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Experiencing high cognitive load during complex and demanding tasks results in performance reduction, 
stress, and errors. However, these could be prevented by a system capable of constantly monitoring users’ 

cognitive load fluctuations and adjusting its interactions accordingly. Physiological data and behaviours have 

been found to be suitable measures of cognitive load and are now available in many consumer devices. An 

advantage of these measures over subjective and performance-based methods is that they are captured in real-
time and implicitly while the user interacts with the system, which makes them suitable for real-world 

applications. On the other hand, emotion interference can change physiological responses and make accurate 

cognitive load measurement more challenging. In this work, we have studied six galvanic skin response 

features in detection of four cognitive load levels with the interference of emotions. The data was derived 
from two arithmetic experiments and emotions were induced by displaying pleasant and unpleasant pictures 

in the background. Two types of classifiers were applied to detect cognitive load levels. Results from both 

studies indicate that the features explored can detect four and two cognitive load levels with high accuracy 

even under emotional changes. More specifically, rise duration and accumulative GSR are the common best 
features in all situations, having the highest accuracy especially in the presence of emotions. 
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1 INTRODUCTION 

Behaviours (such as gestures and movements) and physiological data (signals from brain, heart, 

muscles, skin, eyes, etc.) are non-verbal outputs of human body which very often reveal valuable 

and reliable information about what people think and feel. Modern equipment makes it possible to 

collect large amounts of this data in real-time, accurately and while people are focusing on their 

own tasks, without interrupting their normal routine. 

With the help of computational procedures and machine learning techniques we can extract 

meaningful patterns from behavioural and physiological data and relate them to different states of 

emotions, engagement, cognition, etc. Therefore, intelligent interactive systems can be developed 

to constantly measure and monitor the current mental status of their users and adjust their 

interactions accordingly. Such situation-aware personalization is useful in many applications, from 

improving productivity, preventing mistakes and possibly supporting psychological wellbeing by 

reducing stress. Common examples include crisis and air-traffic control, traffic management and 

emergency call handling centers where complex and cognitively demanding tasks may overload a 

user, potentially leading to errors with serious life-threatening consequences. An adjustable 

intelligent system can prevent such mistakes by properly distributing the tasks among the users or 

changing its interface and interactions with them based on their current mental state. These and 

other examples also highlight the possibility of designing in order to improve psychological 

wellbeing [5] by reducing stress. 

This study contributes to understanding of how meaningful change patterns in human 

behaviours and physiological signals are related to different levels of cognitive load. More 

specifically, our recent research has focused on the economical conveniently-captured galvanic 

skin response (GSR). An important issue for the design of interactive intelligent systems is that 

emotions, which are often not relevant to the main task, can interfere with the normal process of 

the related information in the working memory, inducing extra mental load as well as changing 

physiological data and making the detection of experienced cognitive load even more challenging. 

In particular this paper investigates the usefulness of galvanic skin response for automatic 

detection of different levels of cognitive load in the presence and absence of affective stimuli.  

1.1   Cognitive Load Measurement 

Cognitive load has been defined as the mental effort or the mental load imposed on working 

memory. It has also been described as a multidimensional construct consisting of causal factors 

including the characteristics of task, subject, and interactions between them, and assessment 

factors including performance, mental load which is imposed by the task or environment demands, 

and mental effort that reflects the actual cognitive capacity or resources allocated to the task [31]. 

In this paper cognitive load refers to human’s working memory capacity or cognitive resources 

allocated to demands of performing a particular task. In contrast to sizeable long-term memory, 

working (or short-term) memory is well known to have limited capacity and duration [7]. This 

means that only a small number of information ‘chunks’ can be simultaneously kept in the 

working memory and for a short period of time [9]. Furthermore, humans often use the 

information held in working memory in some sort of processing (comparing, associating, 

computing, etc.). Interactions between information elements require additional working memory 

capacity [42], reducing the available cognitive resources. Overloading the working memory often 

leads to performance reduction and errors which in some cases (such as air traffic control and 
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military operations) may have serious consequences. Therefore it is quite necessary to monitor and 

measure the cognitive load experienced. 

The concept of cognitive load (CL) was introduced by educational scientists by the end of the 

1980s to describe and facilitate the learning procedure [40]. Since then, researchers have studied 

ways to improve teaching materials and methods to achieve better learning outcomes based on the 

architecture of human mental resources and the mechanism of understanding and learning [6, 30, 

36, 41, 43]. But education is not the only domain that cognitive load theory (CLT) can help. 

Mental overload directly affects the safety in aviation, driving and military operations [10, 12, 18] 

and must be avoided as much as possible. CLT can be effectively used for flight safety by 

monitoring the mental workload on pilots and air traffic controllers. User interface design can also 

benefit significantly from CLT, since information representation can have a dramatic effect on the 

quality of user experience in communication with computer systems [15, 35]. Performance of 

brain-computer interfacing (BCI) can be vastly improved by monitoring user’s current cognitive 

status [25]. 

