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Abstract— Conflict arises naturally in dyadic interactions
when involved individuals act on incompatible goals, interests,
or actions. In this paper, the problem of conflict intensity esti-
mation from audiovisual recordings is addressed. To this end,
we propose an online attention-based neural network in order
to learn a mapping from a sequence of audiovisual features to
time-series describing conflict intensity. The proposed method
is evaluated by conducting experiments in conflict intensity
estimation by employing the CONFER dataset. Experimental
results indicate the superiority of the proposed model compared
to the state of the art. Furthermore, we demonstrate that by
incorporating sparsity in the model, the origin of conflict can be
traced back to specific key frames facilitating the interpretation
of conflict escalation.

I. INTRODUCTION

Humans are predominantly social beings, expressing social
behaviours such as agreement, conflict, politeness, empathy
etc as temporal patterns of non-verbal behavioural cues [1]
[2]. The importance of developing tools for an automatic
analysis and prediction of human social behaviours from
audiovisual recordings is profound, facilitating both basic
research in cognitive and social sciences and drastically
improving the state of the art in human-computer interaction.

In this paper, we focus on estimating conflict escala-
tion and resolution in dyadic interactions from audiovisual
recordings. Conflict is used to label a range of human
experiences, from disagreement to stress and anger, occurring
when involved individuals act on incompatible goals, inter-
ests, or actions. Various research studies in human sciences
argue that a disagreement does not have to result in a
conflict; conflict describes a high level of disagreement, or
escalation of disagreement, where at least one of the involved
interlocutors feels emotionally offended.

Prior work on automatic (dis)agreement and conflict de-
tection and estimation is rather limited. Concretely, statistical
model of verbal and acoustic features have been applied for
disagreement detection [3][4][5], while in [6] [7] the task is
addressed by employing a sequential discriminative model.
Kim et al. [8] [9] employ audio features for conflict detection
while methods for estimation of continuous-valued conflict
intensity have been proposed in [10] [11] [8]. However, the
aforementioned methods ignore or oversimplify the temporal
dimension which is of utmost importance to the problems of
conflict and (dis)agreement estimation.

In this work, motivated by the success of attention models
in tasks such as neural machine translation [12], [13], caption
generation [14], speech recognition [15], and lip reading
[16], we investigate how attention models can be employed
in the task of continuous social behaviour estimation and in

particular in conflict estimation. To this end, we propose an
online attention-based neural network that is learned end-to-
end from facial and vocal features. We evaluate the proposed
model in conflict estimation in political debates by conduct-
ing experiments on the CONFER dataset [17]. Significant
improvements over the state of the art are reported. This
is attributed to the fact that distinct from previous work
on conflict estimation, the proposed attention-based model
focuses heavily on the temporal aspect of conflict while
being able to handle noisy data inherent in naturalistic real
world conditions. It is also worth mentioning that the pro-
posed model differs from previous approaches to modeling
attention in that it is entirely online, suitable for interactions
of arbitrary length with no increase in computational cost.
Finally, we illustrate why attention is especially interesting
when applied to the task under study by extracting useful
insights from a learned model. To aid in this endeavour we
propose a novel method to induce sparsity in the learned
attention. The resulting learned attention is hard and sparse,
allowing us to pinpoint key frames that indicate an arising
conflict.

II. MODEL ARCHITECTURE

We make use of the encoder-decoder architecture. It has
the advantage of being entirely asymmetric; in general the
decoder has access to all the encoded outputs and does not
need to be of the same size as the inputs. As we work with
videos and we are interested in the conflict for each frame,
however, input length and output length will be the same.

A. Encoder

The video encoder operates on extracted features which we
will discuss in section IV-B. We denote these image features
as xt . The encoder takes in such a sequence xt , feeds these
into a small fully-connected (FC) network that decreases in
size, then passes these features through a Long Short-Term
Memory (LSTM) layer [18] to produce an encoded series oe

of the same length as the input sequence, as follows:

ft = FC(xt)

ht ,oe
t = LST M( ft ,ht−1)

(1)

The initial LSTM value h1 is learned with the rest of the
network.
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Fig. 1: At each time step, the decoder part generates an output ŷi.
The attention mechanism is used to attend, i.e. to select, appropriate
encoded outputs from the history.

