltot

π cos
(
πSL
Ltot

) sin

(
π(SL+ L)

Ltot

))
,

C1 =
1

2

(
− 2q3

L
− 3C0L

)
,

C2 = q3, C3 =
q3Ltot

2π
tan

(
πSL

Ltot

)
,

w3 =q3
Ltot

2π cos
(
πSL
Ltot

)
sin
(
πSL
Ltot

) sin2

(
πx3

Ltot

)
,

(7)

in which w1 and w2 describe the buckling displacement

for the upper and lower sublaminate respectively. The

buckling displacement of the undelaminated part is ap-

proximated with w3.

Inserting Eqs. (4) and (7) in Eq. (1) and apply-

ing the variational principle, δΠ = 0, yields a set of

four non-linear algebraic equations which comprises the

buckling and postbuckling response of the composite

strut, i.e. P (qi). The set of equations is solved numer-

ically using the software package Auto-07p [3] which

applies a continuous Newton method.

From the solution obtained, the deformation of the

system in terms of load vs. buckling displacement (P

vs. w) and load vs. end-shortening (P vs. E) may be

readily calculated using Eqs. (6) and (7).
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2.2.2 Non-stationary delamination

Delamination growth occurs if the condition

G ≥ Gc (8)

is met, i.e. the energy release rate G equals or exceeds

the critical energy release rate Gc [2].

The energy release rate G is the thermodynamic

force [12,14] available for delamination growth. The

force required for a change in structure is the critical

energy release rate Gc which is a material parameter de-

pending on the mode mixity [7]. However, for reasons of

simplicity Gc is assumed constant in the current work.

The energy release rate is calculated as

G = −∂Π(qi, P, L)

b∂L
, (9)

using the solution obtained for a stationary delamina-

tion, P (qi). In Eq. (9), b describes the width of the

strut and L is the delamination length. The delamina-

tion length L may also be understood as a damage pa-

rameter describing the current state of damage within

the structure (no further damage is assumed within the

struture).

Once the critical energy release rate is reached de-

lamination growth occurs. Thus, for the current state

of loading (quasi-static process) associated to the crit-

ical energy release rate Gc the delamination length in-

creases from L to L+∆L. For the new configuration, i.e.

the constantly kept state of loading and a delamination

length of L+∆L, the energy release rate changes from

Gc to another value, which we will refer to as Gnew. If

the energy release rate decreases (Gnew < Gc) growth

stops and the process is termed stable. If Gnew > Gc,

unstable growth occurs yielding failure of the strut. If

stable delamination growth occurs further loading may

be applied until Gc is reached again. Thus, the post-

buckling response under stable delamination growth fol-

lows the condition G = Gc which also dictates the load

which may be applied to the system. The condition of

stable delamination growth can be written as

G = −∂Π(qi, P, L)

b∂L
= Gc, (10)

yielding a function D,

D(qi, P, L) = G−Gc ≡ 0, (11)

from which the delamination length L = L(qi, P ) is

implicitly given assuming that an unique solution of

L = L(qi, P ) exists. Thus, Eq. (11) may be rewritten

as

D
(
qi, P, L(qi, P )

)
= G−Gc ≡ 0. (12)

However, to derive an explicit form of L(qi, P ) a Tay-

lor series approximation around the state where growth

occurs first is employed. This state will be referred to

as “damage state” which is characterized by the set of

generalized coordinates q0
i and the load P 0. Thus, the

Taylor series approximation of L(qi, P ) yields

L(qi, P ) = L0+

∂L

∂qi

∣∣∣∣∣ q0i
P 0

(qi − q0
i ) +

∂L

∂P

∣∣∣∣∣ q0i
P 0

(P − P 0)+

1

2

∂2L

∂qi∂qj

∣∣∣∣∣ q0i
P 0

(qi − q0
i )(qj − q0

j )+

1

2

∂2L

∂P 2

∣∣∣∣∣ q0i
P 0

(P − P 0)2+

∂2L

∂qi∂P

∣∣∣∣∣ q0i
P 0

(qi − q0
i )(P − P 0) +O(3),

(13)

which may be extended to higher orders, if required. In

the current study, an approximation up to the third or-

der is implemented as it was found optimal with regards

to accuracy and computational cost. The derivatives of

L with respect to qi and P are provided by Eq. (12) by

implicit differentiation with respect to qi and P . Thus,

by applying the chain rule and rearranging, the deriva-

tives of L used in Eq. (13) may be readily obtained.