Many empirical methods exist for quantifying cognitive load; however, they can be categorized 

into four classes of techniques. Subjective cognitive load measurement requires that people rate the 

amount of mental effort or load they have experienced in order to complete a task. Subjective 

ratings can be numeric (e.g. from 1 to 9 [30]) or verbal (e.g. from ‘strongly disagree’ to ‘strongly 

agree’ [35]), single-dimensional or multi-dimensional (e.g. NASA-TLX [4, 14]). Performance-

based approaches measure cognitive load by monitoring the achievements of the subjects, such as 

completion time and the rate of correct answers, in performing an activity [6]. It is also possible to 

assess the performance on a secondary (dual) task as an indicator of the cognitive load associated 

with a primary task [22]. Subjective and performance-based measurement techniques have been 

widely used and, regarding implementation, are usually the most convenient methods. However, 

asking subjects to rate the experienced mental workload means several interruptions and 

distractions from performing the principal tasks. Moreover, both methods are post-task processing 

and can be done when the task is finished, thus are not useful for real-time cognitive load 

assessment. In contrast, human behaviours and physiological responses can continuously and non-

intrusively demonstrate user’s cognitive states while performing the intended task. Speech [18, 46], 

pen input [34, 47], and eye movements [8, 10] are examples of behaviours that have been studied 

for mental load assessment. Finally, several physiological signals have been used for cognitive 

load measurement, including but not limited to, signals from heart [32], eye [45], brain [2], 

muscles [22] and skin [29, 38, 44]. Since the study of galvanic skin response in cognitive load 

measurement is the focus of this paper, we first briefly explain this signal and then review some of 

the previous related studies before continuing onto our recent work. 

1.2   GSR: Terminology, Physiology and Measurement 

Galvanic skin response (GSR) has been recorded and investigated in thousands of 

psychophysiological studies. This popularity is partly due to the sensitivity of this signal to the 

changes in human mental status and processes, and on the other hand to the fact that it can be 

quantified in relatively convenient and low-cost manners which makes it suitable not only in the 

laboratory experiments but also in real world applications. 

The term to address the electrical activity of the skin has changed over the years. In the 

nineteen century it was called psychogalvanic reflex [39]. Later, the term Electrodermal activity 
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(EDA) was introduced to use for all electrical phenomena of the skin [3, 20]. Nowadays the terms 

EDA, GSR and skin conductance response (SCR) are alternatively used. 

The electrical activity of the skin can be measured in two ways. In exosomatic methods, a small 

current - which can be either alternating current (AC) or direct current (DC) - from an external 

source is passed through the skin and the resistance of the skin to the passage of the current is 

measured. Endosomatic methods on the other hand, measure the potential differences at the 

surface of the skin without using any external current. Today, most researchers apply the 

exosomatic method in which the skin conductance (reciprocal of resistance) is measured [3, 39]. 

It is commonly agreed that eccrine sweat glands (a special type of sweat glands) are closely 

involved in producing GSR [3, 11, 39]. Eccrine sweat glands are mostly found in the palms of 

hands and soles of feet and are controlled by the sympathetic branch of the autonomous nervous 

system (ANS). Interestingly, secretion of this type of sweat glands is found to be related to the 

psychological and processing stimuli, while other sweat glands mostly act in temperature 

regulation [39]. 

Based on the impulses from the sympathetic system, the number of active sweat glands, the 

level of sweat in each gland and the amount of sweat which overflows on the skin surface vary. 

Sweat ducts (small tubes which open from the secretion segment of the gland to the skin surface) 

act as tiny variable resistors in parallel and the total conductance of a parallel circuit is simply the 

sum of all the conductance of the active resistors. This is one of the reasons why using skin 

conductance is preferred to using skin resistance in exosomatic method. Further information about 

the anatomical origin, physiology and recording of GSR can be found in [1, 3, 11]. 

1.3   GSR in Detecting Cognitive Load and Emotions 

GSR, individually or with other physiological signals and data, has been investigated concerning 

different aspects of human mind in various experimental scenarios. Reviewing all the previous 

work in this area is beyond the limitations of the present paper, thus we summarize only some of 

the key and recent studies on using GSR in detection of human emotions and mental workload. 

Nakasone et al. have successfully used skin conductance and muscle activity for emotion 

detection in a computer card game [27]. In another study, skin conductance was measured to 

differentiate between a stress condition and a cognitive load condition in an office environment, 

seeking the ability of detecting stress states [37]. Shi et al. also assessed GSR in multiple stress 

and cognitive load situations in a traffic management application and found correlations between 

mean and summation of this signal and cognitive load [38]. Ikehara and Crosby [19] evaluated 

GSR together with body temperature, blood flow, blood oxygen and pulse rate, eye movement and 

mouse pressure in relation with two levels of cognitive load in a moving targets game. In contrast 

with other studies, they found skin conductance to decrease as task difficulty increases. They 

explained this as a result of the easy task being tedious and too easy.  