B. Decoder

The decoder works asynchronously from the encoder and
contains the attention mechanism:

hd
t ,o

d
t = LSTM(ŷt−1;ct−1,hd

t−1)

ct = Attention(hd
t−1,o

e)

ŷt = FC(ct ;oe
t ;od

t )

(2)

At each time step t, the decoder LSTM produces hd
t and

od
t from last time step’s context vector ct−1 and output ŷt−1.

The context vector is produced by the attention mechanism.
The output ŷt is then computed from a fully-connected layer
with a linear activation that takes the decoder recurrent
network’s output, the encoded output and the context vector.
The rationale behind this is that attention is supposed to
distill information from the rest of the sequence without
relying on all of it.

C. Attention

The attention mechanism is inspired by work by Bah-
danau, Cho, and Bengio [13] with one of the fundamental
differences being that our work uses local instead of global
attention. Generally speaking, an attention model works with
a query and some memory to query from. Usually the query
corresponds to the decoder hidden state hd

t and the memory
is simply the encoder’s outputs oe. The memory is where the
local and global variants differ. Attention learns a weighting
α over the memory as follows:

ei j = v>tanh(Wqi +Um j +b)

αi j = softmax(ei j)
(3)

with qi the query at timestep i and m j the memory at
timestemp j. Weight matrices W , U and vectors v and b are

learned. The weighting α is finally used to compute context
vector ci.

ci =
L0+Lw

∑
j=L0

αi jm j (4)

In the case of global attention, the memory would consist
of the whole encoded sequence, i.e. L0 = 0 and Lw = L,
with L denoting the whole sequence length. In case of local
attention a window is used, so L0 and Lw, the window size,
are set accordingly.

Windowed Attention: Since we deal with videos, global
attention quickly becomes too computationally inefficient as
it operates on the entire sequence. Furthermore, it requires
the whole sequence to be available even before the first
output is produced, as each output is dependent on the
whole input sequence. To remedy this, we employ a form
of windowed attention that can work entirely online. At the
time the decoder produces output ŷt , the window of encoded
outputs available to it ranges from t−T +1 up to t. That is,
the past T frames are available to the attention mechanism.
This has the advantage of being entirely online, an absolute
requirement for any real application, so predictions can be
generated in real-time. Additionally, it works on sequences
of arbitrary length as the computational cost stays fixed over
time.

III. TRAINING STRATEGY

A. Scheduled Sampling

The decoder recurrent network described in section II-
B is conditioned on the previous network output so it can
learn to model a coherent sequence. It is not uncommon in
a scenario like this to use the ground truth values instead of
predictions during training. The weakness to this approach
is that the ground truth is not present during inference and
the model has not learned to cope with small deviations in
predictions. In practice, the deviations compound and outputs
diverge dramatically, straying increasingly as the sequence
progresses. This poses an increased risk to our model given
that we work with long sequences, especially compared to
previous work. To combat this, we employ the scheduled
sampling method by Bengio et al. [19]. During training, the
probability to sample from the previous prediction instead
of from the previous truth changes gradually from 0 to 1 at
which it stays for the rest of training. We have tried both
a linear and inverse sigmoidal annealing scheme and found
the more simple linear option straightforwardly effective.

B. Implementation details

The first encoder fully-connected layer contains a number
of neurons equal to the input feature size whereas the second
fully-connected layer contains 128 neurons. Both the encoder
LSTM and decoder LSTM contain 128 cells. The final
layer has a single output with a linear activation. All fully-
connected layers are followed by batch normalization which
we found greatly prevents overfitting of the network, and a
Rectifier Linear Unit (ReLU) activation.

2
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The model is trained with regards to the Intra-class
Correlation Coefficient (ICC) [20], a correlation metric that
measures ‘consistency’ or ‘agreement’. We use the common
variant ICC(3,1). For training, we employ the gradient-based
optimization algorithm ADAM [21] with a learning rate of
10−3.

IV. EXPERIMENT

A. Dataset

We make use of the Conflict Escalation Resolution (CON-
FER) database [17], a set of recordings of televised political
debates from Greek TV. It contains 73 episodes of dyadic
interactions and 47 episodes of interactions among three sub-
jects, spanning approximately 142 minutes with 54 subjects.
Recordings are real-world and in-the-wild, i.e. they are not
set in artificial conditions. Lighting tends to vary, poses are
not always front-facing, abrupt hand gestures can appear
and speech can overlap. The conflict annotation sequence
is derived from 10 annotators by employing Canonical
Correlation Analysis (CCA) to extract maximally correlated
subspaces for the annotations and corresponding audiovisual
feature sets. These conflict intensity values range between 0
and 1.