The postbuckling response while delamination

growth occurs is determined by, first, identifying the

“damage state” (q0
i , P

0) where the conventional total

potential energy formulation (Eq. (1)) loses its validity.

This is done with the aid of Eq. (9) and the solution

for the stationary delamination P (qi). Subsequently, an

extended total potential energy (Π∗) formulation is de-

rived by adding the dissipative energy term Wd associ-

ated with delamination growth [13,14],

Wd = Wd(L) = Gc(L− L0)b, (14)

to Eq. (1) in which L0 is the initial delamination length

and b is the width of the delamination area (assumed to

be constant). In a next step, the damage parameter L is

replaced in Eqs. (1) and (14) by the expression derived

in Eq. (13). For the condition of stable delamination

growth, i.e. G = Gc, the extended total potential en-

ergy,

Π∗(qi) =W
(
qi, L(qi, P )

)
+Wd

(
L(qi, P )

)
−

PE
(
qi, L(qi, P )

)
,

(15)

is a true potential [13], such that ∂Π∗/∂P = −E . Hence,

the variational principle using the extended total poten-
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tial energy may be written as

δΠ∗(qi) = δ
(
W
(
qi, L(qi, P )

)
+Wd

(
L(qi, P )

)
−

PE
(
qi, L(qi, P )

))
= 0,

(16)

from which the solution in terms of P (qi) starting at

the “damage state” (q0
i , P

0) is obtained by solving the

resulting set of algebraic equations numerically by ap-

plying the Newton method.

During the solution process, an iterative scheme is

implemented in which a new expression for the delam-

ination length is derived and inserted in Eq. (16) once

the condition of G = Gc is violated due to the approx-

imation by the Taylor series.

3 Results

A composite strut with a cross-ply layup

([0◦/(90◦/0◦)7]) is examined in this study. The dimen-

sions and material parameters are taken from Ref. [15]

and are listed in Tab. 1. First, solutions obtained for a

stationary delamination are compared to findings doc-

umented within the literature. Subsequently, postbuck-

ling responses without the limitation to stationary de-

lamination are presented and compared to results ob-

tained by a FE-simulation using the commercial soft-

ware code Abaqus [4].

Table 1 Dimensions and Material parameters of the com-
posite strut.

Dimensions Material Parameters

Ltot 96.52 mm E11 137.90 GPa

b 12.7 mm E22 8.98 GPa

t 1.337 mm G12 7.20 GPa

a 4/15 ν12 0.30

h 0.0889 mm GI
c 190 Nm/m2

3.1 Stationary delamination

The postbuckling response of a strut containing a pre-

existing delamination length of L = 50.8 mm is illus-

trated in Fig. 2 in terms of load vs. midpoint deflec-

tion (P vs. w1,2(x1,2 = L/2)). Findings documented by

Ref. [15] are indicated by “�” symbols.

In Fig. 2, normalization of the load is carried out,

as documented in Ref. [15], with respect to the Euler

buckling load of an undelaminated strut with 0◦ layers

only. All results to follow will be normalized to the Eu-

ler buckling load of the cross-ply laminate used. The

midpoint deflection is normalized with respect to the

total thickness of the strut t.

wnorm [-]
-2 -1 0 1 2

P
n
o
rm

[-
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pcrit

Ref. [15]
upper sublaminate
lower sublaminate
Buckling Load

Fig. 2 Postbuckling response for a stationary delamination
length: normalized load Pnorm vs. normalized midpoint de-
flection wnorm.

As can be seen in Fig. 2, the model proposed in sec-

tion 2.2.2 yields results which are in excellent agreement

with Ref. [15].