Investigating the effect of cognitive and visual demands on driving performance and driver’s 

status, Engstrom et al. found a weak effect of cognitive load on physiological signals including 

mean skin conductance [12]. In another on-road study Mehler et al. found skin conductance and 

heart rate to increase with higher cognitive demand across three difficulty levels [24]. They 

suggest that Engstrom et al.’s less consistent results might be partially caused by participant 

disengagement. Wilson [44] analysed several physiological measures during different steps of 

flights and found an increase in EDA response during take-off and landing which are expected to 

place the most cognitive demands on pilots. Haapalainen, Kim, Forlizzi and Dey [13] assessed 
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mean, variance and median of GSR and several other physiological signals against two cognitive 

load levels in a set of small visual attention demanding tests (consisting of patterns, words, and 

numbers). They did not obtain any satisfactory results for GSR and explained that it might be 

related to the tasks type or their GSR sensors might not have been sensitive enough [13]. Some 

studies have been conducted in which GSR features, rather than being separately evaluated, 

comprise a part of a multichannel physiological feature and the performance of that single 

physiological modality is assessed in emotion or cognitive load detection [16, 17]. 

Nourbakhsh et al. evaluated temporal and spectral features of GSR in reading and arithmetic 

tasks consisting of three and four difficulty levels respectively and found strong correlations 

between the studied GSR features and cognitive load levels [29]. In another study on arithmetic 

tasks with four difficulty levels, GSR and eye blink features were found to classify cognitive load 

levels with reasonable accuracy and combination between the two modalities improved the 

classification results [28]. In this paper, we investigate the performance of six GSR features in 

detecting cognitive load levels in two different arithmetic experiments. There have been many 

differences in the design, recording devices and protocols, and participants of the two studies. On 

the other hand, both experiments consisted of four difficulty levels and a task-only part as well as 

interference of emotions. Two types of machine learning algorithms have been applied for four-

class and binary classification of cognitive load in each experiment. We have assessed the 

statistical and classification behaviour of the features in the presence and absence of emotions and 

compared them between the two experiments. 

2   FIRST STUDY 

2.1   Experiment Design 

This experiment consisted of three parts. In the first part, the background was black and only the 

numbers were displayed on the screen. In the second and third part, pleasant and unpleasant 

images were displayed in the background while the subject was performing the tasks. Therefore, 

the first part was task-only part whereas in the rest of the experiment tasks were performed under 

the interference of emotions. The pictures were selected from the International Affective Picture 

System (IAPS) database which contains color images with normative emotional stimuli and is 

widely used in studies on emotion and attention [21]. Table 1 shows average normative ratings 

and examples of the images used to induce emotions in this experiment. 

Table 1. Average normative ratings and examples of IAPS images used in first experiment 

Category Mean Valence Mean Arousal Examples 

Pleasant (Positive) 7.1 5.7 children, romance, gold 

Unpleasant (Negative) 2.8 4.8 snakes, skulls, injury 

The whole experiment included 24 arithmetic tasks with 4 difficulty levels. In each of the three 

parts, subjects performed two trials of each task level and the eight tasks of each part were 

presented in a randomized order. First to fourth difficulty levels respectively included binary 

numbers (0 and 1), one-digit numbers (1 to 9), two-digit numbers (10 to 99) and three-digit 
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numbers (100 to 999). In each task four numbers were shown one by one, each for three seconds. 

Subjects were supposed to add-up these four numbers and select (by clicking the mouse using 

their right hand) the correct answer from three numbers which were next presented on the screen. 

Trials with a same difficulty level included different groups of numbers. 

Before the first number of each task was displayed, a slide containing one to three ‘x’ symbols 

(according to the number of digits in the task) was presented for three seconds. There was no time 

limit for answer input. A 60-second resting period was recorded before commencing and after 

finishing the whole experiment while the subjects were asked to relax and look at a black screen. 

There was a 6-second rest time between consecutive tasks. For the second and third part of the 

experiment, the image was displayed in this 6-second period as well as the following task. The 

data collection of this experiment took about 15 minutes for each participant. After the 

experiment, subjects were asked to rate the difficulty level of each task in a 9-point questionnaire. 

The questionnaire was displayed on the screen, the scores ranged from 1 (for extremely easy) to 9 

(for extremely hard) and the participants selected the scores by mouse click. 

2.2   Apparatus 

To collect galvanic skin response, the GSR device from ProComp Infiniti of Thought Technology 

Ltd was used and the sensors were attached to the subject’s index and ring fingers of left hand. 