All our experiments follow the 5-fold cross-validation
experimental protocol as proposed by [17] to represent a fair
and representative view over the whole dataset. This means
that for each fold the model is trained on 3 out of 5 parts
of the dataset, validation is performed using a 4th and test
metrics are calculated over a 5th. We report our test metrics
averaged over all 5 folds.

B. Image Features

The CONFER database contains 68 tracked facial points
per interactant. We transform these with an affine transfor-
mation based on 5 stable points: those corresponding to the
corners of the eyes and the tip of the nose. Then we extract
the following features:

1) Expr.+SIFT: We reuse the best-performing feature set
reported by [17] to allow for a fair comparison. We only
consider the Expression and SIFT feature sets in conjunction
(and not separate), as [17] reports this makes up their best-
performing visual feature set.

Expression: Principal Component Analysis is applied on
the Points set by projecting the facial landmarks onto the
subspace spanned by the ‘eigenshapes’ of a pre-trained Ac-
tive Shape Model (ASM), following [17]. 18 coefficients are
kept accounting for 95% of the total variance. Of these, the
last 12 are kept that are deemed related to facial expression,
i.e. face deformation.

SIFT: Appearance-based descriptors named Scale-
Invariant Feature Transform (SIFT) features are derived
over both video streams, as described in [17]. After CCA,
keeping features that account for 95% of total variability,
75 features are kept for both faces combined.

2) Points: For each interactant we have 68 facial points.
These facial points are zero-centered, normalized to unit
variance and their coordinates kept as features.

3) VGG-Face: To study the efficacy of derived features,
we also use deep-learned features that are learned separate
from the task at hand. To this end, we use the architecture
dubbed VGG-Face [22], pre-trained on a face recognition
task. The features we keep are the outputs of its last max-
pooling layer which leaves us with a feature vector of size
512 per face. As input to the network we use the raw image,
aligned with the same transformation we use for facial points.

4) Audio: As [17] reported extensively on their results
with audio features and their best visual and audio features
combined, we briefly consider the same set of audio features.
Audio features are extracted with the openSMILE feature
extractor [23] to obtain 65 low-level descriptors (4 relating to
energy, 55 spectral and 6 voicing-related). The audio features
are sampled at 25 Hz so fusion with visual features is a
simple concatenation.

C. Results

Table I reports results for our attention-enabled model on
the CONFER dataset. Although our work focuses mainly on
visual features we also report results for audio and audiovi-
sual features to allow for a fair comparison with existing
work. This means we only compare for the audiovisual
features consisting of a fusion of Expression, SIFT and Audio
features following the work of [17], even though we have
found visual features that outperform Expression+SIFT.

Our model improves on the state of the art for each feature
set with regards to ICC. It outperforms for Expr.+SIFT
and audiovisual features with regards to Pearson correlation
(COR) and is on par for audio features considered sepa-
rately. Interestingly, while [17] obtained high ICC scores
for audio and audiovisual only, we achieve consistently high
ICC scores for each feature set. While we found ICC is
a good correlation-based metric to train on, we do notice
that Pearson correlation improves more slowly, making it a
more critical and perhaps more apt test metric. This can be
seen very clearly from the differences between visual and
audiovisual results.

Our biggest gain in performance is on the audiovisual fea-
ture set. While we do well for both audio and video separate,
audiovisual results far outstrip either with a correlation of
0.553. This indicates that both modalities carry information
highly complementary to the other with regard to conflict
estimation.

Visual Features: Table II contains presents results of the
various visual features we have used with our attention
model. We found that the best results are achieved using
Points features, which can be considered less processed than
the originally proposed Expr.+SIFT features. Using more

TABLE I: Results on the CONFER dataset.