3.2 Non-stationary delamination

First, the energy release rate G is determined and eval-

uated with respect to the delamination length for dif-

ferent states of end-shortening (E) applied to the strut
(Fig. 3). Normalization of the energy release rate is car-

ried out with respect to the critical energy release rate

given in Tab. 1. As described in section 2.2.2, mode

mixity is not considered in this study, thus the critical

energy release rate of Mode I is taken as a conserva-

tive measure for Gc, i.e. Gc = GI
c. Hence, if Gnorm ≥ 1

delamination growth is assumed to occur.

Depending on the length of the pre-existing delam-

ination, Fig. 3 indicates regions of stable and unstable

delamination growth. For a better understanding, two

vertical dashed lines are added to Fig. 3 at Lnorm =

0.36 and Lnorm = 0.45. Taking a closer look at the

case of Lnorm = 0.36, loading (here understood as in-

creasing end-shortening) would initially follow the ver-

tical dashed line as no delamination growth occurs, i.e.

Gnorm < 1. At an end-shortening of Enorm = 6.58,

Gnorm = 1 which yields delamination growth. As de-

scribed in section 2.2.2, stable or unstable growth is

characterized whether the energy release rate increases

(unstable) or decreases (stable) for a constant state of
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Lnorm [-]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
n
or

m
[-
]

0

0.5

1

1.5

2

2.5

3 Enorm = 2:3

Enorm = 6:58

Enorm = 9:72

Fig. 3 Normalized energy release rate Gnorm vs. normal-
ized delamination length Lnorm for different states of end-
shortening.

loading and increasing delamination length. Thus, sta-

ble delamination growth is present from Lnorm = 0.36

to 0.45 which dictates that loading will follow the hor-

izontal dashed line in this region (from Enorm = 6.58

to Enorm = 9.72). At Lnorm = 0.45, the energy release

rate increases for a constant state of loading causing

unstable growth and failure.

Subsequently, the postbuckling response of the com-

posite strut without the limitation of a stationary de-

lamination length is presented. Therefore, a pre-existing

delamination of Lnorm = 0.36 is assigned to the strut

without changing the depth of the delamination (a =

4/15).

Fig. 4 describes the postbuckling behaviour in terms

of Pnorm(wnorm). Initially, Fig. 4 shows a local buckling

response (local buckling load of approx. Pnorm = 0.45),

thus the upper (less stiff) sublaminate shows a buckling

deflection in positive direction whereas the lower sub-

laminate remains unaffected. Once global buckling is

triggered, the system shifts towards the negative direc-

tion showing the characteristic asymptotic behaviour

of a strut. Shortly after the global buckling load is

reached, delamination growth occurs which is indicated

by a “•” symbol in Fig. 4. The response of the system

changes abruptly, causing deflections of the upper and

lower sublaminate in opposite directions. Stable delam-

ination growth is present and indicated by the dashed

line in Fig. 4. The postbuckling response during delam-

ination growth illustrates a loss in load bearable by the

strut off approximately 3.3% (from “•” to “�”). The

delamination grows from Lnorm = 0.36 to 0.45. At the

“�” symbol (Lnorm = 0.45), unstable growth causes fail-

ure of strut as indicated by Fig. 3. Material failure is

wnorm [-]
-4 -3 -2 -1 0 1

P
n
o
rm

[-
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

upper sublaminate

lower sublaminate

Lnorm = 0:36

stable growth, G = Gc

Lnorm = 0:45

unstable growth =) failure

FE model

Fig. 4 Normalized load Pnorm vs. normalized midpoint de-
flection wnorm for an initial delamination length Lnorm =
0.36 and depth a = 4/15.

indicated by “�” which is reached if a displacement-

controlled setup is given. For a load-controlled setup,

the strut fails due to a loss of stability as the “•” sym-

bol describes a limit point [18].

In order to verify the results obtained, a FE-simu-

lation is carried out using the software Abaqus. There-

fore, the strut is built-up by shell elements (type S4R)

with an element size of 0.2 mm by 0.2 mm and a total

of 62790 nodes. Delamination propagation is modelled

using the virtual crack closure technique in which the

fracture criterion is adjusted, such that Gc = GI
c.