The sensors were placed in contact with the outer segment of each finger. The sampling frequency 

was 10Hz. Eye activity data was also recorded with a remote eye tracker (faceLAB 4.5 of Seeing 

Machines Ltd) which operated at a sampling rate of 50Hz. A 21” LCD Dell monitor and a 

conventional computer mouse were peripherals for interaction between participants and a PC 

running the tasks. Another PC collected the signals through GSR sensors and eye tracker and was 

synchronized with the first one. This paper focuses on investigation and findings related to GSR 

across the two studies, and research and results about eye tracking data have been reported in other 

publications. 

2.3   Participants 

Twelve healthy 21 to 35-year-old (M=30, SD=8.04) male volunteers (students and staff members) 

participated in this experiment. All subjects were right-handed. They signed an informed consent 

form before the experiment and were rewarded with movie vouchers for their participation. The 

experiment was approved by Human Research Ethics Committee of the University of New South 

Wales. 

2.4   Data Analysis 

2.4.1. Feature Extraction. For each task, GSR features were extracted from the part of signal 

corresponding to task time by which we mean from presenting the first number until clicking on 

the answer. Each task on average lasted between 13.284 and 14.608 seconds depending on the 

difficulty level. Six GSR features were calculated for each task: 

 Peak number: number of total peaks (responses) in the task. 

 Peak amplitude: sum of response amplitudes of all responses over the task time. 

Response amplitude is the difference of GSR values between the point the signal starts 

to rise (response onset) until it reaches to its local maximum (response peak). 
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 Rise duration: sum of rise durations of all responses over the task time. Rise duration 

is the interval between response onset and response peak. 

 Peak area: Sum of response areas (0.5 × amplitude × duration). 

 Accumulative GSR: the summation of signal values over task time. 

 Frequency power: power spectrum of the signal (calculated using the Fast Fourier 

Transform) over task time; the DC part was discarded. 

Figure 1 illustrates a part of GSR signal from one of the subjects while they were performing 

the arithmetic tasks, and also illustrates how we calculated peak amplitude and rise duration. 

 

Figure 1. Sample GSR signal from the first experiment, peak amplitude (PA) and rise duration (RD). 

2.4.2. Feature Normalisation. GSR signal is highly individual dependent, in other words 

the average skin conductance varies widely between individuals. To omit this subject 

dependency, we have calibrated each feature of every subject, dividing its value by the mean value 

of all the same features of that specific subject over all tasks. 

2.4.3. Statistical Analysis. To assess the statistical significance, we have applied one-way analysis 

of variance (ANOVA test, α=0.05) on the subjective ratings as well as GSR features. For each 

subject and each feature, the feature values for similar difficulty levels have been averaged. We 

have also calculated the effect size (using Cohen’s d) to compare the effectiveness of different 

features and performed paired t-test to compare the difference between pairs of cognitive load 

levels for each feature. Some researchers recommend post-hoc adjustment, i.e. applying a more 

rigorous significance level, when performing more than one statistical test. Others on the other 

hand believe that such adjustments are unnecessary or even wrong [26, 33]. Due to this 

controversy we performed pair-wise analysis twice, first without post-hoc adjustment (significance 
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level=0.05) and then after post-hoc adjustment using Bonferroni correction (significance 

level=0.0083). 

2.4.4. Classification. We have classified the GSR features using support vector machines (SVM) 

and Naïve Bayes classifiers. These supervised machine learning algorithms are among the popular 

ones in human-computer interaction (HCI) studies due to their implementation simplicity and 

relatively high performance [23]. For each feature and in each experiment, we have examined 

four-class and binary classification. In binary classification, we have considered levels one and 

two as low cognitive load and levels three and four as high cognitive load. In order to keep 

training and testing data independent, we have applied leave-one-subject-out method for cross 

validation. That is, we have trained the classifiers with data of all subjects but one, and then used 

the remaining subject data as the testing data. We repeated this procedure for each subject. At the 

end, we averaged the classification accuracies over all subjects. 

Custom code was written for feature extraction and normalisation. MATLAB built-in functions 

were used within our custom code for classification and statistical analyses. The abovementioned 

procedures and methods were applied for this study as well as the second study (Section 3). In 

each study, the entire analysis was once performed on the task-only part of the data and then it was 

repeated on the whole experiment data (including emotional interference). 

2.5   Results 

ANOVA test on self-report scores produced significant results (F(3,44)=108.63, p<0.001) and 

there was an increasing trend between the subjective ratings and difficulty levels (Figure 2). This 

means that the experimental design has successfully manipulated the experienced cognitive load 

levels. 

 

Figure 2. Average subjective ratings of the difficulty levels for the first experiment; error bars show standard 
deviation (SD). 