Audio (A) Expr.+SIFT (V) V + A
COR ICC COR ICC COR ICC

SVR [17] 0.233 0.774 0.204 0.174 0.294 0.781
BiLSTM [17] 0.232 0.178 0.126 0.183 0.178 0.160
CCRF [17] 0.285 0.160 0.026 -0.001 0.221 0.163
Attention 0.283 0.886 0.303 0.895 0.553 0.928

3
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TABLE II: Visual feature
comparison

Features MSE COR ICC
E.+SIFT 0.101 0.303 0.895
VGG 0.105 0.323 0.895
Points 0.085 0.430 0.931

TABLE III: Window size ex-
ploration for Points features

T MSE COR ICC
50 0.107 0.353 0.902
100 0.085 0.430 0.931
200 0.108 0.317 0.891

(a) Common soft attention (b) Induced sparse attention

Fig. 2: Learned alignments for the same sequence both with and
without induced sparsity. A white vertical line indicates that frame
is attended to throughout time with the brightness corresponding to
the alignment strength.

fundamental features allows the model to learn its own
hypothesis instead of supplying it with interpreted features
such as the Expression features.

Controversially, VGG-Face features do not outperform
processed features. It is possible that the task of face recog-
nition is too dissimilar to that of conflict estimation and that
features learned while solving the former hold relatively little
value for the latter.

Attention Window: Table III lists results on the CONFER
dataset for different time windows for the Points feature set.
Given that the video is sampled at 25 Hz, a time window of
50 steps corresponds to 2 seconds. We get our best results for
a window of T = 100. While it is perhaps not surprising that
this window performs better than the smallest, it is not so
intuitive that the largest window would perform worst. While
theoretically the latter has the most information available to
it, we suspect it has a hard time learning how to deal with
this abundance of information.

D. Interpretative Conflict Analysis

The attention mechanism discussed here allows the model
to soft-align to past frames, assigning weights to each for
each output to be predicted. To gain insights into what the
model actually learned we can inspect the learned alignment
weights αi j for a given sequence. We found that the model
has a tendency to focus strongly on an important frame the
first time it is encountered, then to maintain some lingering
alignment with it until it disappears from the window.
Sometimes, no such crucial frames are encountered in which
case a soft, weak alignment is applied over most of the
history. An example of this behaviour can be seen in Fig.
2a which illustrates a soft alignment to most of the history
window.

While having a model approximate the average annotator
rating to the best of its capacity according to some quan-
titative metric is a worthwhile goal, it is not the only one

Fig. 3: Sparse attention trained exclusively on visual features. The
indicated frames point to time steps where a new single input frame
is attended to. The conflict can be seen arising as speakers start
talking simultaneously and hand gestures come into view.

worth pursuing. Sometimes it is more interesting to only get
the rough general tendencies of a conflict and trace these
back to only a few key frames. This should be a more
robust model, able to capture greater tendencies without
falling for noise. To this end, we propose a regularization
method that encourages sparsity of the learned alignments.
We use the Hoyer sparsity measure [24], defined for a vector

x of length n as Sparsity(x) =
√

n− ‖x‖1‖x‖2√
n−1 . We then adjust the

loss function to incorporate this sparsity measure applied
to the alignments αi. The new loss function then becomes
ICC(y, ŷ)+β ∗ (1−Sparsity(α)). Lower values of this loss
function, for the same ICC term, correspond to an increased
sparsity in α . The constant β represents the tradeoff between
model accuracy in terms of ICC and the need for hard, sparse
alignments that are more interpretable.

We found this approach allows us to learn hard alignments
that would often focus on just one frame for multiple steps
at a time, as illustrated in Fig. 2b, albeit at a penalty to
performance. There is also a computational advantage to
this that we did not exploit: instead of resorting to matrix
multiplication, the context can be a simple selection from
history. Fig. 3 illustrates the resulting behaviour. The lines
indicate when a new frame is attended to. The resulting
model tends to behave smoothly for the same attended
frame, then changes behaviour when a new critical frame
is encountered. We found that the attended frames were
especially representative of the escalating conflict.

V. SUMMARY AND CONCLUSION

In this work we introduced the first attention-based model
for conflict estimation. Additionally, the discussed attention
mechanism takes a window-based, online approach to what
heretofore has only been done in an unscalable, entire-
sequence-to-sequence manner. Finally, we proposed a novel
method to induce sparsity resulting in hard alignments.
Compelling both computationally and for interpretability, this
method allows us to trace arising conflict back to a few key
frames, making it invaluable for conflict analysis.
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