As can be seen in Fig. 4, the FE-simulation illus-

trated by “◦” symbols is in good agreement with the
analytical model. However, the FE-simulation yields

smaller values of load compared to the analytical model.

The global buckling load is approximately 4-5 % smaller.

Such deviations might be expected considering the enor-

mous difference in degrees of freedom between the FE-

model and the analytical model. The analytical model

also omits shear deformations which might contribute

to the deviations obtained.

Fig. 5 provides a detailed look at the postbuck-

ling response once global buckling occurred and de-

lamination growth is triggered. Both models show simi-

lar qualitative results for the buckling displacements of

both sublaminates. As described before, both sublami-

nates deflect in opposite direction during delamination

growth. The prediction of the buckling displacement at

which growth occurs (•) almost coincides for the upper

sublaminate and shows small deviations between the

analytical and the FE model for the lower sublaminate.

Further information can be gained by evaluating the

load-displacement (end-shortening) behaviour of the
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wnorm [-]
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stable growth, G = Gc

Lnorm = 0:45
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Fig. 5 Detailed look at the postbuckling response
Pnorm(wnorm) around the region where delamination growth
occurs.

strut which is illustrated in Fig. 6. First, comparing

the values for the end-shortening at the initiation of

delamination growth (•) and at failure (�) to the pre-

dictions made in Fig. 3 verifies the formulation used.

Moreover, Fig. 6 describes a certain additional capacity

of end-shortening which could be applied to the strut

(from Enorm = 6.58 to 9.72) before failure occurs even

though the delamination grows from Lnorm = 0.36 to

0.45. During this deformation process the load would

just decrease by approximately 3.3%. As discussed be-

fore, such additional loading in form of end-shortening

can be applied only if a displacement-controlled setup

is given.

Enorm [-]
0 2 4 6 8 10

P
n

o
rm
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]

0
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0.2

0.3

0.4
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0.7

0.8

no damage

Lnorm = 0:36 ; Enorm = 6:58

stable growth, G = Gc

Lnorm = 0:45 ; Enorm = 9:72

unstable growth =) failure

Fig. 6 Normalized load Pnorm vs. normalized end-shortening
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4 Conclusions

The postbuckling behaviour of composite struts incor-

porating possible delamination growth (i.e. no limita-

tion to stationary delamination lengths) has been mod-

elled analytically. This represents an extension to pre-

existing analytical models within the literature which

are limited to stationary delaminations or at most de-

scribe whether delamination growth would occur and

whether such growth would be stable or unstable.

The model proposed intends to describe the post-

buckling behaviour by means of a few generalized co-

ordinates. As a consequence, contributions to the dis-

placement field such as shear deformations are omitted

as the influence is arguably small and computational

cost would increase significantly, specifically in deriving

the delamination length in terms of the generalized co-

ordinates and the load parameter. However, if intended,

such extensions may be readily added to the model. The

comparison to the FE-simulation has shown that such

simplifications most likely explain the deviations ob-

tained in maximum load bearable by the system of up to

5 %. Such a deviation appears satisfactory considering

the simplicity and efficiency of the model. On the other

hand, the approach presented does not satisfy the local

asymptotic behaviour of the displacement field around

the delamination tip and the crack interface which is,

however, beyond the scope of the work and assumed to

be nonessential with regards to the physical quantities

calculated and hence the results obtained.

The prediction of the onset of delamination growth

as well as the postbuckling behaviour during delamina-

tion growth are in good agreement with the results ob-

tained by the FE-simulation. Differences obtained ap-
pear inevitable owing to deviations in the maximum

load as the formulation of the energy release rate de-

pends on load and generalized coordinates. Characteris-

tic changes obtained in the postbuckling response once

delamination grows, such as the deflection of both sub-

laminates in opposite directions, have also been verified

by the FE-simulation.

In summary, an analytical framework for studying

the postbuckling response of delaminated composite

struts is presented. As possible delamination growth

is considered within the formulation, the postbuckling

response is not restricted to stationary delaminations.

Thus, postbuckling responses so far solely described by

FE-simulations are determined analytically.
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