Table 2 shows the results of ANOVA test and effect sizes of the GSR features in the first (task-

only) part of the experiment. ANOVA test results indicate that all the features significantly 

differentiate between the four cognitive load levels. Comparing the effect sizes shows that rise 

duration, accumulative and peak number are the most effective features respectively. 
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Table 2. ANOVA test results and effect sizes of GSR features in the first experiment (task-only part) 

Feature F(3,44) p-value Effect Size 

Peak number 6.12 0.001 0.243 

Peak amplitude 2.90 0.046 0.096 

Rise duration 16.36 <0.001 0.490 

Peak area 2.92 0.044 0.103 

Accumulative 7.57 <0.001 0.291 

Frequency power 3.74 0.018 0.146 

In order to evaluate the statistical difference between each difficulty level and other levels, 

paired t-test was performed on pairs of cognitive load levels for each feature. Table 3 shows that 

each difficulty level has a significant difference from other levels (p<0.05, bolded values). The 

best results relate to the comparison of level 1 with levels 2 and 4. The majority of difficulty level 

pairs are significantly different for rise duration and accumulative GSR. After Bonferroni 

adjustment on this dataset (α=0.0083), some significant results become insignificant (indicated by 

*). As discussed in section 2.4.3 there are disagreements about the necessity and validity of such 

adjustments. 

Table 3. Paired t-test results for the GSR features in the first experiment (task-only part) 

Feature CL1 vs. CL2 CL1 vs. CL3 CL1 vs. CL4 CL2 vs. CL3 CL2 vs. CL4 CL3 vs. CL4 

Peak number p=0.0095* p=0.2137 p=0.2938 p=0.3121 p=0.0077 p=0.0722 

Peak amplitude p=0.1461 p=0.1165 p=0.0302* p=0.6034 p=0.2893 p=0.6881 

Rise duration p=0.9603 p=0.0654 p=0.0011 p=0.0475* p<0.0001 p=0.0192* 

Peak area p=0.0336* p=0.1416 p=0.0455* p=0.3680 p=0.9711 p=0.4060 

Accumulative p=0.0243* p=0.0298* p=0.0053 p=0.1765 p=0.0264* p=0.2048 

Frequency power p=0.0176* p=0.0164* p=0.2548 p=0.8993 p=0.2719 p=0.2339 

Average classification accuracies of the features on the no-emotion part of the experiment are 

illustrated in Figures 3 and 4. Baselines were 25% and 50% for four-class and binary classification 

respectively, and same baseline levels were used throughout the paper. 

For four-class classification (Figure 3), almost all the features have high accuracies with both 

classifiers. Peak number and rise duration have highest accuracies (39.6% to 41.7%); slightly 

lower are peak amplitude, accumulative and frequency power (around 35% to 37.5%). Peak area 

has the highest difference between the two classifiers: 35.4% with Naïve Bayes and 25% with 

SVM. 

Binary classification results of the first experiment in the absence of emotions are presented in 

Figure 4. It can be observed that SVM and Naïve Bayes classifiers have almost or exactly similar 

results for each feature. All features have accuracies higher than baseline, however peak number, 
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rise duration, accumulative and frequency power (around 70%) are performing better than peak 

amplitude and peak area (between 54.2% and 60.4%). 

 

Figure 3. Four-class classification results of first experiment (no-emotion part) 

 

Figure 4. Two-class classification results of first experiment (no-emotion part) 

 

Now we turn to the results of the next part of the analysis on GSR features of our first dataset in 

which performing of the arithmetic tasks have been interfered by induction of positive and 
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confounding factor to evaluate robustness of the features in that regard. Therefore analysis of the 

impact of affective stimuli on GSR features was beyond the limitations of this paper and not 

reported here. 

As it can be observed from Table 4, all GSR features have significant statistical results on 

distinction of the four cognitive load levels in the presence of emotions; however, effect sizes 

show that accumulative GSR and rise duration are the most effective features. 

Table 4. ANOVA test results and effect sizes of the GSR features in the first experiment (including emotional 

changes) 

Feature F(3,44) p-value Effect Size 

Peak number 3.18 0.033 0.120 

Peak amplitude 5.56 0.003 0.222 

Rise duration 14.28 <0.001 0.454 

Peak area 3.04 0.039 0.094 

Accumulative 21.05 <0.001 0.555 

Frequency power 3.26 0.030 0.124 

We performed paired t-tests to compare the differentiation between pairs of cognitive load 

levels for each feature. Results are provided in Table 5 and significant values before post-hoc 

adjustment (α=0.05) are bolded. Each difficulty level has a significant difference from the other 

levels. In particular, level 1 is significantly different from levels 3 and 4, and accumulative GSR 

causes the best results following by rise duration. After post-hoc adjustment (α=0.0083) some of 

the significant results would be considered as insignificant (indicated by *). Rise duration and 

accumulative GSR still produce the best results. 

Table 5. Paired t-test results for GSR features in the first experiment (including emotional changes)  

Feature CL1 vs. CL2 CL1 vs. CL3 CL1 vs. CL4 CL2 vs. CL3 CL2 vs. CL4 CL3 vs. CL4 

Peak number p=0.1268 p=0.9515 p=0.2155 p=0.1068 p=0.0683 p=0.2627 

Peak amplitude p=0.2581 p=0.0109* p=0.0032 p=0.2530 p=0.1188 p=0.4383 

Rise duration p=0.2987 p=0.0069 p<0.0001 p=0.0840 p=0.0029 p=0.0770 

Peak area p=0.1588 p=0.0162* p=0.0459* p=0.8806 p=0.5084 p=0.5265 

Accumulative p=0.0865 p=0.0006 p=0.0005 p=0.0065 p=0.0035 p=0.0295* 

Frequency power p=0.0349* p=0.0121* p=0.4234 p=0.5749 p=0.2682 p=0.2927 

Figure 5 shows the average classification accuracies of GSR features for four cognitive load 

classes. The highest accuracies are obtained from accumulative (around 50%) and rise duration 

(around 48%), and then peak number (with SVM), peak amplitude and frequency power (around 

40%). Naïve Bayes on peak number and peak area results in the average accuracy of 35.4%, and 

the lowest accuracy is related to SVM on peak area (29.2%). 

Binary classification results are presented in Figure 6. The best results are related to 

accumulative (83.3% and 85.4%), rise duration (77.1% and 83.3%) and peak amplitude (75% and 
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77.1%). Around 60% we have peak number and peak area while the latter (just like in Figures 3, 4 

and 5) has the highest difference between the performances of the two classifiers. The lowest 

accuracies belong to frequency power. 

 

Figure 5. Four-class classification accuracies of first experiment (including emotional changes) 

 

Figure 6. Two-class classification accuracies of first experiment (including emotional changes) 
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second experiment emotions were controlled more accurately, arithmetic tasks were designed 

more precisely and difficulty levels were increased more evenly. To increase the reliability and 

validity of the results, larger dataset was produced (using higher sampling rate and larger number 

of tasks and participants) and we tried to control some other confounding factors, for example 

asked participants to avoid caffeine consumption and take no medications prior to the experiment. 

Parts of the experiment that were similar to the first study are not repeated here. 

In total, 56 arithmetic tasks in 7 sessions were performed by each subject. First session was the 

task-only part and the next 6 sessions used different pictures from 6 categories of valence and 

arousal levels. Three sessions included positive valence images and three sessions included 

negative valence pictures. In each of these sessions the image arousal level was high, medium or 

low. Table 6 shows range of normative ratings and examples of the images used in each session to 

induce emotions. First and second difficulty levels included one-digit numbers with no carry and 

one carry respectively produced during the summation. Levels three and four consisted of two-

digit numbers; in the former only one carry was produces in the lower digit while in the latter 

carries were generated in both digits. 

Table 6. Range of normative ratings and examples of IAPS images used in second experiment 

Category Valence Arousal Example 

PositiveValence_LowArousal >6.42 <3.6 Flower 

PositiveValence_MediumArousal >6.62 >3.94&<5.42 Baby 

PositiveValence_HighArousal >6.21 >5.48 Fireworks 

NegativeValence_LowArousal <4.69 <4.38 Garbage 

NegativeValence_MediumArousal <3.69 >4.54&<5.2 Crying 

NegstiveValence_HighArousal <3.65 >5.79 Snake 

At the beginning of each task, ten ‘X’ or ‘XX’ symbols were displayed on the grey or image 

background for 2 seconds which were randomly replaced by the numbers during the task. At the 

end of the task, ten possible answers were displayed to choose from. Participants were allowed to 

change the answer as many times as the wished and then submit it. Immediately after each task, a 

9-scale questionnaire was displayed to collect the subjective rating of the difficulty level of the 

task. After the self-report, there was a 5 second resting period with a blank screen and then the 

next task started. The data collection took about 30 minutes for each participant. 

3.2   Apparatus 

GSR, together with ECG (electrocardiogram) and respiration data, was recorded using a BIOPAC 

MP150 system at sampling rate of 1000 Hz. GSR straps were placed around the index and middle 

fingers of the left hand and a strap to measure respiration was fastened around the chest. ECG was 

recorded with two sensors attached to subjects’ wrists. Eye activity was recorded through a 

FaceLab 4 remote eye tracker from Seeing Machines and sampling rate was 60 Hz. A Logitech 

Webcam Pro 9000 was placed on top of the monitor and captured participants’ video during the 

experiment. Peripherals used during this experiment were of the same types as those used in the 

first study. This paper focuses on the research and findings about GSR features across the two 

studies; investigation and results related to ECG, respiration and eye tracking data have been 

reported in other publications. 
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3.3   Participants 

Twenty (11 males and 9 females) healthy students and staff members aged 22-48 (M=27.65, 

SD=6.94) took part in this experiment. They were asked to avoid caffeine and take no medications 

before the experiment. The rest of considerations were the same as those applied in the first study. 

3.4   Data Analysis  

The data processing methods used for this experiment were almost the same as those of the first 

(described in section 2.4). For each task, the same features were extracted: peak number, peak 

amplitude, peak duration, peak area, accumulative GSR and frequency power. However, to reduce 

the computation GSR signal was down-sampled to 200 Hz. Similar to the previous experiment, we 

have calibrated the features with their subjective average, used one-way ANOVA test with 

significance level of 0.05, calculated effect sizes using Cohen’s d, performed paired t-test at level 

0.05 for comparing pairs of difficulty levels and applied SVM and Naïve Bayes classifiers with 

leave-one-subject-out cross validation method. Custom code was written for feature extraction and 

normalisation. MATLAB built-in functions were used within our custom code for classification 

and statistical analyses. 

3.5   Results 

The average self-report scores were found to increase with the ascending of the difficulty levels 

(Figure 7). In addition, ANOVA test on the subjective ratings led to significant results 

(F(3,72)=79.76, p<0.001). Therefore, this experiment imposed different cognitive load levels on 

the participants’ working memory in the desired order. 

 

Figure 7. Average subjective ratings of the difficulty levels for the second experiment; error bars show 

standard deviation (SD). 

The results of ANOVA test and effect sizes of the features in detecting four levels of cognitive 

load without any emotional changes are presented in Table 7. All features significantly distinguish 

among the four difficulty levels and accumulative GSR and peak rise duration show the highest 

effectiveness. 

We performed paired t-test to compare the differentiation between pairs of cognitive load 

levels for each feature. Table 8 shows the results and significant ones (p<0.05) are bolded. In most 

cases there is a significant difference between pairs of load levels and each difficulty level has a 

significant difference from the other levels. After post-hoc adjustment (α=0.0083), some results 

lose significance (indicated by *). 
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Table 7. ANOVA test results and effect sizes of GSR features of the second experiment (task-only part) 

Feature F(3,72) p-value Effect Size 

Peak number 9.46 <0.001 0.250 

Peak amplitude 17.46 <0.001 0.394 

Rise duration 20.31 <0.001 0.433 

Peak area 13.19 <0.001 0.325 

Accumulative 29.54 <0.001 0.530 

Frequency power 9.08 <0.001 0.242 

Table 8. Paired t-test results for the GSR features in the second experiment (task-only part)  

Feature CL1 vs. CL2 CL1 vs. CL3 CL1 vs. CL4 CL2 vs. CL3 CL2 vs. CL4 CL3 vs. CL4 

Peak number p=0.8307 p=0.1209 p=0.0003 p=0.1053 p=0.0003 p=0.0907 

Peak amplitude p=0.0287* p=0.0010 p<0.0001 p=0.0064 p=0.0005 p=0.1244 

Rise duration p=0.0293* p=0.0025 p<0.0001 p=0.0217* p=0.0004 p=0.0245* 

Peak area p=0.1020 p=0.0029 p<0.0001 p=0.0178* p=0.0012 p=0.1739 

Accumulative p=0.5902 p=0.0113* p<0.0001 p=0.0041 p<0.0001 p=0.0013 

Frequency power p=0.6152 p=0.0166* p=0.0087* p<0.0001 p=0.0132* p=0.1038 

Figure 8 presents the average accuracies of detecting four cognitive load classes when there has 

been no affective interference. All features have more than 40% accuracy with at least one type of 

classifiers, peak amplitude, rise duration and accumulative reaching 47.4%, 48.7% and 51.3% 

respectively. The largest difference between the performance of SVM and Naïve Bayes classifiers 

relates to accumulative (almost 11.8%) which is followed by peak number (7.9%). 

 

Figure 8. Four-class classification results of the second experiment (non-emotion part) 
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Binary classification of cognitive load levels on task-only part of the data resulted in 68.4% for 

peak number, 73.7% for peak area with Naïve Bayes, 75% for peak amplitude and SVM on peak 

area and frequency power, and around 80% for rise duration, accumulative and Naïve Bayes on 

frequency power (Figure 9). The frequency feature shows the largest between-classifiers 

difference (5.3%). 

 

Figure 9. Two-class classification results of the second experiment (non-emotion part) 

As the last part of the results, now we describe the outcomes of the statistical analysis and 

classification of the cognitive load with affective interference in the second experiment. As it can 
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between cognitive load levels (have the highest effect sizes). 
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Frequency power 7.87 <0.001 0.213 
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before post-hoc adjustment there is a significant difference between each difficulty level and the 

other levels. The best results relate to levels 3 and 4, both having significant difference with all 

other levels for all the features (except the frequency feature for which only level 2 is significantly 

different). After post-hoc adjustment (α=0.0083) some significant results become insignificant 

(marked by *). 

Table 10. Paired t-test results for GSR features in second experiment (including emotional changes)  

Feature CL1 vs. CL2 CL1 vs. CL3 CL1 vs. CL4 CL2 vs. CL3 CL2 vs. CL4 CL3 vs. CL4 

Peak number p=0.4329 p=0.0002 p<0.0001 p=0.0016 p<0.0001 p=0.0263* 

Peak amplitude p=0.5644 p=0.0078 p<0.0001 p=0.0050 p<0.0001 p=0.0193* 

Rise duration p=0.1936 p<0.0001 p<0.0001 p=0.0008 p<0.0001 p=0.0003 

Peak area p=0.7657 p=0.0348* p=0.0002 p=0.0144* p=0.0001 p=0.0310* 

Accumulative p=0.0018 p<0.0001 p<0.0001 p=0.0010 p<0.0001 p=0.0002 

Frequency power p=0.0007 p=0.8687 p=0.4117 p=0.0027 p=0.0098* p=0.5282 

In four-class cognitive load classification (Figure 10), rise duration has the highest accuracies 

(57.9% and 55.3%) and the results of accumulative GSR are slightly lower (56.6% and 52.6%). 

Peak number and amplitude are next (around 47% and 44% respectively). Lowest accuracies as 

well as the largest difference between the two types of classifiers are related to peak area (36.8% 

and 43.4%) and frequency power (39.5% and 34.2%). 

 

Figure 10. Four-class classification accuracies of the second experiment (including emotional changes) 
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frequency power, although still above the baseline, are far less than those of the other features 

(between 20% and 30% below any of them). 

 

 

Figure 11. Two-class classification accuracies of the second experiment (including emotional changes) 
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increase bodily efficiency [1]. Therefore, fluctuations in cognitive load and emotions lead to 

changes in the patterns of GSR features. 

The relation between GSR and cognitive load had been previously assessed but most studies 

had consisted of only two cognitive load levels and focused on mean GSR. A few of them had 

found some correlations [38, 44] and some did not succeed in relating GSR and cognitive load 

levels [13] or found weak relations [12]. The present research however has found significant 

statistical and classification results for using temporal and spectral GSR features in detecting two 

and four cognitive load levels. Most of the features we investigated had not been previously 

studied. Previous studies on most physiological signals including GSR have focused on either 

emotion detection or mental load measurement. This paper however studied the intersection of 

these two domains: it evaluated GSR features in detecting multiple cognitive load levels with 

affective interference. 

Affective states are present in everyday life and their fluctuations have profound impacts on 

physiological data. As such, emotion interference is an important confounding factor which can 

vastly affect cognitive load measurement accuracy especially when using physiological data. This 

research, however, suggests that the studied electrodermal features can be robust against emotional 

changes and maintain their ability to objectively discriminate between different levels of cognitive 

demand while arousal is impacted by affective stimuli. Further investigation about the impact of 

affective stimuli on GSR features and simultaneous monitoring of other measures such as 

performance would expand our knowledge regarding robustness of electrodermal features for 

cognitive load measurement with affective interference. 

Some limitations should be taken into account when interpreting the results of this study. A 

greater number of trials, especially in the first experiment, could enhance the certainty and power 

of findings. In the present research emotions were imposed by systematic and controlled use of 

visual stimuli; nevertheless visual interference and attentional regulation might have interfered 

with the measurement of cognitive load. The results may have improved by avoiding such 

potential confounding factors. In our future studies we will consider alternative methods of 

emotion induction such as presenting auditory stimuli to prevent visual interference and 

reduce/avert attentional regulation. 

The explored features of the low-cost conveniently-captured GSR signal were found to detect 

multiple cognitive load levels significantly and with good classification accuracy in both studies 

even under emotional changes. Although some of the features performed better in either of the 

experiments, common promising ones also emerged. We are currently investigating feature fusion, 

combining features from similar and different behavioural and physiological modalities, to obtain 

higher performance in implicit cognitive load measurement. Furthermore, we aim to expand our 

research to explore cognitive load detection in more realistic application domains such as driving. 

Monitoring mental state of the users can profoundly improve interactions and user experience 

in today’s automated systems. Various practical aspects of people’s life including, but not limited 

to, education, transportation (road, rail, sea or air), crisis and incident management, would 

dramatically benefit from objective, robust, accurate, real-time, unobtrusive measurement of 

cognitive load. In complex and critical tasks such as driving, piloting, air-traffic control and 

nuclear reactor management human’s cognitive resources can easily be overloaded resulting in 

performance reduction, stress and mistakes with serious consequences. Thus, intelligent interface 

with a constant, personalized, situation-based adaptation can improve people’s safety, interaction 

experience and performance. Findings of this research suggest the potential applicability of the 

proposed approaches in adaptable intelligent systems where unobtrusive monitoring of cognitive 

load would result in optimum interactions with humans. 
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